Skip to content
2000
Volume 9, Issue 3
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

An important application of microarray technology is the assignment of new subjects to known clinical groups (class prediction), but the huge number of screened genes and the small number of samples make this task difficult. To overcome this problem, the usual approach has been to extract a small subset of significant genes (gene selection) or to use the whole set of genes to build latent components (dimension reduction), then applying some usual multivariate classification procedure. Alternatively, both aims -gene selection and class prediction- can be achieved at the same time by using methods based on Partial Least Squares (PLS), as reported in the present work. We present an iterative PLS algorithm based on backward variable elimination through the “Variable Influence on Projection” (VIP) statistic, which finds an optimal PLS model through training and test sets. It simultaneously manages to reduce the number of selected genes by an iterative procedure and finds the best number of PLS factors to reach an optimal classification performance. It is a simple approach that uses only one mathematical method, maintains the identification of discriminatory genes, and builds an optimal predicting model with a fast computation. The algorithm runs as a module of the SIMFIT statistical package, where the optimal model and datasets can be re-run to further interpret the system through additional PLS options, such as scores and loadings plots, or class assignment of new samples. The proposed algorithm was tested under different scenarios occurring in microarray analysis using simulated data. The results are also compared against different classification methods such as KNN, PAM, SVM, RF and standard PLS.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/15748936113086660011
2014-07-01
2025-10-15
Loading full text...

Full text loading...

/content/journals/cbio/10.2174/15748936113086660011
Loading

  • Article Type:
    Research Article
Keyword(s): Classification; gene selection; microarray; partial least squares; PLS; VIP statistic
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test