Skip to content
2000
image of A Multipurpose Machine Learning Application in Microbiological Data

Abstract

Microorganisms are widespread and essential to the transformation of substances and organic matter. Researchers studied microorganisms through various conventional methods, such as machine learning (ML), to overcome multiple obstacles. This review aims to highlight the involvement of ML in various aspects of microbiology to provide insightful information, along with advancement challenges.

Concerning the microbiological aspects and the integration of ML and their associated applications, the relevant literature was diligently reviewed to collect meaningful information on the ML involvement in different fields of microbiology and discussed.

Due to the complexity of microbiological data, the researchers are using the amalgamation of various stages and diverse ML applications to deal with and organize the data systematics for accurate results and proper hypotheses. Subsequently, navigating these microbiological data requires an extensive feature-based model for the appropriate validation and to obtain accurate results.

This study mainly summarizes the various applications and development of ML models used in many aspects, especially the fundamentals of ML in microbiological data, clinical applications, microbial ecology, and the surrounding environment. At present, ML's involvement in microbial aspects is widely utilized; however, bulk data and proper information are needed for accurate and informative outcomes. This review sheds light on ML's involvement in microbiological aspects, and briefly discusses the different aspects. The advanced approaches followed by different tools and databases can be a potential lead toward significant research and promising findings.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936414246250808022341
2025-08-21
2025-11-01
Loading full text...

Full text loading...

References

  1. Qu K. Guo F. Liu X. Lin Y. Zou Q. Application of machine learning in microbiology. Front. Microbiol. 2019 10 827 10.3389/fmicb.2019.00827 31057526
    [Google Scholar]
  2. DiMucci D. Kon M. Segrè D. Machine learning reveals missing edges and putative interaction mechanisms in microbial ecosystem networks. mSystems 2018 3 5 10.1128/msystems.00181-18 10.1128/msystems.00181‑18 30417106
    [Google Scholar]
  3. Waldron L. Data and statistical methods to analyze the human microbiome. mSystems 2018 3 2 e00194 e17 10.1128/mSystems.00194‑17 29556541
    [Google Scholar]
  4. Peng L.H. Yin J. Zhou L. Liu M.X. Zhao Y. Human microbe-disease association prediction based on adaptive boosting. Front. Microbiol. 2018 9 2440 10.3389/fmicb.2018.02440 30356751
    [Google Scholar]
  5. Huang Y.A. You Z.H. Chen X. Huang Z.A. Zhang S. Yan G.Y. Prediction of microbe–disease association from the integration of neighbor and graph with collaborative recommendation model. J. Transl. Med. 2017 15 1 209 10.1186/s12967‑017‑1304‑7 29037244
    [Google Scholar]
  6. Kapoor R. Prasad A.B. Anuradha B. Arularasan A. AI technology enhances the protection of people from disease. Bull Env Pharmacol Life Sci 2022 10 16 02
    [Google Scholar]
  7. Goodswen S.J. Barratt J.L.N. Kennedy P.J. Kaufer A. Calarco L. Ellis J.T. Machine learning and applications in microbiology. FEMS Microbiol. Rev. 2021 45 5 fuab015 10.1093/femsre/fuab015 33724378
    [Google Scholar]
  8. Peiffer-Smadja N. Dellière S. Rodriguez C. Machine learning in the clinical microbiology laboratory: Has the time come for routine practice? Clin. Microbiol. Infect. 2020 26 10 1300 1309 10.1016/j.cmi.2020.02.006 32061795
    [Google Scholar]
  9. Zitnik M. Nguyen F. Wang B. Leskovec J. Goldenberg A. Hoffman M.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities. Inf. Fusion 2019 50 71 91 10.1016/j.inffus.2018.09.012 30467459
    [Google Scholar]
  10. Stöter F.R. Chakrabarty S. Edler B. Habets E.A.P. CountNet: Estimating the number of concurrent speakers using supervised learning. IEEE/ACM Trans. Audio Speech Lang. Process. 2019 27 2 268 282 10.1109/TASLP.2018.2877892
    [Google Scholar]
  11. Habehh H. Gohel S. Machine learning in healthcare. Curr. Genomics 2021 22 4 291 300 10.2174/1389202922666210705124359 35273459
    [Google Scholar]
  12. Smith K.P. Wang H. Durant T.J.S. Applications of artificial intelligence in clinical microbiology diagnostic testing. Clin. Microbiol. Newsl. 2020 42 8 61 70 10.1016/j.clinmicnews.2020.03.006
    [Google Scholar]
  13. Tice A.M. Farag H.A. Machine learning in microbiology: Finding the signal in the noise. Clin. Microbiol. Newsl. 2019 41 14 121 127 10.1016/j.clinmicnews.2019.06.004
    [Google Scholar]
  14. Mitchell T.M. Mitchell T.M. Machine learning. McGraw-hill New York 1997
    [Google Scholar]
  15. Zhang X Zou Q Rodriguez-Paton A Zeng X Meta-path methods for prioritizing candidate disease miRNAs. IEEE/ACM Trans Comput Biol Bioinform 2019 16 1 283 91 10.1109/TCBB.2017.2776280 29990255
    [Google Scholar]
  16. Shameer K. Johnson K.W. Glicksberg B.S. Dudley J.T. Sengupta P.P. Machine learning in cardiovascular medicine: Are we there yet? Heart 2018 104 14 1156 1164 10.1136/heartjnl‑2017‑311198 29352006
    [Google Scholar]
  17. Deo R.C. Machine learning in medicine. Circulation 2015 132 20 1920 1930 10.1161/CIRCULATIONAHA.115.001593 26572668
    [Google Scholar]
  18. Yang H. Tang H. Chen X.X. Identification of secretory proteins in mycobacterium tuberculosis using pseudo amino acid composition. BioMed Res. Int. 2016 2016 1 7 10.1155/2016/5413903 27597968
    [Google Scholar]
  19. Feng P.M. Ding H. Chen W. Lin H. Naïve Bayes classifier with feature selection to identify phage virion proteins. Comput. Math. Methods Med. 2013 2013 1 6 10.1155/2013/530696 23762187
    [Google Scholar]
  20. Chen X. Wang C.C. Yin J. You Z.H. Novel human miRNA-disease association inference based on random forest. Mol. Ther. Nucleic Acids 2018 13 568 579 10.1016/j.omtn.2018.10.005 30439645
    [Google Scholar]
  21. Chen X. Sun Y.Z. Guan N.N. Computational models for lncRNA function prediction and functional similarity calculation. Brief. Funct. Genomics 2019 18 1 58 82 10.1093/bfgp/ely031 30247501
    [Google Scholar]
  22. Xu L. Liang G. Shi S. Liao C. SeqSVM: A sequence-based support vector machine method for identifying antioxidant proteins. Int. J. Mol. Sci. 2018 19 6 1773 10.3390/ijms19061773 29914044
    [Google Scholar]
  23. Jiang Y. Luo J. Huang D. Liu Y. Li D. Machine learning advances in microbiology: A review of methods and applications. Front. Microbiol. 2022 13 925454 10.3389/fmicb.2022.925454 35711777
    [Google Scholar]
  24. Xue J.H. Titterington D.M. Comment on “on discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes”. Neural Process. Lett. 2008 28 3 169 187 10.1007/s11063‑008‑9088‑7
    [Google Scholar]
  25. Liao Y. Vemuri V.R. Vemuri V.R. Use of K-Nearest neighbor classifier for intrusion detection. Comput. Secur. 2002 21 5 439 448 10.1016/S0167‑4048(02)00514‑X
    [Google Scholar]
  26. Svetnik V. Liaw A. Tong C. Culberson J.C. Sheridan R.P. Feuston B.P. Random forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003 43 6 1947 1958 10.1021/ci034160g 14632445
    [Google Scholar]
  27. De Bruyne S. Speeckaert M.M. Delanghe J.R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab. Sci. 2018 55 1 1 20 10.1080/10408363.2017.1414142 29239240
    [Google Scholar]
  28. Van der Maaten L. Hinton G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008 9 2605 2579 2605
    [Google Scholar]
  29. Saxena A. Prasad M. Gupta A. A review of clustering techniques and developments. Neurocomputing 2017 267 664 681 10.1016/j.neucom.2017.06.053
    [Google Scholar]
  30. Kouchaki S. Yang Y. Walker T.M. Application of machine learning techniques to tuberculosis drug resistance analysis. Bioinformatics 2019 35 13 2276 2282 10.1093/bioinformatics/bty949 30462147
    [Google Scholar]
  31. Singh B. Kumar R. Singh V.P. Reinforcement learning in robotic applications: A comprehensive survey. Artif. Intell. Rev. 2022 55 2 945 990 10.1007/s10462‑021‑09997‑9
    [Google Scholar]
  32. Littman M.L. Reinforcement learning improves behaviour from evaluative feedback. Nature 2015 521 7553 445 451 10.1038/nature14540 26017443
    [Google Scholar]
  33. Coronato A. Naeem M. De Pietro G. Paragliola G. Reinforcement learning for intelligent healthcare applications: A survey. Artif. Intell. Med. 2020 109 101964 10.1016/j.artmed.2020.101964 34756216
    [Google Scholar]
  34. Kober J. Bagnell J.A. Peters J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013 32 11 1238 1274 10.1177/0278364913495721
    [Google Scholar]
  35. Mnih V. Kavukcuoglu K. Silver D. Human-level control through deep reinforcement learning. Nature 2015 518 7540 529 533 10.1038/nature14236 25719670
    [Google Scholar]
  36. Treloar N.J. Fedorec A.J.H. Ingalls B. Barnes C.P. Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLOS Comput. Biol. 2020 16 4 e1007783 10.1371/journal.pcbi.1007783 32275710
    [Google Scholar]
  37. Weaver D.T. King E.S. Maltas J. Scott J.G. Reinforcement learning informs optimal treatment strategies to limit antibiotic resistance. Proc. Natl. Acad. Sci. USA 2024 121 16 e2303165121 10.1073/pnas.2303165121 38607932
    [Google Scholar]
  38. Popova M. Isayev O. Tropsha A. Deep reinforcement learning for de novo drug design. Sci. Adv. 2018 4 7 eaap7885 10.1126/sciadv.aap7885 30050984
    [Google Scholar]
  39. Maier A. Syben C. Lasser T. Riess C. A gentle introduction to deep learning in medical image processing. Z. Med. Phys. 2019 29 2 86 101 10.1016/j.zemedi.2018.12.003 30686613
    [Google Scholar]
  40. Devlin J. Chang M-W. Lee K. Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding. Comput. Lang. 2018 1 10.48550/arXiv.1810.04805
    [Google Scholar]
  41. Knoll F. Hammernik K. Zhang C. Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues. IEEE Signal Process. Mag. 2020 37 1 128 140 10.1109/MSP.2019.2950640 33758487
    [Google Scholar]
  42. Vargas R. Mosavi A. Ruiz R. Deep learning: A review. Adv Intell Syst Comput 2017 10.20944/preprints201810.0218.v1
    [Google Scholar]
  43. Hinton G.E. Osindero S. Teh Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006 18 7 1527 1554 10.1162/neco.2006.18.7.1527 16764513
    [Google Scholar]
  44. Liu H. Mo Z.H. Yang H. Automatic Facial Recognition of Williams-Beuren Syndrome Based on Deep Convolutional Neural Networks. Front Pediatr. 2021 9 648255 10.3389/fped.2021.648255 34095025
    [Google Scholar]
  45. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015 61 85 117 10.1016/j.neunet.2014.09.003 25462637
    [Google Scholar]
  46. Lecun Y. Bottou L. Bengio Y. Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE 1998 86 11 2278 2324 10.1109/5.726791
    [Google Scholar]
  47. Hinton G. Boltzmann machine. Scholarpedia J. 2007 2 5 1668 10.4249/scholarpedia.1668
    [Google Scholar]
  48. Sermanet P. LeCun Y. Traffic sign recognition with multi-scale Convolutional Networks. The 2011 International Joint Conference on Neural Networks. San Jose, CA, USA, 2011, pp. 2809-2813 10.1109/IJCNN.2011.6033589
    [Google Scholar]
  49. Yuan H. Wang Z. Wang Z. Zhang F. Guan D. Zhao R. Trends in forensic microbiology: From classical methods to deep learning. Front. Microbiol. 2023 14 1163741 10.3389/fmicb.2023.1163741 37065115
    [Google Scholar]
  50. Goodfellow I Bengio Y Courville A Modern practical deep networks. alvarestech 2015
    [Google Scholar]
  51. Cao C. Liu F. Tan H. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics 2018 16 1 17 32 10.1016/j.gpb.2017.07.003 29522900
    [Google Scholar]
  52. Jeyamkondan S. Jayas D.S. Holley R.A. Microbial growth modelling with artificial neural networks. Int. J. Food Microbiol. 2001 64 3 343 354 10.1016/S0168‑1605(00)00483‑9 11294356
    [Google Scholar]
  53. Yasir M. Karim A.M. Malik S.K. Bajaffer A.A. Azhar E.I. Application of decision-tree-based machine learning algorithms for prediction of antimicrobial resistance. Antibiotics (Basel) 2022 11 11 1593 10.3390/antibiotics11111593 36421237
    [Google Scholar]
  54. Khan N. Mohmand M.I. Rehman S. Ullah Z. Khan Z. Boulila W. Advancements in intrusion detection: A lightweight hybrid RNN-RF model. PLoS One 2024 19 6 e0299666 10.1371/journal.pone.0299666 38905163
    [Google Scholar]
  55. Guido R. Ferrisi S. Lofaro D. Conforti D. An overview on the advancements of support vector machine models in healthcare applications: a review. Information (Basel) 2024 15 4 235 10.3390/info15040235
    [Google Scholar]
  56. Wickramasinghe I. Kalutarage H. Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Comput. 2021 25 3 2277 2293 10.1007/s00500‑020‑05297‑6
    [Google Scholar]
  57. Halder R.K. Uddin M.N. Uddin M.A. Aryal S. Khraisat A. Enhancing K-nearest neighbor algorithm: a comprehensive review and performance analysis of modifications. J. Big Data 2024 11 1 113 10.1186/s40537‑024‑00973‑y
    [Google Scholar]
  58. Awad F.H. Hamad M.M. Alzubaidi L. Robust classification and detection of big medical data using advanced parallel K-means clustering, YOLOv4, and logistic regression. Life (Basel) 2023 13 3 691 10.3390/life13030691 36983845
    [Google Scholar]
  59. Shahraki A. Abbasi M. Haugen Ø. Boosting algorithms for network intrusion detection: A comparative evaluation of Real AdaBoost, Gentle AdaBoost and Modest AdaBoost. Eng. Appl. Artif. Intell. 2020 94 103770 10.1016/j.engappai.2020.103770
    [Google Scholar]
  60. Zhang J. Liu Y.X. Guo X. High-throughput cultivation and identification of bacteria from the plant root microbiota. Nat. Protoc. 2021 16 2 988 1012 10.1038/s41596‑020‑00444‑7 33442053
    [Google Scholar]
  61. Zhu H. Big Data and Artificial Intelligence Modeling for Drug Discovery. Annu. Rev. Pharmacol. Toxicol. 2020 60 1 573 589 10.1146/annurev‑pharmtox‑010919‑023324 31518513
    [Google Scholar]
  62. Zhu X. Yan S. Yuan F. Wan S. The Applications of Nanopore Sequencing Technology in Pathogenic Microorganism Detection. Can. J. Infect. Dis. Med. Microbiol. 2020 2020 1 8 10.1155/2020/6675206 33488885
    [Google Scholar]
  63. Beck L.C. Granger C.L. Masi A.C. Stewart C.J. Use of omic technologies in early life gastrointestinal health and disease: from bench to bedside. Expert Rev. Proteomics 2021 18 4 247 259 10.1080/14789450.2021.1922278 33896313
    [Google Scholar]
  64. Liang J. Luo W. Yu K. Multi-Omics Revealing the Response Patterns of Symbiotic Microorganisms and Host Metabolism in Scleractinian Coral Pavona minuta to Temperature Stresses. Metabolites 2021 12 1 18 10.3390/metabo12010018 35050140
    [Google Scholar]
  65. Kanuri N. Abdelkarim A.Z. Rathore S.A. Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation Tool: Machine-Learning-Enabled Segmentation on Features of Panoramic Radiographs. Cureus 2022 14 1 e21777 10.7759/cureus.21777 35251847
    [Google Scholar]
  66. Fillbrunn A. Dietz C. Pfeuffer J. Rahn R. Landrum G.A. Berthold M.R. KNIME for reproducible cross-domain analysis of life science data. J. Biotechnol. 2017 261 149 156 10.1016/j.jbiotec.2017.07.028 28757290
    [Google Scholar]
  67. Hadjis S. Abuzaid F. Zhang C. Re C. Caffe con Troll: Shallow Ideas to Speed Up Deep Learning. Proc Fourth Workshop Data Anal Scale Danac 2015 10.1145/2799562.2799641
    [Google Scholar]
  68. Pajot O. Burdet C. Couffignal C. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia. J. Antimicrob. Chemother. 2015 70 5 1487 1494 10.1093/jac/dku569 25630642
    [Google Scholar]
  69. Egli A. Digitalization, clinical microbiology and infectious diseases. Clin. Microbiol. Infect. 2020 26 10 1289 1290 10.1016/j.cmi.2020.06.031 32622954
    [Google Scholar]
  70. Beck M.W. NeuralNetTools: Visualization and Analysis Tools for Neural Networks. J. Stat. Softw. 2018 85 11 1 20 10.18637/jss.v085.i11 30505247
    [Google Scholar]
  71. Bukhari S.N.H. Jain A. Haq E. Machine Learning-Based Ensemble Model for Zika Virus T-Cell Epitope Prediction. J. Healthc. Eng. 2021 2021 1 10 10.1155/2021/9591670 34631001
    [Google Scholar]
  72. Bolyen E. Rideout J.R. Dillon M.R. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019 37 8 852 857 10.1038/s41587‑019‑0209‑9 31341288
    [Google Scholar]
  73. Wirbel J. Zych K. Essex M. Microbiome meta-analysis and cross-disease comparison enabled by the SIAMCAT machine learning toolbox. Genome Biol. 2021 22 1 93 10.1186/s13059‑021‑02306‑1 33785070
    [Google Scholar]
  74. Bortolaia V. Kaas R.S. Ruppe E. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020 75 12 3491 3500 10.1093/jac/dkaa345 32780112
    [Google Scholar]
  75. Milanese A. Mende D.R. Paoli L. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 2019 10 1 1014 10.1038/s41467‑019‑08844‑4 30833550
    [Google Scholar]
  76. Bakir-Gungor B. Temiz M. Jabeer A. Wu D. Yousef M. microBiomeGSM: the identification of taxonomic biomarkers from metagenomic data using grouping, scoring and modeling (G-S-M) approach. Front. Microbiol. 2023 14 1264941 10.3389/fmicb.2023.1264941 38075911
    [Google Scholar]
  77. Ligeti B. Szepesi-Nagy I. Bodnár B. Ligeti-Nagy N. Juhász J. ProkBERT family: genomic language models for microbiome applications. Front. Microbiol. 2024 14 1331233 10.3389/fmicb.2023.1331233 38282738
    [Google Scholar]
  78. Oh M. Zhang L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Rep. 2020 10 1 6026 10.1038/s41598‑020‑63159‑5 32265477
    [Google Scholar]
  79. García-Jiménez B. Muñoz J. Cabello S. Medina J. Wilkinson M.D. Predicting microbiomes through a deep latent space. Bioinformatics 2021 37 10 1444 1451 10.1093/bioinformatics/btaa971 33289510
    [Google Scholar]
  80. Dietrich A. Matchado M.S. Zwiebel M. Namco: a microbiome explorer. Microb. Genom. 2022 8 8 000852 10.1099/mgen.0.000852 35917163
    [Google Scholar]
  81. Oshrit S. Haim I. Sondra T. Omry K. Yoram L. Image and graph convolution networks improve microbiome-based machine learning accuracy. Quant Methods 2022 10.48550/arXiv.2205.06525
    [Google Scholar]
  82. Huson D.H. Beier S. Flade I. MEGAN community edition-interactive exploration and analysis of large-scale microbiome sequencing data. PLOS Comput. Biol. 2016 12 6 e1004957 10.1371/journal.pcbi.1004957 27327495
    [Google Scholar]
  83. Pedregosa F. Varoquaux G. Gramfort A. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2012 12
    [Google Scholar]
  84. Frank E. Hall M.A. Witten I.H. Data mining: Practical machine learning tools and techniques. Elsevier 2016
    [Google Scholar]
  85. Berthold M.R. Cebron N. Dill F. KNIME - the Konstanz information miner. SIGKDD Explor. 2009 11 1 26 31 10.1145/1656274.1656280
    [Google Scholar]
  86. Meints W. Deep Learning with Microsoft Cognitive Toolkit Quick Start Guide: A practical guide to building neural networks using Microsoft’s open source deep learning framework. Packt Publishing Ltd 2019
    [Google Scholar]
  87. Imambi S. Prakash K.B. Kanagachidambaresan G.R. PyTorch. Programming with TensorFlow EAI/Springer Innovations in Communication and Computing. Prakash K.B. Kanagachidambaresan G.R. Cham Springer 2021 10.1007/978‑3‑030‑57077‑4_10
    [Google Scholar]
  88. Bourez C. Deep learning with Theano. Birmingham, UK Packt Publishing Ltd 2017
    [Google Scholar]
  89. Jia Y. Shelhamer E. Donahue J. Convolutional architecture for fast feature embedding. Proceedings of the 22nd ACM international conference on Multimedia 2014, pp. 675-678
    [Google Scholar]
  90. Abadi M. Barham P. Chen J. TensorFlow: A System for Large-Scale Machine Learning. 12th USENIX symposium on operating systems design and implementation (OSDI 16). November 2–4, 2016 • Savannah, GA, USA
    [Google Scholar]
  91. Chollet F. Keras. Available from: https://github.com/fchollet/keras 2021
  92. Woodcroft B.J. Aroney S.T. Zhao R. SingleM and Sandpiper: Robust microbial taxonomic profiles from metagenomic data. Biorxiv 2024 2024.01
    [Google Scholar]
  93. Chklovski A. Parks D.H. Woodcroft B.J. Tyson G.W. CheckM2: A rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Nat. Methods 2023 20 8 1203 1212 10.1038/s41592‑023‑01940‑w 37500759
    [Google Scholar]
  94. Gupta A. Malwe A.S. Srivastava G.N. Thoudam P. Hibare K. Sharma V.K. MP4: A machine learning based classification tool for prediction and functional annotation of pathogenic proteins from metagenomic and genomic datasets. BMC Bioinformatics 2022 23 1 507 10.1186/s12859‑022‑05061‑7 36443666
    [Google Scholar]
  95. Wang X. Cao D. Zhang H. Chen W. Sun J. Hu H. Utilizing metagenomic profiling and machine learning model to identify bacterial biomarkers for major depressive disorder. Front. Psychiatry 2025 16 1539596 10.3389/fpsyt.2025.1539596 40041700
    [Google Scholar]
  96. Zhu Q. Gao S. Xiao B. He Z. Hu S. Plasmer: An accurate and sensitive bacterial plasmid prediction tool based on machine learning of shared k-mers and genomic features. Microbiol. Spectr. 2023 11 3 e04645 e22 10.1128/spectrum.04645‑22 37191574
    [Google Scholar]
  97. Rogers G.B. Cuthbertson L. Hoffman L.R. Reducing bias in bacterial community analysis of lower respiratory infections. ISME J. 2013 7 4 697 706 10.1038/ismej.2012.145 23190732
    [Google Scholar]
  98. Lin Z. Liu D. Pan W. Yang Q. Ming Z. Transfer learning for collaborative recommendation with biased and unbiased data. Artif. Intell. 2023 324 103992 10.1016/j.artint.2023.103992
    [Google Scholar]
  99. Kim H.E. Cosa-Linan A. Santhanam N. Jannesari M. Maros M.E. Ganslandt T. Transfer learning for medical image classification: a literature review. BMC Med. Imaging 2022 22 1 69 10.1186/s12880‑022‑00793‑7 35418051
    [Google Scholar]
  100. Hassija V. Chamola V. Mahapatra A. Interpreting black-box models: a review on explainable artificial intelligence. Cognit. Comput. 2024 16 1 45 74 10.1007/s12559‑023‑10179‑8
    [Google Scholar]
  101. Dwivedi R. Dave D. Naik H. XAI): Core ideas, techniques, and solutions. ACM Comput. Surv. 2023 55 9 1 33 10.1145/3561048
    [Google Scholar]
  102. Salih A.M. Raisi-Estabragh Z. Galazzo I.B. A perspective on explainable artificial intelligence methods: SHAP and LIME. Adv. Intell. Syst. 2025 7 1 2400304 10.1002/aisy.202400304
    [Google Scholar]
  103. Lopatkin A.J. Collins J.J. Predictive biology: modelling, understanding and harnessing microbial complexity. Nat. Rev. Microbiol. 2020 18 9 507 520 10.1038/s41579‑020‑0372‑5 32472051
    [Google Scholar]
  104. Shu W.S. Huang L.N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 2022 20 4 219 235 10.1038/s41579‑021‑00648‑y 34754082
    [Google Scholar]
  105. Agyapong D. Propster J.R. Marks J. Hocking T.D. Cross-validation for training and testing co-occurrence network inference algorithms. BMC Bioinformatics 2025 26 1 74 10.1186/s12859‑025‑06083‑7 40045231
    [Google Scholar]
  106. Broberg M. Doonan J. Mundt F. Denman S. McDonald J.E. Integrated multi-omic analysis of host-microbiota interactions in acute oak decline. Microbiome 2018 6 1 21 10.1186/s40168‑018‑0408‑5 29378627
    [Google Scholar]
  107. Faisal A. Dondelinger F. Husmeier D. Beale C.M. Inferring species interaction networks from species abundance data: A comparative evaluation of various statistical and machine learning methods. Ecol. Inform. 2010 5 6 451 464 10.1016/j.ecoinf.2010.06.005
    [Google Scholar]
  108. Mecham B.H. Nelson P.S. Storey J.D. Supervised normalization of microarrays. Bioinformatics 2010 26 10 1308 1315 10.1093/bioinformatics/btq118 20363728
    [Google Scholar]
  109. Law C.W. Chen Y. Shi W. Smyth G.K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014 15 2 R29 10.1186/gb‑2014‑15‑2‑r29 24485249
    [Google Scholar]
  110. Wood D.E. Salzberg S.L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014 15 3 R46 10.1186/gb‑2014‑15‑3‑r46 24580807
    [Google Scholar]
  111. Weinstein J.N. Collisson E.A. Mills G.B. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 45 1113 1120
    [Google Scholar]
  112. Poore G.D. Kopylova E. Zhu Q. RETRACTED ARTICLE: Microbiome analyses of blood and tissues suggest cancer diagnostic approach. Nature 2020 579 7800 567 574 10.1038/s41586‑020‑2095‑1 32214244
    [Google Scholar]
  113. Stupp D. Sharon E. Bloch I. Zitnik M. Zuk O. Tabach Y. Co-evolution based machine-learning for predicting functional interactions between human genes. Nat. Commun. 2021 12 1 6454 10.1038/s41467‑021‑26792‑w 34753957
    [Google Scholar]
  114. Zhang Y. Pechal J.L. Schmidt C.J. Machine learning performance in a microbial molecular autopsy context: A cross-sectional postmortem human population study. PLoS One 2019 14 4 e0213829 10.1371/journal.pone.0213829 30986212
    [Google Scholar]
  115. D’Agostino D. Morganti L. Corni E. Cesini D. Merelli I. Combining Edge and Cloud computing for low-power, cost-effective metagenomics analysis. Future Gener. Comput. Syst. 2019 90 79 85 10.1016/j.future.2018.07.036
    [Google Scholar]
  116. Xhepa M. Kanakala N.S. Machine Learning Model Computation in AWS and Azure. Franfurt University Of Applied Sciences 2022
    [Google Scholar]
  117. Feretzakis G. Sakagianni A. Loupelis E. Machine learning for antibiotic resistance prediction: A prototype using off-the-shelf techniques and entry-level data to guide empiric antimicrobial therapy. Healthc. Inform. Res. 2021 27 3 214 221 10.4258/hir.2021.27.3.214 34384203
    [Google Scholar]
  118. Zhu Y. Mahale A. Peters K. Using natural language processing on free-text clinical notes to identify patients with long-term COVID effects. Proceedings of the 13th ACM international conference on bioinformatics, computational biology and health informatics 2022, pp. 1-9 10.1145/3535508.3545555
    [Google Scholar]
  119. Sommer C Gerlich DW Machine learning in cell biology – teaching computers to recognize phenotypes. J Cell Sci 2013 126 Pt 24 jcs.123604 10.1242/jcs.123604 24259662
    [Google Scholar]
  120. Burton R.J. Albur M. Eberl M. Cuff S.M. Using artificial intelligence to reduce diagnostic workload without compromising detection of urinary tract infections. BMC Med. Inform. Decis. Mak. 2019 19 1 171 10.1186/s12911‑019‑0878‑9 31443706
    [Google Scholar]
  121. Liang Z. Powell A. Ersoy I. CNN-based image analysis for malaria diagnosis. 2016 IEEE Int Conf Bioinform Biomed (BIBM), Shenzhen, China. IEEE, 2016; pp. 493-496 10.1109/BIBM.2016.7822567
    [Google Scholar]
  122. Dong Y. Jiang Z. Shen H. Evaluations of deep convolutional neural networks for automatic identification of malaria infected cells. IEEE, 2017 101 104 10.1109/BHI.2017.7897215
    [Google Scholar]
  123. Bibin D Nair MS Punitha P Malaria parasite detection from peripheral blood smear images using deep belief networks. IEEE Access 2017 5 9099 108 10.1109/ACCESS.2017.2705642
    [Google Scholar]
  124. Rajaraman S. Antani S.K. Poostchi M. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ 2018 6 e4568 10.7717/peerj.4568 29682411
    [Google Scholar]
  125. Poostchi M. Silamut K. Maude R.J. Jaeger S. Thoma G. Image analysis and machine learning for detecting malaria. Transl. Res. 2018 194 36 55 10.1016/j.trsl.2017.12.004 29360430
    [Google Scholar]
  126. Tsitou V.M. Rallis D. Tsekova M. Yanev N. Microbiology in the era of artificial intelligence: Transforming medical and pharmaceutical microbiology. Biotechnol. Biotechnol. Equip. 2024 38 1 2349587 10.1080/13102818.2024.2349587
    [Google Scholar]
  127. Freitas P. Silva F. Sousa J.V. Machine learning-based approaches for cancer prediction using microbiome data. Sci. Rep. 2023 13 1 11821 10.1038/s41598‑023‑38670‑0 37479864
    [Google Scholar]
  128. Kumar A. Dixit S. Srinivasan K. M D. Vincent PMDR. Personalized cancer vaccine design using AI-powered technologies. Front. Immunol. 2024 15 1357217 10.3389/fimmu.2024.1357217 39582860
    [Google Scholar]
  129. Chang C.W. Chang C.H. Chien C.Y. Predictive modelling of hospital-acquired infection in acute ischemic stroke using machine learning. Sci. Rep. 2024 14 1 31066 10.1038/s41598‑024‑82280‑3 39730788
    [Google Scholar]
  130. Ghosh D. Chakraborty S. Kodamana H. Chakraborty S. Application of machine learning in understanding plant virus pathogenesis: trends and perspectives on emergence, diagnosis, host-virus interplay and management. Virol. J. 2022 19 1 42 10.1186/s12985‑022‑01767‑5 35264189
    [Google Scholar]
  131. Jones S. Plucinski M. Kay K. Hodel E.M. Hastings I.M. A computer modelling approach to evaluate the accuracy of microsatellite markers for classification of recurrent infections during routine monitoring of antimalarial drug efficacy. Antimicrob. Agents Chemother. 2020 64 4 e01517 e01519 10.1128/AAC.01517‑19 31932376
    [Google Scholar]
  132. Ren J. Ahlgren N.A. Lu Y.Y. Fuhrman J.A. Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017 5 1 69 10.1186/s40168‑017‑0283‑5 28683828
    [Google Scholar]
  133. Ren J. Song K. Deng C. Identifying viruses from metagenomic data using deep learning. Quant. Biol. 2020 8 1 64 77 10.1007/s40484‑019‑0187‑4 34084563
    [Google Scholar]
  134. Amgarten D. Braga L.P.P. da Silva A.M. Setubal J.C. MARVEL, a Tool for Prediction of Bacteriophage Sequences in Metagenomic Bins. Front. Genet. 2018 9 304 10.3389/fgene.2018.00304 30131825
    [Google Scholar]
  135. Kieft K. Zhou Z. Anantharaman K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 2020 8 1 90 10.1186/s40168‑020‑00867‑0 32522236
    [Google Scholar]
  136. Jiang J. MIIDL: A Python package for microbial biomarkers identification powered by interpretable deep learning. Quant Methods 2021
    [Google Scholar]
  137. Roux S. Enault F. Hurwitz B.L. Sullivan M.B. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015 3 e985 10.7717/peerj.985 26038737
    [Google Scholar]
  138. Guo J. Bolduc B. Zayed A.A. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 2021 9 1 37 10.1186/s40168‑020‑00990‑y 33522966
    [Google Scholar]
  139. Santos-Júnior C.D. Torres M.D.T. Duan Y. Discovery of antimicrobial peptides in the global microbiome with machine learning. Cell 2024 187 14 3761 3778.e16 10.1016/j.cell.2024.05.013 38843834
    [Google Scholar]
  140. Chowdhury A.S. Call D.R. Broschat S.L. PARGT: a software tool for predicting antimicrobial resistance in bacteria. Sci. Rep. 2020 10 1 11033 10.1038/s41598‑020‑67949‑9 32620856
    [Google Scholar]
  141. Feldgarden M. Brover V. Gonzalez-Escalona N. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021 11 1 12728 10.1038/s41598‑021‑91456‑0 34135355
    [Google Scholar]
  142. Lu Y. Zhou G. Ewald J. Pang Z. Shiri T. Xia J. MicrobiomeAnalyst 2.0: comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 2023 51 W1 W310-8 10.1093/nar/gkad407 37166960
    [Google Scholar]
  143. Ponsero A.J. Bomhoff M. Blumberg K. Planet Microbe: a platform for marine microbiology to discover and analyze interconnected ‘omics and environmental data. Nucleic Acids Res. 2021 49 D1 D792 D802 10.1093/nar/gkaa637 32735679
    [Google Scholar]
  144. Chen I.M.A. Chu K. Palaniappan K. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019 47 D1 D666 D677 10.1093/nar/gky901 30289528
    [Google Scholar]
  145. Shi W. Qi H. Sun Q. gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res. 2019 47 D1 D637 D648 10.1093/nar/gky1008 30365027
    [Google Scholar]
  146. Liu C. Cui Y. Li X. Yao M. microeco: an R package for data mining in microbial community ecology. FEMS Microbiol. Ecol. 2021 97 2 fiaa255 10.1093/femsec/fiaa255 33332530
    [Google Scholar]
  147. Shi W. Sun Q. Fan G. gcType: a high-quality type strain genome database for microbial phylogenetic and functional research. Nucleic Acids Res. 2021 49 D1 D694 D705 10.1093/nar/gkaa957 33119759
    [Google Scholar]
  148. Yu G. Xu C. Zhang D. Ju F. Ni Y. MetOrigin: Discriminating the origins of microbial metabolites for integrative analysis of the gut microbiome and metabolome. iMeta 2022 1 1 e10 10.1002/imt2.10 38867728
    [Google Scholar]
  149. Peschel S. Müller C.L. von Mutius E. Boulesteix A.L. Depner M. NetCoMi: network construction and comparison for microbiome data in R. Brief. Bioinform. 2021 22 4 bbaa290 10.1093/bib/bbaa290 33264391
    [Google Scholar]
  150. Liu Y.X. Chen L. Ma T. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research. iMeta 2023 2 1 e83 10.1002/imt2.83 38868346
    [Google Scholar]
  151. Juhas M. The World of Microorganisms. In: Brief Lessons in Microbiology. Springer 2023 1 16 10.1007/978‑3‑031‑29544‑7_1
    [Google Scholar]
  152. Mohseni P. Ghorbani A. Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Comput Struct Biotechnol Rep 2024 1 100005 10.1016/j.csbr.2024.100005
    [Google Scholar]
  153. Taiwo O.R. Onyeaka H. Oladipo E.K. Oloke J.K. Chukwugozie D.C. Advancements in predictive microbiology: Integrating new technologies for efficient food safety models. Int. J. Microbiol. 2024 2024 1 6612162 10.1155/2024/6612162 38799770
    [Google Scholar]
  154. Baranyi J. Rockaya M. Ellouze M. From data to models and predictions in food microbiology. Curr. Opin. Food Sci. 2024 57 101177 10.1016/j.cofs.2024.101177
    [Google Scholar]
  155. Theodosiou A.A. Read R.C. Artificial intelligence, machine learning and deep learning: Potential resources for the infection clinician. J. Infect. 2023 87 4 287 294 10.1016/j.jinf.2023.07.006 37468046
    [Google Scholar]
  156. Chong Y.Y. Chan P.K. Chan V.W.K. Application of machine learning in the prevention of periprosthetic joint infection following total knee arthroplasty: a systematic review. Arthroplasty 2023 5 1 38 10.1186/s42836‑023‑00195‑2 37316877
    [Google Scholar]
  157. Shi Y. Zhang C. Pan S. The diagnosis of tuberculous meningitis: advancements in new technologies and machine learning algorithms. Front. Microbiol. 2023 14 1290746 10.3389/fmicb.2023.1290746 37942080
    [Google Scholar]
  158. Al Meslamani A.Z. Sobrino I. de la Fuente J. Machine learning in infectious diseases: potential applications and limitations. Ann. Med. 2024 56 1 2362869 10.1080/07853890.2024.2362869 38853633
    [Google Scholar]
  159. Kim J.I. Maguire F. Tsang K.K. Machine learning for antimicrobial resistance prediction: current practice, limitations, and clinical perspective. Clin. Microbiol. Rev. 2022 35 3 e00179 e21 10.1128/cmr.00179‑21 35612324
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936414246250808022341
Loading
/content/journals/cbio/10.2174/0115748936414246250808022341
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test