Skip to content
2000
image of Computational Tools for Identifying Cancer Driver Genes and Mutations: A Comprehensive Review

Abstract

Understanding the genetic basis of cancer requires the accurate identification of driver genes and driver mutations, those alterations that promote tumorigenesis, while distinguishing them from neutral, or passenger, mutations. This review provides a comprehensive overview of computational strategies developed to detect and prioritise cancer drivers at both the gene and mutation levels. The review systematically classifies and compares more than 20 widely used tools, highlighting differences in their conceptual foundations, including sequence-based, structure-based, statistical, machine learning, and network/pathway-based methods. These tools leverage diverse types of data, including mutation frequency and evolutionary conservation, as well as gene expression profiles and interaction networks, to assess the functional relevance of somatic alterations. By integrating complementary approaches, researchers can enhance the sensitivity and specificity of driver prediction, particularly in cases involving rare or heterogeneous mutations. This review aims to serve as a practical guide for researchers and clinicians seeking to apply or evaluate current methods for cancer driver identification.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936405959250911064633
2025-09-24
2025-12-08
Loading full text...

Full text loading...

References

  1. Kerbel R.S. Anson L. Surridge C. Allen L. A cancer therapy resistant to resistance. Nature 1997 390 6658 335 336 10.1038/36978 9389468
    [Google Scholar]
  2. Suminda G.G.D. Bhandari S. Won Y. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput. Struct. Biotechnol. J. 2022 20 5378 5392 10.1016/j.csbj.2022.09.028 36212529
    [Google Scholar]
  3. Wang Y. Zhao Y. Bollas A. Wang Y. Au K.F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 2021 39 11 1348 1365 10.1038/s41587‑021‑01108‑x 34750572
    [Google Scholar]
  4. Sondka Z. Bamford S. Cole C.G. Ward S.A. Dunham I. Forbes S.A. The COSMIC Cancer Gene Census: Describing genetic dysfunction across all human cancers. Nat. Rev. Cancer 2018 18 11 696 705 10.1038/s41568‑018‑0060‑1 30293088
    [Google Scholar]
  5. Garay J.P. Gray J.W. Omics and therapy – A basis for precision medicine. Mol. Oncol. 2012 6 2 128 139 10.1016/j.molonc.2012.02.009 22445068
    [Google Scholar]
  6. Martincorena I. Raine K.M. Gerstung M. Universal patterns of selection in cancer and somatic tissues. Cell 2018 173 7 1823 10.1016/j.cell.2018.06.001 29906452
    [Google Scholar]
  7. Tomasetti C. Marchionni L. Nowak M.A. Parmigiani G. Vogelstein B. Only three driver gene mutations are required for the development of lung and colorectal cancers. Proc. Natl. Acad. Sci. USA 2015 112 1 118 123 10.1073/pnas.1421839112 25535351
    [Google Scholar]
  8. Greenman C. Stephens P. Smith R. Patterns of somatic mutation in human cancer genomes. Nature 2007 446 7132 153 158 10.1038/nature05610 17344846
    [Google Scholar]
  9. Di Marco M.V. Voena C. Review: biological implications of oncogenic rearrangements in non-small cell lung cancer. Precis. Cancer Med. 2022 5 26 10.21037/pcm‑22‑7
    [Google Scholar]
  10. Ling J. Kang Y. Zhao R. KrasG12D-induced IKK2/β/NF-κB activation by IL-1α and p62 feedforward loops is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 2012 21 1 105 120 10.1016/j.ccr.2011.12.006 22264792
    [Google Scholar]
  11. Cook J.H. Melloni G.E.M. Gulhan D.C. Park P.J. Haigis K.M. The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. Nat. Commun. 2021 12 1 1808 10.1038/s41467‑021‑22125‑z 33753749
    [Google Scholar]
  12. Besedina E. Supek F. Copy number losses of oncogenes and gains of tumor suppressor genes generate common driver mutations. Nat. Commun. 2024 15 1 6139 10.1038/s41467‑024‑50552‑1 39033140
    [Google Scholar]
  13. Shen L. Shi Q. Wang W. Double agents: Genes with both oncogenic and tumor-suppressor functions. Oncogenesis 2018 7 3 25 10.1038/s41389‑018‑0034‑x 29540752
    [Google Scholar]
  14. Abuetabh Y. Wu H.H. Chai C. DNA damage response revisited: the p53 family and its regulators provide endless cancer therapy opportunities. Exp. Mol. Med. 2022 54 10 1658 1669 10.1038/s12276‑022‑00863‑4 36207426
    [Google Scholar]
  15. Alexandrov L.B. Kim J. Haradhvala N.J. The repertoire of mutational signatures in human cancer. Nature 2020 578 7793 94 101 10.1038/s41586‑020‑1943‑3 32025018
    [Google Scholar]
  16. de Magalhães J.P. Distinguishing between driver and passenger mechanisms of aging. Nat. Genet. 2024 56 2 204 211 10.1038/s41588‑023‑01627‑0 38242993
    [Google Scholar]
  17. Rzasa P. Whelan S. Farahmand P. BRAFV600E-mutated serrated colorectal neoplasia drives transcriptional activation of cholesterol metabolism. Commun. Biol. 2023 6 1 962 10.1038/s42003‑023‑05331‑x 37735514
    [Google Scholar]
  18. Kopetz S. Murphy D.A. Pu J. Molecular profiling of BRAF-V600E-mutant metastatic colorectal cancer in the phase 3 BEACON CRC trial. Nat. Med. 2024 30 11 3261 3271 10.1038/s41591‑024‑03235‑9 39313594
    [Google Scholar]
  19. Kim D. Herdeis L. Rudolph D. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 2023 619 7968 160 166 10.1038/s41586‑023‑06123‑3 37258666
    [Google Scholar]
  20. Min H.Y. Lee H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022 54 10 1670 1694 10.1038/s12276‑022‑00864‑3 36224343
    [Google Scholar]
  21. Gou Q. Gou Q. Gan X. Xie Y. Novel therapeutic strategies for rare mutations in non-small cell lung cancer. Sci. Rep. 2024 14 1 10317 10.1038/s41598‑024‑61087‑2 38705930
    [Google Scholar]
  22. Burgess D.J. Weighed down by passengers? Nat. Rev. Cancer 2013 13 4 219 10.1038/nrc3488 23467303
    [Google Scholar]
  23. Selvam K. Sivapragasam S. Poon G.M.K. Wyrick J.J. Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing. Nat. Commun. 2023 14 1 2702 10.1038/s41467‑023‑38265‑3 37169747
    [Google Scholar]
  24. Dietlein F. Weghorn D. Taylor-Weiner A. Identification of cancer driver genes based on nucleotide context. Nat. Genet. 2020 52 2 208 218 10.1038/s41588‑019‑0572‑y 32015527
    [Google Scholar]
  25. Yavuz B.R. Tsai C.J. Nussinov R. Tuncbag N. Pan-cancer clinical impact of latent drivers from double mutations. Commun. Biol. 2023 6 1 202 10.1038/s42003‑023‑04519‑5 36808143
    [Google Scholar]
  26. Sherman M.A. Yaari A.U. Priebe O. Dietlein F. Loh P.R. Berger B. Genome-wide mapping of somatic mutation rates uncovers drivers of cancer. Nat. Biotechnol. 2022 40 11 1634 1643 10.1038/s41587‑022‑01353‑8 35726091
    [Google Scholar]
  27. Cagan A. Baez-Ortega A. Brzozowska N. Somatic mutation rates scale with lifespan across mammals. Nature 2022 604 7906 517 524 10.1038/s41586‑022‑04618‑z 35418684
    [Google Scholar]
  28. Vijg J. From DNA damage to mutations: All roads lead to aging. Ageing Res. Rev. 2021 68 101316 10.1016/j.arr.2021.101316 33711511
    [Google Scholar]
  29. Bozic I. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl. Acad. Sci. U S A 107 43 18545 18550 10.1073/pnas.1010978107
    [Google Scholar]
  30. Ostroverkhova D. Przytycka T.M. Panchenko A.R. Cancer driver mutations: Predictions and reality. Trends Mol. Med. 2023 29 7 554 566 10.1016/j.molmed.2023.03.007 37076339
    [Google Scholar]
  31. Wei W. Ho W.C. Behringer M.G. Miller S.F. Bcharah G. Lynch M. Rapid evolution of mutation rate and spectrum in response to environmental and population-genetic challenges. Nat. Commun. 2022 13 1 4752 10.1038/s41467‑022‑32353‑6 35963846
    [Google Scholar]
  32. Pan H. Renaud L. Chaligne R. Discovery of candidate dna methylation cancer driver genes. Cancer Discov. 2021 11 9 2266 2281 10.1158/2159‑8290.CD‑20‑1334 33972312
    [Google Scholar]
  33. Arechederra M. Daian F. Yim A. Hypermethylation of gene body CpG islands predicts high dosage of functional oncogenes in liver cancer. Nat. Commun. 2018 9 1 3164 10.1038/s41467‑018‑05550‑5 30089774
    [Google Scholar]
  34. Esteller M. CpG island hypermethylation and tumor suppressor genes: A booming present, a brighter future. Oncogene 2002 21 35 5427 5440 10.1038/sj.onc.1205600 12154405
    [Google Scholar]
  35. Gutierrez-Arcelus M. Lappalainen T. Montgomery S.B. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2013 2 2 e00523 10.7554/eLife.00523 23755361
    [Google Scholar]
  36. Miyata K. Naito M. Miyata T. Mokuda S. Asahara H. Bisulfite sequencing for DNA methylation analysis of primary muscle stem cells.Methods in Molecular Biology. Humana Press Inc. 2017 Vol. 1668 3 13 10.1007/978‑1‑4939‑7283‑8_1
    [Google Scholar]
  37. Nachman M.W. Crowell S.L. Estimate of the Mutation Rate per Nucleotide in Humans. Genetics 2000 156 1 297 304 10.1093/genetics/156.1.297
    [Google Scholar]
  38. Youn A. Simon R. Identifying cancer driver genes in tumor genome sequencing studies. Bioinformatics 2011 27 2 175 181 10.1093/bioinformatics/btq630 21169372
    [Google Scholar]
  39. Cyll K. Ersvær E. Vlatkovic L. Tumour heterogeneity poses a significant challenge to cancer biomarker research. Br. J. Cancer 2017 117 3 367 375 10.1038/bjc.2017.171 28618431
    [Google Scholar]
  40. Sims D. Sudbery I. Ilott N.E. Heger A. Ponting C.P. Sequencing depth and coverage: key considerations in genomic analyses. Nat. Rev. Genet. 2014 15 2 121 132 10.1038/nrg3642 24434847
    [Google Scholar]
  41. Chillón-Pino D. Badonyi M. Semple C.A. Marsh J.A. Protein structural context of cancer mutations reveals molecular mechanisms and candidate driver genes. Cell Rep. 2024 43 11 114905 10.1016/j.celrep.2024.114905 39441719
    [Google Scholar]
  42. Morris R. Black K.A. Stollar E.J. Uncovering protein function: From classification to complexes. Essays Biochem. 2022 66 3 255 285 10.1042/EBC20200108 35946411
    [Google Scholar]
  43. Huang L. Guo Z. Wang F. Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021 6 1 386 10.1038/s41392‑021‑00780‑4 34776511
    [Google Scholar]
  44. Colaprico A. Olsen C. Bailey M.H. Interpreting pathways to discover cancer driver genes with Moonlight. Nat. Commun. 2020 11 1 69 10.1038/s41467‑019‑13803‑0 31900418
    [Google Scholar]
  45. Wang X Kostrzewa C Reiner A Shen R Begg C. A Bayesian Approach for Identifying Driver Mutations within Oncogenic Pathways through Mutual Exclusivity. 2025 10.1101/2025.05.27.656485
    [Google Scholar]
  46. Tang YY Wei PJ Zhao J Xia J Cao RF Zheng CH Identification of driver genes based on gene mutational effects and network centrality. BMC Bioinformatics 2021 22 S3 457 (Suppl. 3) 10.1186/s12859‑021‑04377‑0 34560840
    [Google Scholar]
  47. Shi X. Teng H. Shi L. Comprehensive evaluation of computational methods for predicting cancer driver genes. Brief. Bioinform. 2022 23 2 bbab548 10.1093/bib/bbab548 35037014
    [Google Scholar]
  48. Aleksakhina S.N. Imyanitov E.N. Cancer therapy guided by mutation tests: Current status and perspectives. Int. J. Mol. Sci. 2021 22 20 10931 10.3390/ijms222010931 34681592
    [Google Scholar]
  49. Kuijk E. Kranenburg O. Cuppen E. Van Hoeck A. Common anti-cancer therapies induce somatic mutations in stem cells of healthy tissue. Nat. Commun. 2022 13 1 5915 10.1038/s41467‑022‑33663‑5 36207433
    [Google Scholar]
  50. Nussinov R. Tsai C.J. Jang H. Why Are Some Driver Mutations Rare? Trends Pharmacol. Sci. 2019 40 12 919 929 10.1016/j.tips.2019.10.003 31699406
    [Google Scholar]
  51. Wu H. Chen Z. Wu Y. Zhang H. Liu Q. Integrating Protein–Protein Interaction Networks and Somatic Mutation Data to Detect Driver Modules in Pan-Cancer. Interdiscip. Sci. 2022 14 1 151 167 10.1007/s12539‑021‑00475‑y 34491536
    [Google Scholar]
  52. Song H. Yin C. Li Z. Identification of cancer driver genes by integrating multiomics data with graph neural networks. Metabolites 2023 13 3 339 10.3390/metabo13030339 36984779
    [Google Scholar]
  53. Tamborero D. Gonzalez-Perez A. Lopez-Bigas N. OncodriveCLUST: Exploiting the positional clustering of somatic mutations to identify cancer genes. Bioinformatics 2013 29 18 2238 2244 10.1093/bioinformatics/btt395 23884480
    [Google Scholar]
  54. Lawrence M.S. Stojanov P. Polak P. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 2013 499 7457 214 218 10.1038/nature12213 23770567
    [Google Scholar]
  55. Porta-Pardo E. Godzik A. e-Driver: a novel method to identify protein regions driving cancer. Bioinformatics 2014 30 21 3109 3114 10.1093/bioinformatics/btu499 25064568
    [Google Scholar]
  56. Han Y. Yang J. Qian X. DriverML: a machine learning algorithm for identifying driver genes in cancer sequencing studies. Nucleic Acids Res. 2019 47 8 e45 e5 10.1093/nar/gkz096 30773592
    [Google Scholar]
  57. Wang T. Zhuo L. Chen Y. Fu X. Zeng X. Zou Q. ECD-CDGI: An efficient energy-constrained diffusion model for cancer driver gene identification. PLOS Comput. Biol. 2024 20 8 e1012400 10.1371/journal.pcbi.1012400 39213450
    [Google Scholar]
  58. Hou J.P. Ma J. DawnRank: Discovering personalized driver genes in cancer. Genome Med. 2014 6 56 10.1186/s13073‑014‑0056‑8
    [Google Scholar]
  59. Mularoni L. Sabarinathan R. Deu-Pons J. Gonzalez-Perez A. López-Bigas N. OncodriveFML: A general framework to identify coding and non-coding regions with cancer driver mutations. Genome Biol. 2016 17 1 128 10.1186/s13059‑016‑0994‑0 27311963
    [Google Scholar]
  60. Reimand J. Bader G.D. Systematic analysis of somatic mutations in phosphorylation signaling predicts novel cancer drivers. Mol. Syst. Biol. 2013 9 1 637 10.1038/msb.2012.68 23340843
    [Google Scholar]
  61. Bashashati A. Haffari G. Ding J. DriverNet: Uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 2012 13 12 R124 10.1186/gb‑2012‑13‑12‑r124 23383675
    [Google Scholar]
  62. Wendl M.C. Wallis J.W. Lin L. PathScan: A tool for discerning mutational significance in groups of putative cancer genes. Bioinformatics 2011 27 12 1595 1602 10.1093/bioinformatics/btr193 21498403
    [Google Scholar]
  63. Dees N.D. Zhang Q. Kandoth C. MuSiC: Identifying mutational significance in cancer genomes. Genome Res. 2012 22 8 1589 1598 10.1101/gr.134635.111 22759861
    [Google Scholar]
  64. Wang C. Shi J. Cai J. Zhang Y. Zheng X. Zhang N. DriverRWH: Discovering cancer driver genes by random walk on a gene mutation hypergraph. BMC Bioinformatics 2022 23 1 277 10.1186/s12859‑022‑04788‑7 35831792
    [Google Scholar]
  65. Reyna M.A. Leiserson M.D.M. Raphael B.J. Hierarchical HotNet: Identifying hierarchies of altered subnetworks. Bioinformatics 2018 34 17 i972 i980 10.1093/bioinformatics/bty613 30423088
    [Google Scholar]
  66. Leiserson M.D.M. Vandin F. Wu H.T. Pan-cancer network analysis identifies combinations of rare somatic mutations across pathways and protein complexes. Nat. Genet. 2015 47 2 106 114 10.1038/ng.3168 25501392
    [Google Scholar]
  67. Sim N.L. Kumar P. Hu J. Henikoff S. Schneider G. Ng P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012 40 W1 W452-7 10.1093/nar/gks539 22689647
    [Google Scholar]
  68. Adzhubei I. Jordan D.M. Sunyaev S.R. Predicting functional effect of human missense mutations using PolyPhen-2. In: Curr Protoc Hum Genet. 2013 7 10.1002/0471142905.hg0720s76
    [Google Scholar]
  69. Choi Y. Sims G.E. Murphy S. Miller J.R. Chan A.P. Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012 7 10 e46688 10.1371/journal.pone.0046688 23056405
    [Google Scholar]
  70. Cheng J. Novati G. Pan J. Accurate proteome-wide missense variant effect prediction with AlphaMissense. Science 2023 381 6664 eadg7492 10.1126/science.adg7492 37733863
    [Google Scholar]
  71. Worth C.L. Preissner R. Blundell T.L. SDM - A server for predicting effects of mutations on protein stability and malfunction. Nucleic Acids Res. 2011 39 2 10.1093/nar/gkr363
    [Google Scholar]
  72. Schymkowitz J Borg J Stricher F Nys R Rousseau F Serrano L. The FoldX web server: An online force fieldNucleic Acids Res 2011 33 W382 8 10.1093/nar/gki387
  73. Pires D.E.V. Ascher D.B. Blundell T.L. mCSM: Predicting the effects of mutations in proteins using graph-based signatures. Bioinformatics 2014 30 3 335 342 10.1093/bioinformatics/btt691 24281696
    [Google Scholar]
  74. Zhou Y. Pan Q. Pires D.E.V. Rodrigues C.H.M. Ascher D.B. DDMut: Predicting effects of mutations on protein stability using deep learning. Nucleic Acids Res. 2023 51 W1 W122-8 10.1093/nar/gkad472 37283042
    [Google Scholar]
  75. Laimer J. Hofer H. Fritz M. Wegenkittl S. Lackner P. MAESTRO - Multi agent stability prediction upon point mutations. BMC Bioinformatics 2015 16 1 116 10.1186/s12859‑015‑0548‑6 25885774
    [Google Scholar]
  76. Gnad F Baucom A Mukhyala K Manning G Zhang Z Assessment of computational methods for predicting the effects of missense mutations in human cancers. BMC Genomics 2013 14 S3 S7 (Suppl. 3) 10.1186/1471‑2164‑14‑S3‑S7 23819521
    [Google Scholar]
  77. Fang J. A critical review of five machine learning-based algorithms for predicting protein stability changes upon mutation. Brief. Bioinform. 2020 21 4 1285 1292 10.1093/bib/bbz071 31273374
    [Google Scholar]
  78. Bailey M.H. Tokheim C. Porta-Pardo E. Comprehensive characterization of cancer driver genes and mutations. Cell 2018 173 2 371 385.e18 10.1016/j.cell.2018.02.060 29625053
    [Google Scholar]
  79. Minton K. Predicting variant pathogenicity with AlphaMissense. Nat. Rev. Genet. 2023 24 12 804 10.1038/s41576‑023‑00668‑9 37821682
    [Google Scholar]
  80. Kurtovic-Kozaric A. Delalic L. Mutapcic B. Comor L. Siciliano E. Kiel M.J. Comprehensive evaluation of AlphaMissense predictions by evidence quantification for variants of uncertain significance. Front. Genet. 2024 15 1487608 10.3389/fgene.2024.1487608 39720176
    [Google Scholar]
  81. Chen Y. Butler-Laporte G. Liang K.Y.H. The performance of AlphaMissense to identify genes influencing disease. HGG Adv 2024 5 4 100344 10.1016/j.xhgg.2024.100344 39180217
    [Google Scholar]
  82. Ghezelayagh T.S. Kohrn B.F. Fredrickson J. TP53 somatic evolution in cervical liquid-based cytology and blood from individuals with and without ovarian cancer and BRCA1 or BRCA2 germline mutations. Oncogene 2024 43 31 2421 2430 10.1038/s41388‑024‑03089‑y 38918516
    [Google Scholar]
  83. Niranjana Murthy A.S. Suresh R.V. Comprehensive in silico mutational-sensitivity analysis of PTEN establishes signature regions implicated in pathogenesis of Autism Spectrum Disorders. Genomics 2021 113 1 Pt 2 999 1017 10.1016/j.ygeno.2020.10.035
    [Google Scholar]
  84. Smith I.N. Thacker S. Jaini R. Eng C. Dynamics and structural stability effects of germline PTEN mutations associated with cancer versus autism phenotypes. J. Biomol. Struct. Dyn. 2019 37 7 1766 1782 10.1080/07391102.2018.1465854 29663862
    [Google Scholar]
  85. Giardine B. Riemer C. Hefferon T. PhenCode: connecting ENCODE data with mutations and phenotype. Hum. Mutat. 2007 28 6 554 562 10.1002/humu.20484 17326095
    [Google Scholar]
  86. Goncearenco A. Rager S.L. Li M. Sang Q.X. Rogozin I.B. Panchenko A.R. Exploring background mutational processes to decipher cancer genetic heterogeneity. Nucleic Acids Res. 2017 45 W1 W514-22 10.1093/nar/gkx367 28472504
    [Google Scholar]
  87. Phaneuf P.V. Gosting D. Palsson B.O. Feist A.M. ALEdb 1.0: A database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res. 2019 47 D1 D1164 D1171 10.1093/nar/gky983 30357390
    [Google Scholar]
  88. Tufail S. Riggs H. Tariq M. Sarwat A.I. Advancements and Challenges in Machine Learning: A Comprehensive Review of Models, Libraries, Applications, and Algorithms. Electronics (Basel) 2023 12 8 1789 10.3390/electronics12081789
    [Google Scholar]
  89. Mistry J. Chuguransky S. Williams L. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021 49 D1 D412 D419 10.1093/nar/gkaa913 33125078
    [Google Scholar]
  90. Burley S.K. Bhikadiya C. Bi C. RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023 51 D1 D488 D508 10.1093/nar/gkac1077 36420884
  91. Rodrigues C.H.M. Pires D.E.V. Ascher D.B. DynaMut: Predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 2018 46 W1 W350-5 10.1093/nar/gky300 29718330
    [Google Scholar]
  92. Sanchez-Vega F. Mina M. Armenia J. Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell 2018 173 2 321 337.e10 10.1016/j.cell.2018.03.035 29625050
    [Google Scholar]
  93. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  94. Bożyk A. Krawczyk P. Reszka K. Correlation between KRAS, NRAS and BRAF mutations and tumor localizations in patients with primary and metastatic colorectal cancer. Arch. Med. Sci. 2021 18 5 1221 1230 10.5114/aoms/109170 36160343
    [Google Scholar]
  95. Blanco-Cintrón M.E. Pabón-González F. Sánchez-Flores X. A rare mutation in a patient with Noonan syndrome with multiple lentigines. JAAD Case Rep. 2023 36 96 98 10.1016/j.jdcr.2023.04.006 37274147
    [Google Scholar]
  96. Killock D. HotNet2—see the wood for the trees. Nat. Rev. Clin. Oncol. 2015 12 2 66 6 10.1038/nrclinonc.2014.234 25560530
    [Google Scholar]
  97. Gonzalez-Perez A. Lopez-Bigas N. Functional impact bias reveals cancer drivers. Nucleic Acids Res. 2012 40 21 e169 e9 10.1093/nar/gks743 22904074
    [Google Scholar]
  98. McGranahan N. Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 2017 168 4 613 628 10.1016/j.cell.2017.01.018 28187284
    [Google Scholar]
  99. Mertens F. Johansson B. Fioretos T. Mitelman F. The emerging complexity of gene fusions in cancer. Nat. Rev. Cancer 2015 15 6 371 381 10.1038/nrc3947 25998716
    [Google Scholar]
  100. Heyer E.E. Deveson I.W. Wooi D. Diagnosis of fusion genes using targeted RNA sequencing. Nat. Commun. 2019 10 1 1388 10.1038/s41467‑019‑09374‑9 30918253
    [Google Scholar]
  101. Sala-Torra O. Beppu L. Wu Q. Point-of-care BCR:ABL1 transcript monitoring using capillary dried blood in chronic myeloid leukemia patients. Leukemia 2024 38 8 1822 1824 10.1038/s41375‑024‑02285‑9 38879611
    [Google Scholar]
  102. Soda M. Choi Y.L. Enomoto M. Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature 2007 448 7153 561 566 10.1038/nature05945 17625570
    [Google Scholar]
  103. Palma G. Khurshid F. Lu K. Woodward B. Husain H. Selective KRAS G12C inhibitors in non-small cell lung cancer: chemistry, concurrent pathway alterations, and clinical outcomes. NPJ Precis. Oncol. 2021 5 1 98 10.1038/s41698‑021‑00237‑5 34845311
    [Google Scholar]
  104. Planchard D. Sanborn R.E. Negrao M.V. Vaishnavi A. Smit E.F. BRAFV600E-mutant metastatic NSCLC: disease overview and treatment landscape. NPJ Precis. Oncol. 2024 8 1 90 10.1038/s41698‑024‑00552‑7 38627602
    [Google Scholar]
  105. Tate J.G. Bamford S. Jubb H.C. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019 47 D1 D941 D947 10.1093/nar/gky1015 30371878
    [Google Scholar]
  106. Alsulami A.F. Comprehensive annotation of mutations in hallmark genes insights into structural and functional implications. Comput. Biol. Med. 2025 185 109588 10.1016/j.compbiomed.2024.109588 39700856
    [Google Scholar]
  107. Gao J. Chang M.T. Johnsen H.C. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med. 2017 9 1 4 10.1186/s13073‑016‑0393‑x 28115009
    [Google Scholar]
  108. Kinnersley B. Sud A. Everall A. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat. Genet. 2024 56 9 1868 1877 10.1038/s41588‑024‑01785‑9 38890488
    [Google Scholar]
  109. Betschart R.O. Thiéry A. Aguilera-Garcia D. Comparison of calling pipelines for whole genome sequencing: an empirical study demonstrating the importance of mapping and alignment. Sci. Rep. 2022 12 1 21502 10.1038/s41598‑022‑26181‑3 36513709
    [Google Scholar]
  110. Alsulami A.F. Mut-Map: Comprehensive Computational Pipeline for Structural Mapping and Analysis of Cancer-Associated Mutations. Brief. Bioinform. 2024 25 6 bbae514 10.1093/bib/bbae514 39413799
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936405959250911064633
Loading
/content/journals/cbio/10.2174/0115748936405959250911064633
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test