Skip to content
2000
image of Computational Approaches in Multi-Omics for Crop Improvement

Abstract

The incorporation of multi-omics strategies, namely genomics, transcriptomics, proteomics, metabolomics, and epigenomics, has been instrumental for promoting crop improvement by providing comprehensive views of the molecular processes driving complex agricultural traits, including enhanced stress tolerance, yield, and nutritional quality. This review presents an overview of the computational methods and tools currently used to analyze and integrate multi-omics data in crops. We then systematically classify them according to integrative strategies (early, intermediate, and late), and analytical methodologies (statistical, machine learning, network-based). Recent advancements in deep learning and explainable AI for predictive trait modeling are highlighted. It also discusses key knowledge gaps, including the under-representation of minor and climate-resilient crops, as well as challenges posed by data heterogeneity, scalability, and field-level validation. Through a newly proposed classification and evaluation framework, the aim of this review is to provide guidelines for researchers to choose computational pipelines and pave the way for future research on data-driven crop improvement and sustainable agriculture.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936402493250905065506
2025-09-16
2025-12-08
Loading full text...

Full text loading...

References

  1. Zenda T. Liu S. Dong A. Duan H. Advances in cereal crop genomics for resilience under climate change. Life (Basel) 2021 11 6 502 10.3390/life11060502 34072447
    [Google Scholar]
  2. Scheben A. Wolter F. Batley J. Puchta H. Edwards D. Towards CRISPR/Cas crops – bringing together genomics and genome editing. New Phytol. 2017 216 3 682 698 10.1111/nph.14702 28762506
    [Google Scholar]
  3. Yuan Y. Ton B.L. Thomas W.J.W. Batley J. Edwards D. Supporting crop plant resilience during climate change. Crop Sci. 2023 63 4 1816 1828 10.1002/csc2.21019
    [Google Scholar]
  4. John A. Nallusamy S. Natesan S. Nathan B. Venugopal A. Chinnaswamy H.B. An Overview of Spatial Transcriptomics Methodologies in Traversing the Biological System. Curr. Bioinform. 2025 20 10.2174/0115748936352261241224053340
    [Google Scholar]
  5. Benitez-Alfonso Y. Soanes B.K. Zimba S. Enhancing climate change resilience in agricultural crops. Curr. Biol. 2023 33 23 R1246 R1261 10.1016/j.cub.2023.10.028 38052178
    [Google Scholar]
  6. Zhang R. Zhang C. Yu C. Dong J. Hu J. Integration of multi-omics technologies for crop improvement: Status and prospects. Front Bioinform 2022 2 1027457 10.3389/fbinf.2022.1027457 36438626
    [Google Scholar]
  7. Hasin Y. Seldin M. Lusis A. Multi-omics approaches to disease. Genome Biol. 2017 18 1 83 10.1186/s13059‑017‑1215‑1 28476144
    [Google Scholar]
  8. Yang Y. Saand M.A. Huang L. Applications of multi-omics technologies for crop improvement. Front Plant Sci 2021 12 563953 10.3389/fpls.2021.563953 34539683
    [Google Scholar]
  9. Haidar S. Hooker J. Lackey S. Harnessing Multi-Omics Strategies and Bioinformatics Innovations for Advancing Soybean Improvement: A Comprehensive Review. Plants 2024 13 19 2714 10.3390/plants13192714 39409584
    [Google Scholar]
  10. Iqbal Z. Iqbal M.S. Khan M.I.R. Ansari M.I. Toward integrated multi-omics intervention: rice trait improvement and stress management. Front Plant Sci 2021 12 741419 10.3389/fpls.2021.741419 34721467
    [Google Scholar]
  11. Sehgal D. Dhakate P. Ambreen H. Wheat omics: advancements and opportunities. Plants 2023 12 3 426 10.3390/plants12030426 36771512
    [Google Scholar]
  12. Farooqi M.Q.U. Nawaz G. Wani S.H. Recent developments in multi-omics and breeding strategies for abiotic stress tolerance in maize (Zea mays L.). Front Plant Sci 2022 13 965878 10.3389/fpls.2022.965878 36212378
    [Google Scholar]
  13. Li H. Tahir ul Qamar M, Yang L, Liang J, You J, Wang L. Current progress, applications and challenges of multi-omics approaches in sesame genetic improvement. Int. J. Mol. Sci. 2023 24 4 3105 10.3390/ijms24043105 36834516
    [Google Scholar]
  14. Zhao H. Shang G. Yin N. Multi-omics analysis reveals the mechanism of seed coat color formation in Brassica rapa L. Theor. Appl. Genet. 2022 135 6 2083 2099 10.1007/s00122‑022‑04099‑8 35606456
    [Google Scholar]
  15. Singh R.K. Sood P. Prasad A. Prasad M. Advances in omics technology for improving crop yield and stress resilience. Plant Breed. 2021 140 5 719 731 10.1111/pbr.12963
    [Google Scholar]
  16. Pott D.M. Durán-Soria S. Osorio S. Vallarino J.G. Combining metabolomic and transcriptomic approaches to assess and improve crop quality traits. CABI Agric Biosci 2021 2 1 1 10.1186/s43170‑020‑00021‑8
    [Google Scholar]
  17. Anilkumar C. Sunitha N.C. Harikrishna, Devate NB, Ramesh S. Advances in integrated genomic selection for rapid genetic gain in crop improvement: a review. Planta 2022 256 5 87 10.1007/s00425‑022‑03996‑y 36149531
    [Google Scholar]
  18. Satrio R.D. Fendiyanto M.H. Miftahudin M. Tools and techniques used at global scale through genomics, transcriptomics, proteomics, and metabolomics to investigate plant stress responses at the molecular level.Molecular Dynamics of Plant Stress and its Management. Springer 2024 555 607 10.1007/978‑981‑97‑1699‑9_25
    [Google Scholar]
  19. Batayeva D. Labaco B. Ye C. Genome-wide association study of seedling stage salinity tolerance in temperate japonica rice germplasm. BMC Genet. 2018 19 1 2 10.1186/s12863‑017‑0590‑7 29298667
    [Google Scholar]
  20. Bulut M. Wendenburg R. Bitocchi E. A comprehensive metabolomics and lipidomics atlas for the legumes common bean, chickpea, lentil and lupin. Plant J. 2023 116 4 1152 1171 10.1111/tpj.16329 37285370
    [Google Scholar]
  21. Singh V. Gupta K. Singh S. Jain M. Garg R. Unravelling the molecular mechanism underlying drought stress response in chickpea via integrated multi-omics analysis. Front Plant Sci 2023 14 1156606 10.3389/fpls.2023.1156606 37287713
    [Google Scholar]
  22. Aiese Cigliano R. Aversano R. Di Matteo A. Multi-omics data integration provides insights into the post-harvest biology of a long shelf-life tomato landrace. Hortic. Res. 2022 9 uhab042 10.1093/hr/uhab042 35039852
    [Google Scholar]
  23. Pardo-Hernández M. García-Pérez P. Lucini L. Rivero R.M. Multi-omics exploration of the involvement of ABA in identifying unique molecular markers for single and combined stresses in tomato plants. J. Exp. Bot. 2024 erae372 10.1093/jxb/erae372 39265616
    [Google Scholar]
  24. Ren G. Yang P. Cui J. Multiomics analyses of two sorghum cultivars reveal the molecular mechanism of salt tolerance. Front Plant Sci 2022 13 886805 10.3389/fpls.2022.886805 35677242
    [Google Scholar]
  25. Mukherjee A. Maheshwari U. Sharma V. Sharma A. Kumar S. Functional insight into multi-omics-based interventions for climatic resilience in sorghum (Sorghum bicolor): a nutritionally rich cereal crop. Planta 2024 259 4 91 10.1007/s00425‑024‑04365‑7 38480598
    [Google Scholar]
  26. Liu Y. Gao X. Tong L. Multi-omics analyses reveal MdMYB10 hypermethylation being responsible for a bud sport of apple fruit color. Hortic. Res. 2022 9 uhac179 10.1093/hr/uhac179 36338840
    [Google Scholar]
  27. Yang J. Jia M. Guo J. Functional genome of medicinal plants. In: Molecular pharmacognosy. Cham Springer 2019 191 234
    [Google Scholar]
  28. Zhang W. Zeng Y. Jiao M. Integration of high-throughput omics technologies in medicinal plant research: The new era of natural drug discovery. Front Plant Sci 2023 14 1073848 10.3389/fpls.2023.1073848 36743502
    [Google Scholar]
  29. Ma X. Meng Y. Wang P. Tang Z. Wang H. Xie T. Bioinformatics-assisted, integrated omics studies on medicinal plants. Brief. Bioinform. 2020 21 6 1857 1874 10.1093/bib/bbz132 32706024
    [Google Scholar]
  30. Rai A. Saito K. Yamazaki M. Integrated omics analysis of specialized metabolism in medicinal plants. Wiley Online Library 2017 Vol.90 pp.764 787
    [Google Scholar]
  31. Ali A. Altaf M.T. Nadeem M.A. Recent advancement in OMICS approaches to enhance abiotic stress tolerance in legumes. Front Plant Sci 2022 13 952759 10.3389/fpls.2022.952759 36247536
    [Google Scholar]
  32. Feder M.E. Walser J.C. The biological limitations of transcriptomics in elucidating stress and stress responses. J. Evol. Biol. 2005 18 4 901 910 10.1111/j.1420‑9101.2005.00921.x 16033562
    [Google Scholar]
  33. Roychowdhury R. Das S.P. Gupta A. Multi-omics pipeline and omics-integration approach to decipher plant’s abiotic stress tolerance responses. Genes (Basel) 2023 14 6 1281 10.3390/genes14061281 37372461
    [Google Scholar]
  34. Giardine B. Riemer C. Hardison R.C. Galaxy: A platform for interactive large-scale genome analysis. Genome Res. 2005 15 10 1451 1455 10.1101/gr.4086505 16169926
    [Google Scholar]
  35. Pang Z. Xu L. Viau C. MetaboAnalystR 4.0: a unified LC-MS workflow for global metabolomics. Nat. Commun. 2024 15 1 3675 10.1038/s41467‑024‑48009‑6 38693118
    [Google Scholar]
  36. Singh A. Shannon C.P. Gautier B. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019 35 17 3055 3062 10.1093/bioinformatics/bty1054 30657866
    [Google Scholar]
  37. Rohart F. Gautier B. Singh A. Lê Cao K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol. 2017 13 11 1005752 10.1371/journal.pcbi.1005752 29099853
    [Google Scholar]
  38. Min S. Lee B. Yoon S. Deep learning in bioinformatics. Brief. Bioinform. 2017 18 5 851 869 27473064
    [Google Scholar]
  39. Argelaguet R. Velten B. Arnol D. Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets. Mol. Syst. Biol. 2018 14 6 8124 10.15252/msb.20178124 29925568
    [Google Scholar]
  40. Mo Q. Wang S. Seshan V.E. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA 2013 110 11 4245 4250 10.1073/pnas.1208949110 23431203
    [Google Scholar]
  41. Wang B. Mezlini A.M. Demir F. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 2014 11 3 333 337 10.1038/nmeth.2810 24464287
    [Google Scholar]
  42. Madrid-Márquez L. Rubio-Escudero C. Pontes B. González-Pérez A. Riquelme J.C. Sáez M.E. MOMIC: a Multi-Omics Pipeline for data analysis, integration and interpretation. Appl. Sci. (Basel) 2022 12 8 3987 10.3390/app12083987
    [Google Scholar]
  43. Tenenhaus A. Tenenhaus M. Regularized generalized canonical correlation analysis. Psychometrika 2011 76 2 257 284 10.1007/s11336‑011‑9206‑8 28536930
    [Google Scholar]
  44. Hofree M. Shen J.P. Carter H. Gross A. Ideker T. Network-based stratification of tumor mutations. Nat. Methods 2013 10 11 1108 1115 10.1038/nmeth.2651 24037242
    [Google Scholar]
  45. Friedman J. Alm E.J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 2012 8 9 e1002687 10.1371/journal.pcbi.1002687 23028285
    [Google Scholar]
  46. Sun Y.V. Hu Y.J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 2016 93 147 190 10.1016/bs.adgen.2015.11.004 26915271
    [Google Scholar]
  47. Labory J. Fierville M. Ait-El-Mkadem S. Bannwarth S. Paquis-Flucklinger V. Bottini S. Multi-omics approaches to improve mitochondrial disease diagnosis: challenges, advances, and perspectives. Front. Mol. Biosci. 2020 7 590842 10.3389/fmolb.2020.590842 33240932
    [Google Scholar]
  48. Goff A. Cantillon D. Muraro Wildner L. Waddell S.J. Multi-omics technologies applied to tuberculosis drug discovery. Appl. Sci. (Basel) 2020 10 13 4629 10.3390/app10134629
    [Google Scholar]
  49. Ebi O. Unveiling the Molecular Complexity of Life: Exploring the Synergy of Genomics and Proteomics. Journal of Advanced Research in Pharmaceutical Sciences and Pharmacology Interventions 2023 6 1 28 32
    [Google Scholar]
  50. Shannon P. Markiel A. Ozier O. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  51. Langfelder P. Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 2008 9 1 559 10.1186/1471‑2105‑9‑559 19114008
    [Google Scholar]
  52. Libbrecht M.W. Noble W.S. Machine learning applications in genetics and genomics. Nat. Rev. Genet. 2015 16 6 321 332 10.1038/nrg3920 25948244
    [Google Scholar]
  53. Eraslan G. Avsec Ž. Gagneur J. Theis F.J. Deep learning: new computational modelling techniques for genomics. Nat. Rev. Genet. 2019 20 7 389 403 10.1038/s41576‑019‑0122‑6 30971806
    [Google Scholar]
  54. Zhou G. Pang Z. Lu Y. Ewald J. Xia J. OmicsNet 2.0: a web-based platform for multi-omics integration and network visual analytics. Nucleic Acids Res. 2022 50 W1 W527-33 10.1093/nar/gkac376 35639733
    [Google Scholar]
  55. Subramanian A. Tamayo P. Mootha V.K. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  56. Ashburner M. Ball C.A. Blake J.A. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000 25 1 25 29 10.1038/75556 10802651
    [Google Scholar]
  57. Bersanelli M Mosca E Remondini D Methods for the integration of multi-omics data: mathematical aspects. BMC Bioinformatics 2016 17 S2 S15.(Suppl. 2) 10.1186/s12859‑015‑0857‑9 26821531
    [Google Scholar]
  58. Lê Cao K.A. Rossouw D. Robert-Granié C. Besse P. A sparse PLS for variable selection when integrating omics data. Stat. Appl. Genet. Mol. Biol. 2008 7 1 35 10.2202/1544‑6115.1390 19049491
    [Google Scholar]
  59. Zou H. Hastie T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Series B Stat. Methodol. 2005 67 2 301 320 10.1111/j.1467‑9868.2005.00503.x
    [Google Scholar]
  60. Needham C.J. Bradford J.R. Bulpitt A.J. Westhead D.R. A primer on learning in Bayesian networks for computational biology. PLOS Comput. Biol. 2007 3 8 129 10.1371/journal.pcbi.0030129 17784779
    [Google Scholar]
  61. Benjamini Y. Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 1995 57 1 289 300 10.1111/j.2517‑6161.1995.tb02031.x
    [Google Scholar]
  62. Liu X. Jessen W.J. Sivaganesan S. Aronow B.J. Medvedovic M. Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data. BMC Bioinformatics 2007 8 1 283 10.1186/1471‑2105‑8‑283 17683565
    [Google Scholar]
  63. Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003 19 17 2271 2282 10.1093/bioinformatics/btg313 14630656
    [Google Scholar]
  64. Bottolo L. Richardson S. Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal. 2010 5 3 583 618
    [Google Scholar]
  65. Reel P.S. Reel S. Pearson E. Trucco E. Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol. Adv. 2021 49 107739 10.1016/j.biotechadv.2021.107739 33794304
    [Google Scholar]
  66. Ding C. He X. K-means clustering via principal component analysis. Proceedings of the twenty-first international conference on Machine learning
    [Google Scholar]
  67. Dietterich TG Ensemble methods in machine learning. 10.1007/3‑540‑45014‑9_1
  68. Li Y. Wu F-X. Ngom A. A review on machine learning principles for multi-view biological data integration. Brief. Bioinform. 2018 19 2 325 340 28011753
    [Google Scholar]
  69. Burnett A.C. Anderson J. Davidson K.J. A best-practice guide to predicting plant traits from leaf-level hyperspectral data using partial least squares regression. J. Exp. Bot. 2021 72 18 6175 6189 10.1093/jxb/erab295 34131723
    [Google Scholar]
  70. Mitra K. Carvunis A.R. Ramesh S.K. Ideker T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 2013 14 10 719 732 10.1038/nrg3552 24045689
    [Google Scholar]
  71. Szklarczyk D. Gable A.L. Lyon D. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  72. Marbach D. Costello J.C. Küffner R. Wisdom of crowds for robust gene network inference. Nat. Methods 2012 9 8 796 804 10.1038/nmeth.2016 22796662
    [Google Scholar]
  73. Huang S. Chaudhary K. Garmire L.X. More is better: recent progress in multi-omics data integration methods. Front. Genet. 2017 8 84 10.3389/fgene.2017.00084 28670325
    [Google Scholar]
  74. Khatri P. Sirota M. Butte A.J. Ten years of pathway analysis: current approaches and outstanding challenges. PLOS Comput. Biol. 2012 8 2 1002375 10.1371/journal.pcbi.1002375 22383865
    [Google Scholar]
  75. Boyle E.I. Weng S. Gollub J. GO:TermFinder—open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 2004 20 18 3710 3715 10.1093/bioinformatics/bth456 15297299
    [Google Scholar]
  76. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  77. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  78. Paczkowska M. Barenboim J. Sintupisut N. Integrative pathway enrichment analysis of multivariate omics data. Nat. Commun. 2020 11 1 735 10.1038/s41467‑019‑13983‑9 32024846
    [Google Scholar]
  79. Bolger A.M. Lohse M. Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014 30 15 2114 2120 10.1093/bioinformatics/btu170 24695404
    [Google Scholar]
  80. Lo C.C. Chain P.S.G. Rapid evaluation and quality control of next generation sequencing data with FaQCs. BMC Bioinformatics 2014 15 1 366 10.1186/s12859‑014‑0366‑2 25408143
    [Google Scholar]
  81. Bankevich A. Nurk S. Antipov D. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012 19 5 455 477 10.1089/cmb.2012.0021 22506599
    [Google Scholar]
  82. Koren S. Walenz B.P. Berlin K. Miller J.R. Bergman N.H. Phillippy A.M. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. Genome Res. 2017 27 5 722 736 10.1101/gr.215087.116 28298431
    [Google Scholar]
  83. Stanke M Keller O Gunduz I Hayes A Waack S Morgenstern B. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 2006 34 W435 9. (Suppl. 2) 10.1093/nar/gkl200 16845043
    [Google Scholar]
  84. Madden T. The BLAST sequence analysis tool. In: The NCBI handbook. Bethesda (MD): National Center for Biotechnology Information 2013 2 pp. 5 425 36
    [Google Scholar]
  85. Hunter S Apweiler R Attwood TK InterPro: the integrative protein signature database. Nucleic Acids Res 2009 37 Database D211 5.(Suppl. 1) 10.1093/nar/gkn785 18940856
    [Google Scholar]
  86. Korf I. Yandell M. Bedell J. Blast. O'Reilly Media, Inc. 2003
    [Google Scholar]
  87. Jones P. Binns D. Chang H.Y. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014 30 9 1236 1240 10.1093/bioinformatics/btu031 24451626
    [Google Scholar]
  88. Dobin A. Davis C.A. Schlesinger F. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013 29 1 15 21 10.1093/bioinformatics/bts635 23104886
    [Google Scholar]
  89. Kim D. Paggi J.M. Park C. Bennett C. Salzberg S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019 37 8 907 915 10.1038/s41587‑019‑0201‑4 31375807
    [Google Scholar]
  90. Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 1 139 140 10.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  91. Anders S. Pyl P.T. Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 2015 31 2 166 169 10.1093/bioinformatics/btu638 25260700
    [Google Scholar]
  92. Huang DW Sherman BT Tan Q DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007 35 W169 75. (Suppl. 2) 10.1093/nar/gkm415 17576678
    [Google Scholar]
  93. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  94. Naz S. Moreira dos Santos D.C. García A. Barbas C. Analytical protocols based on LC-MS, GC-MS and CE-MS for nontargeted metabolomics of biological tissues. Bioanalysis 2014 6 12 1657 1677 10.4155/bio.14.119 25077626
    [Google Scholar]
  95. Pluskal T. Castillo S. Villar-Briones A. Orešič M. MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 2010 11 1 395 10.1186/1471‑2105‑11‑395 20650010
    [Google Scholar]
  96. Smith C.A. Want E.J. O’Maille G. Abagyan R. Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 2006 78 3 779 787 10.1021/ac051437y 16448051
    [Google Scholar]
  97. Luo W. Brouwer C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013 29 14 1830 1831 10.1093/bioinformatics/btt285 23740750
    [Google Scholar]
  98. Xia J Wishart D S Using MetaboAnalyst 3.0 for comprehensive metabolomics data analysis Curr Protoc Bioinformatics 2016 55 14.10.1 14.10.91 10.1002/cpbi.11 27603023
    [Google Scholar]
  99. Smoot M.E. Ono K. Ruscheinski J. Wang P.L. Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011 27 3 431 432 10.1093/bioinformatics/btq675 21149340
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936402493250905065506
Loading
/content/journals/cbio/10.2174/0115748936402493250905065506
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test