Skip to content
2000
image of An End-to-End 3D Graph Neural Network for Predicting Drug-Target-Disease Associations

Abstract

Introduction

In medicine, uncovering the mechanisms of diseases is one of the key research fields, which is helpful in discovering and designing effective treatments. On the other hand, drugs are deemed as one of the efficient ways to treat various diseases. It is essential to understand the mechanisms of action of drugs. The investigation of drug-target, drug-disease, and target-disease associations can promote the research progress on the above problems. However, most studies individually investigated drug-target, drug-disease, and target-disease associations, including the computational models for the prediction of above associations. Drugs, targets, and diseases have high-order associations (triple associations). Investigations on such associations can provide a new and high-level perspective for understanding mechanisms of action of drugs and uncovering mechanisms of diseases. However, the computational approaches for predicting such associations are quite limited. The existing approaches cannot make full use of the relationships among drugs, targets, and diseases, limiting their performance.

Methods

This study designed an efficient computational model for the prediction of drug-target-disease triple associations. The proposed model first constructed a three-dimensional adjacency matrix to represent known drug-target-disease associations. Raw drug, target, and disease features were derived from this matrix and were further processed by the linear transformation projection, which contained the external associations among different entity types. At the same time, one similarity network was constructed for each entity type (drug, target, or disease), employing the internal relationships in one entity type. The similarity networks and features were fed into a graph convolutional network to extract high-order drug, target, and disease features. Finally, a tensor operation was designed to evaluate the strength of each drug-target-disease association.

Results

Under the five-fold cross-validation, the model achieved AUROC and AUPR of 0.9530 and 0.9577, respectively. The proposed model outperformed some existing models for the same task.

Discussion

The ablation test proved the reasonability of the structure of our model. Two latent drug-target-disease associations discovered by our model were analyzed, suggesting the generalization ability of the model.

Conclusion

The proposed model was efficient in predicting drug-target-disease associations. It can be a useful tool for discovering higher-order associations among drugs, targets, and diseases.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936387701250811024506
2025-09-11
2025-10-31
Loading full text...

Full text loading...

References

  1. Hauser A.S. Attwood M.M. Rask-Andersen M. Schiöth H.B. Gloriam D.E. Trends in GPCR drug discovery: New agents, targets and indications. Nat. Rev. Drug Discov. 2017 16 12 829 842 10.1038/nrd.2017.178 29075003
    [Google Scholar]
  2. Zhu L. Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019 24 1 40 10.1186/s11658‑019‑0164‑y 31223315
    [Google Scholar]
  3. Wu R. Liang Y. Xu M. Fu K. Zhang Y. Wu L. Wang Z. Advances in chemical constituents, clinical applications, pharmacology, pharmacokinetics and toxicology of Erigeron breviscapus. Front. Pharmacol. 2021 12 656335 10.3389/fphar.2021.656335 34539390
    [Google Scholar]
  4. Lade P.D. Singla N. Formulation and development of tara gum-mediated tablets for delivery of anticancer drugs. BIO Integration 2024 5 1 971 10.15212/bioi‑2024‑0040
    [Google Scholar]
  5. Sliwoski G. Kothiwale S. Meiler J. Lowe E.W. Jr Computational methods in drug discovery. Pharmacol. Rev. 2014 66 1 334 395 10.1124/pr.112.007336 24381236
    [Google Scholar]
  6. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  7. Ding H. Takigawa I. Mamitsuka H. Zhu S. Similarity-based machine learning methods for predicting drug–target interactions: A brief review. Brief. Bioinform. 2014 15 5 734 747 10.1093/bib/bbt056 23933754
    [Google Scholar]
  8. Bagherian M. Sabeti E. Wang K. Sartor M.A. Nikolovska-Coleska Z. Najarian K. Machine learning approaches and databases for prediction of drug–target interaction: A survey paper. Brief. Bioinform. 2021 22 1 247 269 10.1093/bib/bbz157 31950972
    [Google Scholar]
  9. Luo H. Li M. Yang M. Wu F.X. Li Y. Wang J. Biomedical data and computational models for drug repositioning: A comprehensive review. Brief. Bioinform. 2021 22 2 1604 1619 10.1093/bib/bbz176 32043521
    [Google Scholar]
  10. Wang L. Tan Y. Yang X. Kuang L. Ping P. Review on predicting pairwise relationships between human microbes, drugs and diseases: From biological data to computational models. Brief. Bioinform. 2022 23 3 bbac080 10.1093/bib/bbac080 35325024
    [Google Scholar]
  11. Chen X. Liu M.X. Yan G.Y. Drug–target interaction prediction by random walk on the heterogeneous network. Mol. Biosyst. 2012 8 7 1970 1978 10.1039/c2mb00002d 22538619
    [Google Scholar]
  12. Zong N. Kim H. Ngo V. Harismendy O. Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 2017 33 15 2337 2344 10.1093/bioinformatics/btx160 28430977
    [Google Scholar]
  13. Wang W. Yang S. Zhang X. Li J. Drug repositioning by integrating target information through a heterogeneous network model. Bioinformatics 2014 30 20 2923 2930 10.1093/bioinformatics/btu403 24974205
    [Google Scholar]
  14. Huang Y.F. Yeh H.Y. Soo V.W. Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation. BMC Med. Genomics 2013 6 S3 S4 10.1186/1755‑8794‑6‑S3‑S4 24565337
    [Google Scholar]
  15. Chen H. Zhang Z. Prediction of drug-disease associations for drug repositioning through drug-miRNA-disease heterogeneous network. IEEE Access 2018 6 45281 45287 10.1109/ACCESS.2018.2860632
    [Google Scholar]
  16. Hao M. Bryant S.H. Wang Y. Predicting drug-target interactions by dual-network integrated logistic matrix factorization. Sci. Rep. 2017 7 1 40376 10.1038/srep40376 28079135
    [Google Scholar]
  17. Ezzat A Zhao P Wu M Li XL Kwoh CK Drug-target interaction prediction with graph regularized matrix factorization. IEEE/ACM. Trans. Comput. Biol. Bioinform. 2017 14 3 646 656 10.1109/TCBB.2016.2530062
    [Google Scholar]
  18. Zhang W. Yue X. Lin W. Wu W. Liu R. Huang F. Liu F. Predicting drug-disease associations by using similarity constrained matrix factorization. BMC Bioinformatics 2018 19 1 233 10.1186/s12859‑018‑2220‑4 29914348
    [Google Scholar]
  19. Ai C Yang H Ding Y Tang J Guo F. Low rank matrix factorization algorithm based on multi-graph regularization for detecting drug-disease association. IEEE/ACM. Trans. Comput. Biol. Bioinform. 2023 20 5 3033 3043 10.1109/TCBB.2023.3274587
    [Google Scholar]
  20. Sadeghi S. Lu J. Ngom A. A network-based drug repurposing method via non-negative matrix factorization. Bioinformatics 2022 38 5 1369 1377 10.1093/bioinformatics/btab826 34875000
    [Google Scholar]
  21. Zong N. Wong R.S.N. Yu Y. Wen A. Huang M. Li N. Drug–target prediction utilizing heterogeneous bio-linked network embeddings. Brief. Bioinform. 2021 22 1 568 580 10.1093/bib/bbz147 31885036
    [Google Scholar]
  22. Luo Y. Zhao X. Zhou J. Yang J. Zhang Y. Kuang W. Peng J. Chen L. Zeng J. A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information. Nat. Commun. 2017 8 1 573 10.1038/s41467‑017‑00680‑8 28924171
    [Google Scholar]
  23. Kawichai T. Suratanee A. Plaimas K. Meta-path based gene ontology profiles for predicting drug-disease associations. IEEE Access 2021 9 41809 41820 10.1109/ACCESS.2021.3065280
    [Google Scholar]
  24. Wang Y. Chen S. Deng N. Wang Y. Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PLoS One 2013 8 11 78518 10.1371/journal.pone.0078518 24244318
    [Google Scholar]
  25. Hua Y. Feng Z. Song X. Wu X.J. Kittler J. MMDG-DTI: Drug–target interaction prediction via multimodal feature fusion and domain generalization. Pattern Recognit. 2025 157 110887 10.1016/j.patcog.2024.110887
    [Google Scholar]
  26. Kang H. Hou L. Gu Y. Lu X. Li J. Li Q. Drug–disease association prediction with literature based multi-feature fusion. Front. Pharmacol. 2023 14 1205144 10.3389/fphar.2023.1205144 37284317
    [Google Scholar]
  27. Zhang P. Che C. Jin B. Yuan J. Li R. Zhu Y. NCH-DDA: Neighborhood contrastive learning heterogeneous network for drug–disease association prediction. Expert Syst. Appl. 2024 238 121855 10.1016/j.eswa.2023.121855
    [Google Scholar]
  28. Gao M. Zhang D. Chen Y. Zhang Y. Wang Z. Wang X. Li S. Guo Y. Webb G.I. Nguyen A.T.N. May L. Song J. GraphormerDTI: A graph transformer-based approach for drug-target interaction prediction. Comput. Biol. Med. 2024 173 108339 10.1016/j.compbiomed.2024.108339 38547658
    [Google Scholar]
  29. Ma J. Qin T. Xiang J. Disease-gene prediction based on preserving structure network embedding. Front. Aging Neurosci. 2023 15 1061892 10.3389/fnagi.2023.1061892 36896421
    [Google Scholar]
  30. Li Y. Guo Z. Wang K. Gao X. Wang G. End-to-end interpretable disease–gene association prediction. Brief. Bioinform. 2023 24 3 bbad118 10.1093/bib/bbad118 36987781
    [Google Scholar]
  31. Luo P. Xiao Q. Wei P.J. Liao B. Wu F.X. Identifying disease-gene associations with graph-regularized manifold learning. Front. Genet. 2019 10 270 10.3389/fgene.2019.00270 31001321
    [Google Scholar]
  32. Kim Y. Park J.H. Cho Y.R. Network-based approaches for disease-gene association prediction using protein-protein interaction networks. Int. J. Mol. Sci. 2022 23 13 7411 10.3390/ijms23137411 35806415
    [Google Scholar]
  33. Chen H. Li J. Modeling relational drug-target-disease interactions via tensor factorization with multiple web sources. The World Wide Web Conference 2019, pp. 218-227. 10.1145/3308558.3313476
    [Google Scholar]
  34. Chen H. Li J. Learning data-driven drug-target-disease interaction via neural tensor network. Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20} 2020, pp. 3452-3458. 10.24963/ijcai.2020/477
    [Google Scholar]
  35. Zhe S. Zhang K. Wang P. Lee K-c. Xu Z. Qi Y. Distributed flexible nonlinear tensor factorization. Adv. Neural Inf. Process. Syst. 2016 29 1 5 10.48550/arXiv.1604.07928
    [Google Scholar]
  36. Qu J. Wang B. Li Z. Lyu X. Tang Z. Understanding multivariate drug-target-diseaseinterdependence via event-graph. 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) Houston, TX, USA, 09-12 December 2021. 10.1109/BIBM52615.2021.9669683
    [Google Scholar]
  37. Tanvir F. Saifuddin K.M. Hossain T. Bagavathi A. Akbas E. HeTriNet: Heterogeneous graph triplet attention network for drug-target-disease interaction. arXiv:2312.00189 1 5 10.48550/arXiv.2312.00189
    [Google Scholar]
  38. Chen L. Li J. PDTDAHN: Predicting drug-target-disease associations using a heterogeneous network. Curr. Bioinform. 2025 1 6 10.2174/0115748936359702250120114240
    [Google Scholar]
  39. Ye J. Wang S. Yang X. Tang X. Gene prediction of aging-related diseases based on DNN and Mashup. BMC Bioinformatics 2021 22 1 597 10.1186/s12859‑021‑04518‑5 34920719
    [Google Scholar]
  40. Ke G. Meng Q. Finley T. Wang T. Chen W. Ma W. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017 30 3146 3154
    [Google Scholar]
  41. Davis A.P. Grondin C.J. Johnson R.J. Sciaky D. Wiegers J. Wiegers T.C. Mattingly C.J. Comparative toxicogenomics database (CTD): Update 2021. Nucleic Acids Res. 2021 49 D1 D1138 D1143 10.1093/nar/gkaa891 33068428
    [Google Scholar]
  42. Szklarczyk D. Santos A. von Mering C. Jensen L.J. Bork P. Kuhn M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016 44 D1 D380 D384 10.1093/nar/gkv1277 26590256
    [Google Scholar]
  43. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  44. Lipscomb C.E. Medical Subject Headings (MeSH). Bull. Med. Libr. Assoc. 2000 88 3 265 266 10928714
    [Google Scholar]
  45. Wang D. Wang J. Lu M. Song F. Cui Q. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 2010 26 13 1644 1650 10.1093/bioinformatics/btq241 20439255
    [Google Scholar]
  46. Liu W. Lin H. Huang L. Peng L. Tang T. Zhao Q. Yang L. Identification of miRNA–disease associations via deep forest ensemble learning based on autoencoder. Brief. Bioinform. 2022 23 3 bbac104 10.1093/bib/bbac104 35325038
    [Google Scholar]
  47. Steinbach M. Tan P-N. kNN: K‑nearest neighbors. The Top Ten Algorithms in Data Mining. Boca Raton, Florida 2009 165 176
    [Google Scholar]
  48. Zhang S. Tong H. Xu J. Maciejewski R. Graph convolutional networks: A comprehensive review. Comput. Soc. Netw. 2019 6 1 11 10.1186/s40649‑019‑0069‑y 37915858
    [Google Scholar]
  49. Kingma D.P. Ba J. Adam: A method for stochastic optimization. 3rd International Conference on Learning Representations 2015.
    [Google Scholar]
  50. Browne M.W. Cross-Validation Methods. J. Math. Psychol. 2000 44 1 108 132 10.1006/jmps.1999.1279 10733860
    [Google Scholar]
  51. Chen L. Zhang S. Zhou B. Herb-disease association prediction model based on network consistency projection. Sci. Rep. 2025 15 1 3328 10.1038/s41598‑025‑87521‑7 39865145
    [Google Scholar]
  52. Li F. Li C. Wang M. Webb G.I. Zhang Y. Whisstock J.C. Song J. GlycoMine: A machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics 2015 31 9 1411 1419 10.1093/bioinformatics/btu852 25568279
    [Google Scholar]
  53. Zhao H. Duan G. Ni P. Yan C. Li Y. Wang J. RNPredATC: A Deep Residual Learning-Based Model With Applications to the Prediction of Drug-ATC Code Association. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 5 2712 2723 10.1109/TCBB.2021.3088256 34110998
    [Google Scholar]
  54. Yin A. Chen L. Zhou B. Cai Y.D. CMAGN: CircRNA–miRNA association prediction based on graph attention auto-encoder and network consistency projection. BMC Bioinformatics 2024 25 1 336 10.1186/s12859‑024‑05959‑4 39449126
    [Google Scholar]
  55. Chen L. Chen Y. RMTLysPTM: Recognizing multiple types of lysine PTM sites by deep analysis on sequences. Brief. Bioinform. 2023 25 1 bbad450 10.1093/bib/bbad450 38066710
    [Google Scholar]
  56. Powers D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv:2010.16061 2020 1 7 10.48550/arXiv.2010.16061
    [Google Scholar]
  57. Bao Y. Ma Q. Chen L. Feng K. Guo W. Huang T. Cai Y.D. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol. Immunol. 2025 177 44 61 10.1016/j.molimm.2024.12.004 39700903
    [Google Scholar]
  58. Liao H. Ma Q. Chen L. Guo W. Feng K. Bao Y. Zhang Y. Shen W. Huang T. Cai Y.D. Machine learning analysis of CD4+ T cell gene expression in diverse diseases: Insights from cancer, metabolic, respiratory, and digestive disorders. Cancer Genet. 2025 290-291 56 60 10.1016/j.cancergen.2024.12.004 39729927
    [Google Scholar]
  59. Chen L. Gu J. Zhou B. PMiSLocMF: Predicting miRNA subcellular localizations by incorporating multi-source features of miRNAs. Brief. Bioinform. 2024 25 5 bbae386 10.1093/bib/bbae386 39154195
    [Google Scholar]
  60. Shi J.Y. Huang H. Zhang Y.N. Cao J.B. Yiu S.M. BMCMDA: A novel model for predicting human microbe-disease associations via binary matrix completion. BMC Bioinformatics 2018 19 S9 281 10.1186/s12859‑018‑2274‑3 30367598
    [Google Scholar]
  61. Kuang H. Zhang Z. Zeng B. Liu X. Zuo H. Xu X. Wang L. A novel microbe-drug association prediction model based on graph attention networks and bilayer random forest. BMC Bioinformatics 2024 25 1 78 10.1186/s12859‑024‑05687‑9 38378437
    [Google Scholar]
  62. Ning Q. Zhao Y. Gao J. Chen C. Li X. Li T. Yin M. AMHMDA: Attention aware multi-view similarity networks and hypergraph learning for miRNA–disease associations identification. Brief. Bioinform. 2023 24 2 bbad094 10.1093/bib/bbad094 36907654
    [Google Scholar]
  63. Chen L. Lu Y. Xu J. Zhou B. Prediction of drug’s anatomical therapeutic chemical (ATC) code by constructing biological profiles of ATC codes. BMC Bioinformatics 2025 26 1 86 10.1186/s12859‑025‑06102‑7 40119265
    [Google Scholar]
  64. Tian Z. Yu Y. Fang H. Xie W. Guo M. Predicting microbe–drug associations with structure-enhanced contrastive learning and self-paced negative sampling strategy. Brief. Bioinform. 2023 24 2 bbac634 10.1093/bib/bbac634 36715986
    [Google Scholar]
  65. Deepthi K. Jereesh A.S. An ensemble approach based on multi-source information to predict Drug-MiRNA associations via convolutional neural networks. IEEE Access 2021 9 38331 38341 10.1109/ACCESS.2021.3063885
    [Google Scholar]
  66. Chen L. Zhao X. PCDA-HNMP: Predicting circRNA-disease association using heterogeneous network and meta-path. Math. Biosci. Eng. 2023 20 12 20553 20575 10.3934/mbe.2023909 38124565
    [Google Scholar]
  67. Bebis G. Georgiopoulos M. Feed-forward neural networks. IEEE Potentials 1994 13 4 27 31 10.1109/45.329294
    [Google Scholar]
  68. Veličković P. Cucurull G. Casanova A. Romero A. Liò P. Bengio Y. Graph attention networks. Inter. Conf. Lear. Rep. 2018 10.48550/arXiv.1710.10903
    [Google Scholar]
  69. Modesto-Lowe V. Harabasz A.K. Walker S.A. Quetiapine for primary insomnia: Consider the risks. Cleve. Clin. J. Med. 2021 88 5 286 294 10.3949/ccjm.88a.20031 33941603
    [Google Scholar]
  70. Ratliff J.C. Barber J.A. Palmese L.B. Reutenauer E.L. Tek C. Association of prescription H1 antihistamine use with obesity: Results from the National Health and Nutrition Examination Survey. Obesity 2010 18 12 2398 2400 10.1038/oby.2010.176 20706200
    [Google Scholar]
  71. Kroeze W.K. Hufeisen S.J. Popadak B.A. Renock S.M. Steinberg S. Ernsberger P. Jayathilake K. Meltzer H.Y. Roth B.L. H1-histamine receptor affinity predicts short-term weight gain for typical and atypical antipsychotic drugs. Neuropsychopharmacology 2003 28 3 519 526 10.1038/sj.npp.1300027 12629531
    [Google Scholar]
  72. Salvi V Mencacci C Barone-Adesi F. H1-histamine receptor affinity predicts weight gain with antidepressants. Eur. Neuropsychopharmacol. 2016 26 10 1673 1677 10.1016/j.euroneuro.2016.08.012
    [Google Scholar]
  73. He M. Zhang Q. Deng C. Wang H. Lian J. Huang X.F. Hypothalamic histamine H1 receptor-AMPK signaling time-dependently mediates olanzapine-induced hyperphagia and weight gain in female rats. Psychoneuroendocrinology 2014 42 153 164 10.1016/j.psyneuen.2014.01.018 24636512
    [Google Scholar]
  74. Jensen M.S. Mutsaers H.A.M. Tingskov S.J. Christensen M. Madsen M.G. Olinga P. Kwon T.H. Nørregaard R. Activation of the prostaglandin E 2 EP 2 receptor attenuates renal fibrosis in unilateral ureteral obstructed mice and human kidney slices. Acta Physiol. 2019 227 1 13291 10.1111/apha.13291 31054202
    [Google Scholar]
  75. Mutsaers H.A.M. Nørregaard R. Prostaglandin E2 receptors as therapeutic targets in renal fibrosis. Kidney Res. Clin. Pract. 2022 41 1 4 13 10.23876/j.krcp.21.222 35108767
    [Google Scholar]
  76. Tu H. Ma D. Luo Y. Tang S. Li Y. Chen G. Wang L. Hou Z. Shen C. Lu H. Zhuang X. Zhang L. Quercetin alleviates chronic renal failure by targeting the PI3k/Akt pathway. Bioengineered 2021 12 1 6538 6558 10.1080/21655979.2021.1973877 34528858
    [Google Scholar]
  77. Liu J. Zhang Y. Chen X. Zhu X. Chen X. Wu J. Guo N. The protective effect of the EP2 receptor on TGF-β1 induced podocyte injury via the PI3K / Akt signaling pathway. PLoS One 2018 13 5 0197158 10.1371/journal.pone.0197158 29746568
    [Google Scholar]
  78. Ma Z. Wang F. Wang H. Sun T. Sun W. Xu Q. Quercetin ameliorates renal tubulointerstitial transformation and renal fibrosis by regulating NLRP3 in obstructive nephropathy. Minerva Med. 2023 114 4 530 532 10.23736/S0026‑4806.22.08104‑6 35384439
    [Google Scholar]
  79. Huang H.J. Lee Y.H. Sung L.C. Chen Y.J. Chiu Y.J. Chiu H.W. Zheng C.M. Drug repurposing screens to identify potential drugs for chronic kidney disease by targeting prostaglandin E2 receptor. Comput. Struct. Biotechnol. J. 2023 21 3490 3502 10.1016/j.csbj.2023.07.007 37484490
    [Google Scholar]
  80. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  81. Wishart D.S. Feunang Y.D. Guo A.C. Lo E.J. Marcu A. Grant J.R. Sajed T. Johnson D. Li C. Sayeeda Z. Assempour N. Iynkkaran I. Liu Y. Maciejewski A. Gale N. Wilson A. Chin L. Cummings R. Le D. Pon A. Knox C. Wilson M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018 46 D1 D1074 D1082 10.1093/nar/gkx1037 29126136
    [Google Scholar]
  82. Tutsoy O. Graph theory based large-scale machine learning with multi-dimensional constrained optimization approaches for exact epidemiological modeling of pandemic diseases. IEEE Trans. Pattern Anal. Mach. Intell. 2023 45 8 9836 9845 10.1109/TPAMI.2023.3256421 37028303
    [Google Scholar]
  83. Zheng K. Song R. Li R. Liu M. Ba Y. Jiang W. Fan K. Nanomaterials for refining tumor microenvironment and enhancing therapy in head and neck squamous cell carcinoma: A review. Oncol. Transl. Med. 2024 10 4 151 161 10.1097/ot9.0000000000000046
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936387701250811024506
Loading
/content/journals/cbio/10.2174/0115748936387701250811024506
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test