Skip to content
2000
image of LO-HDL: A New Method for Prediction of Local Genetic Correlation Based on Maximum Likelihood Estimation

Abstract

Introduction

Genetic correlation plays a pivotal role in elucidating the shared genetic architecture underlying complex traits and diseases. Local genetic correlation can efficiently pinpoint specific genomic regions, thereby enhancing the precision of gene correlation analysis. However, accurate estimation of local genetic correlations remains challenging owing to linkage disequilibrium in local genomic regions and overlapping study samples.

Methods

In this work, we propose a novel method called LO-HDL that is based on high-dimensional maximum likelihood estimation. LO-HDL constructs marginal statistics using the summary statistics of GWAS and combines the 1000 Genomes Project Phase 3 data as a reference panel.

Results

To assess the statistical power of LO-HDL, we performed a comparative analysis of LO-HDL with other local genetic correlation estimation methods on simulations with three different degrees of sample overlap. In the case of the absence of sample overlaps, the LO-HDL method improves the statistical power for cases with high local genetic covariance. In the case of partial sample overlap and complete sample overlap, LO-HDL demonstrates an overall improvement in statistical power. As an application, we used LO-HDL to estimate local genetic associations between the four autoimmune disorders. We found that LO-HDL could identify 31 regions with significant associations.

Discussion

The LO-HDL method can identify genes or genomic regions that jointly influence multiple complex traits, thereby revealing the shared genetic architecture among traits. This approach elucidates the genetic relationships between traits and provides a basis for interpreting their associations. In simulated data, when the local genetic covariance ranges between (0.002–0.004), the statistical power of LO-HDL is slightly lower than that of previous methods. However, LO-HDL demonstrates superior performance in study scenarios with partial or complete sample overlap, as well as in real GWAS data analyses. Through LO-HDL, researchers can more accurately pinpoint genetically correlated regions among diseases. For instance, the TRIM27 gene on chromosome 6 exhibits significant associations with four diseases and may serve as a potential therapeutic target in future treatments.

Conclusion

LO-HDL is a novel method for estimating local genetic correlations, which is based on high-dimensional maximum likelihood estimation. Through its application in simulated datasets and four autoimmune diseases, LO-HDL improves the accuracy of estimating local genetic correlations, which has applicability for revealing relationships between genetic variants and specific traits or diseases.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936383234250804032135
2025-08-19
2025-10-31
Loading full text...

Full text loading...

References

  1. Tang M. Wang T. Zhang X. A review of SNP heritability estimation methods. Brief. Bioinform. 2022 23 3 bbac067 10.1093/bib/bbac067 35289357
    [Google Scholar]
  2. Visscher P.M. Hill W.G. Wray N.R. Heritability in the genomics era — concepts and misconceptions. Nat. Rev. Genet. 2008 9 4 255 266 10.1038/nrg2322 18319743
    [Google Scholar]
  3. Schiffman J.S. D’Avino A.R. Prieto T. Pang Y. Fan Y. Rajagopalan S. Potenski C. Hara T. Suvà M.L. Gawad C. Landau D.A. Defining heritability, plasticity, and transition dynamics of cellular phenotypes in somatic evolution. Nat. Genet. 2024 56 10 2174 2184 10.1038/s41588‑024‑01920‑6 39317739
    [Google Scholar]
  4. Guan Y. Stephens M. Bayesian variable selection regression for genome-wide association studies and other large-scale problems. Ann. Appl. Stat. 2011 5 3 1780 1815 10.1214/11‑AOAS455
    [Google Scholar]
  5. Olofsson I.A. Migraine heritability and beyond: A scoping review of twin studies. Headache 2024 64 8 1049 1058 10.1111/head.14789 39023388
    [Google Scholar]
  6. Bulik-Sullivan B. Finucane H.K. Anttila V. Gusev A. Day F.R. Loh P.R. Duncan L. Perry J.R.B. Patterson N. Robinson E.B. Daly M.J. Price A.L. Neale B.M. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 2015 47 11 1236 1241 10.1038/ng.3406 26414676
    [Google Scholar]
  7. Shi H. Kichaev G. Pasaniuc B. Contrasting the genetic architecture of 30 complex traits from summary association data. Am. J. Hum. Genet. 2016 99 1 139 153 10.1016/j.ajhg.2016.05.013 27346688
    [Google Scholar]
  8. Schwartzman A. Schork A.J. Zablocki R. Thompson W.K. A simple, consistent estimator of SNP heritability from genome-wide association studies. Ann. Appl. Stat. 2019 13 4 2509 2538 10.1214/19‑AOAS1291 38222269
    [Google Scholar]
  9. Jeong M. Pazokitoroudi A. Liu Z. Sankararaman S. Scalable summary-statistics-based heritability estimation method with individual genotype level accuracy. Genome Res. 2024 34 9 1286 1293 10.1101/gr.279207.124 39038848
    [Google Scholar]
  10. Elhezzani N.S. Improved estimation of SNP heritability using Bayesian multiple-phenotype models. Eur. J. Hum. Genet. 2018 26 5 723 734 10.1038/s41431‑018‑0100‑z 29440776
    [Google Scholar]
  11. Meisner J. Benros M.E. Rasmussen S. Leveraging haplotype information in heritability estimation and polygenic prediction. Nat. Commun. 2025 16 1 126 10.1038/s41467‑024‑55477‑3 39747034
    [Google Scholar]
  12. Donohue B. Gao S. Nichols T.E. Adhikari B.M. Ma Y. Jahanshad N. Thompson P.M. McMahon F.J. Humphries E.M. Burroughs W. Ament S.A. Mitchell B.D. Ma T. Chen S. Medland S.E. Blangero J. Hong L.E. Kochunov P. Accelerating heritability, genetic correlation, and genome‐wide association imaging genetic analyses in complex pedigrees. Hum. Brain Mapp. 2024 45 17 70044 10.1002/hbm.70044 39593222
    [Google Scholar]
  13. Pickrell J.K. Berisa T. Liu J.Z. Ségurel L. Tung J.Y. Hinds D.A. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 2016 48 7 709 717 10.1038/ng.3570 27182965
    [Google Scholar]
  14. Verbanck M. Chen C.Y. Neale B. Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet. 2018 50 5 693 698 10.1038/s41588‑018‑0099‑7 29686387
    [Google Scholar]
  15. Turley P. Walters R.K. Maghzian O. Okbay A. Lee J.J. Fontana M.A. Nguyen-Viet T.A. Wedow R. Zacher M. Furlotte N.A. Magnusson P. Oskarsson S. Johannesson M. Visscher P.M. Laibson D. Cesarini D. Neale B.M. Benjamin D.J. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 2018 50 2 229 237 10.1038/s41588‑017‑0009‑4 29292387
    [Google Scholar]
  16. Sidorenko J. Couvy-Duchesne B. Kemper K.E. Moen G.H. Bhatta L. Åsvold B.O. Mägi R. Ani A. Wang R. Nolte I.M. Nolte I.M. Gordon S. Hayward C. Campbell A. Benjamin D.J. Cesarini D. Evans D.M. Goddard M.E. Haley C.S. Porteous D. Medland S.E. Martin N.G. Snieder H. Metspalu A. Hveem K. Brumpton B. Visscher P.M. Yengo L. Genetic architecture reconciles linkage and association studies of complex traits. Nat. Genet. 2024 56 11 2352 2360 10.1038/s41588‑024‑01940‑2 39375568
    [Google Scholar]
  17. Misztal I. Gowane G. Estimation of heritabilities and genetic correlations by time slices using predictivity in large genomic models. Genetics 2025 230 2 iyaf066 10.1093/genetics/iyaf066 40186488
    [Google Scholar]
  18. van Rheenen W. Peyrot W.J. Schork A.J. Lee S.H. Wray N.R. Genetic correlations of polygenic disease traits: From theory to practice. Nat. Rev. Genet. 2019 20 10 567 581 10.1038/s41576‑019‑0137‑z 31171865
    [Google Scholar]
  19. Song J. Zou Y. Wu Y. Miao J. Yu Z. Fletcher J.M. Lu Q. Decomposing heritability and genetic covariance by direct and indirect effect paths. PLoS Genet. 2023 19 1 1010620 10.1371/journal.pgen.1010620 36689559
    [Google Scholar]
  20. Zhao B. Yang X. Zhu H. Estimating trans-ancestry genetic correlation with unbalanced data resources. J. Am. Stat. Assoc. 2024 119 546 839 850 10.1080/01621459.2024.2344703 39219674
    [Google Scholar]
  21. Shen J. Zhang Y. Zhu Z. Cheng Y. Cai B. Zhao Y. Zhao H. Joint modeling of human cortical structure: Genetic correlation network and composite-trait genetic correlation. Neuroimage 2024 297 120739 10.1016/j.neuroimage.2024.120739 39009250
    [Google Scholar]
  22. Xu L. Zhou G. Jiang W. JointPRS: A data-adaptive framework for multi-population genetic risk prediction incorporating genetic correlation. Nat Commun 2024 16 1 3841 10.1038/s41467‑025‑59243‑x 40268942
    [Google Scholar]
  23. Zhang J. Schumacher F.R. Evaluating the estimation of genetic correlation and heritability using summary statistics. Mol. Genet. Genomics 2021 296 6 1221 1234 10.1007/s00438‑021‑01817‑7 34586498
    [Google Scholar]
  24. Lee S.H. Yang J. Goddard M.E. Visscher P.M. Wray N.R. Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood. Bioinformatics 2012 28 19 2540 2542 10.1093/bioinformatics/bts474 22843982
    [Google Scholar]
  25. Vattikuti S. Guo J. Chow C.C. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012 8 3 1002637 10.1371/journal.pgen.1002637 22479213
    [Google Scholar]
  26. Lee S.H. Ripke S. Neale B.M. Faraone S.V. Purcell S.M. Perlis R.H. Mowry B.J. Thapar A. Goddard M.E. Witte J.S. Absher D. Agartz I. Akil H. Amin F. Andreassen O.A. Anjorin A. Anney R. Anttila V. Arking D.E. Asherson P. Azevedo M.H. Backlund L. Badner J.A. Bailey A.J. Banaschewski T. Barchas J.D. Barnes M.R. Barrett T.B. Bass N. Battaglia A. Bauer M. Bayés M. Bellivier F. Bergen S.E. Berrettini W. Betancur C. Bettecken T. Biederman J. Binder E.B. Black D.W. Blackwood D.H. Bloss C.S. Boehnke M. Boomsma D.I. Breen G. Breuer R. Bruggeman R. Cormican P. Buccola N.G. Buitelaar J.K. Bunney W.E. Buxbaum J.D. Byerley W.F. Byrne E.M. Caesar S. Cahn W. Cantor R.M. Casas M. Chakravarti A. Chambert K. Choudhury K. Cichon S. Cloninger C.R. Collier D.A. Cook E.H. Coon H. Cormand B. Corvin A. Coryell W.H. Craig D.W. Craig I.W. Crosbie J. Cuccaro M.L. Curtis D. Czamara D. Datta S. Dawson G. Day R. De Geus E.J. Degenhardt F. Djurovic S. Donohoe G.J. Doyle A.E. Duan J. Dudbridge F. Duketis E. Ebstein R.P. Edenberg H.J. Elia J. Ennis S. Etain B. Fanous A. Farmer A.E. Ferrier I.N. Flickinger M. Fombonne E. Foroud T. Frank J. Franke B. Fraser C. Freedman R. Freimer N.B. Freitag C.M. Friedl M. Frisén L. Gallagher L. Gejman P.V. Georgieva L. Gershon E.S. Geschwind D.H. Giegling I. Gill M. Gordon S.D. Gordon-Smith K. Green E.K. Greenwood T.A. Grice D.E. Gross M. Grozeva D. Guan W. Gurling H. De Haan L. Haines J.L. Hakonarson H. Hallmayer J. Hamilton S.P. Hamshere M.L. Hansen T.F. Hartmann A.M. Hautzinger M. Heath A.C. Henders A.K. Herms S. Hickie I.B. Hipolito M. Hoefels S. Holmans P.A. Holsboer F. Hoogendijk W.J. Hottenga J.J. Hultman C.M. Hus V. Ingason A. Ising M. Jamain S. Jones E.G. Jones I. Jones L. Tzeng J.Y. Kähler A.K. Kahn R.S. Kandaswamy R. Keller M.C. Kennedy J.L. Kenny E. Kent L. Kim Y. Kirov G.K. Klauck S.M. Klei L. Knowles J.A. Kohli M.A. Koller D.L. Konte B. Korszun A. Krabbendam L. Krasucki R. Kuntsi J. Kwan P. Landén M. Långström N. Lathrop M. Lawrence J. Lawson W.B. Leboyer M. Ledbetter D.H. Lee P.H. Lencz T. Lesch K.P. Levinson D.F. Lewis C.M. Li J. Lichtenstein P. Lieberman J.A. Lin D.Y. Linszen D.H. Liu C. Lohoff F.W. Loo S.K. Lord C. Lowe J.K. Lucae S. MacIntyre D.J. Madden P.A. Maestrini E. Magnusson P.K. Mahon P.B. Maier W. Malhotra A.K. Mane S.M. Martin C.L. Martin N.G. Mattheisen M. Matthews K. Mattingsdal M. McCarroll S.A. McGhee K.A. McGough J.J. McGrath P.J. McGuffin P. McInnis M.G. McIntosh A. McKinney R. McLean A.W. McMahon F.J. McMahon W.M. McQuillin A. Medeiros H. Medland S.E. Meier S. Melle I. Meng F. Meyer J. Middeldorp C.M. Middleton L. Milanova V. Miranda A. Monaco A.P. Montgomery G.W. Moran J.L. Moreno-De-Luca D. Morken G. Morris D.W. Morrow E.M. Moskvina V. Muglia P. Mühleisen T.W. Muir W.J. Müller-Myhsok B. Murtha M. Myers R.M. Myin-Germeys I. Neale M.C. Nelson S.F. Nievergelt C.M. Nikolov I. Nimgaonkar V. Nolen W.A. Nöthen M.M. Nurnberger J.I. Nwulia E.A. Nyholt D.R. O’Dushlaine C. Oades R.D. Olincy A. Oliveira G. Olsen L. Ophoff R.A. Osby U. Owen M.J. Palotie A. Parr J.R. Paterson A.D. Pato C.N. Pato M.T. Penninx B.W. Pergadia M.L. Pericak-Vance M.A. Pickard B.S. Pimm J. Piven J. Posthuma D. Potash J.B. Poustka F. Propping P. Puri V. Quested D.J. Quinn E.M. Ramos-Quiroga J.A. Rasmussen H.B. Raychaudhuri S. Rehnström K. Reif A. Ribasés M. Rice J.P. Rietschel M. Roeder K. Roeyers H. Rossin L. Rothenberger A. Rouleau G. Ruderfer D. Rujescu D. Sanders A.R. Sanders S.J. Santangelo S.L. Sergeant J.A. Schachar R. Schalling M. Schatzberg A.F. Scheftner W.A. Schellenberg G.D. Scherer S.W. Schork N.J. Schulze T.G. Schumacher J. Schwarz M. Scolnick E. Scott L.J. Shi J. Shilling P.D. Shyn S.I. Silverman J.M. Slager S.L. Smalley S.L. Smit J.H. Smith E.N. Sonuga-Barke E.J. St Clair D. State M. Steffens M. Steinhausen H.C. Strauss J.S. Strohmaier J. Stroup T.S. Sutcliffe J.S. Szatmari P. Szelinger S. Thirumalai S. Thompson R.C. Todorov A.A. Tozzi F. Treutlein J. Uhr M. van den Oord E.J. Van Grootheest G. Van Os J. Vicente A.M. Vieland V.J. Vincent J.B. Visscher P.M. Walsh C.A. Wassink T.H. Watson S.J. Weissman M.M. Werge T. Wienker T.F. Wijsman E.M. Willemsen G. Williams N. Willsey A.J. Witt S.H. Xu W. Young A.H. Yu T.W. Zammit S. Zandi P.P. Zhang P. Zitman F.G. Zöllner S. Devlin B. Kelsoe J.R. Sklar P. Daly M.J. O’Donovan M.C. Craddock N. Sullivan P.F. Smoller J.W. Kendler K.S. Wray N.R. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 2013 45 9 984 994 10.1038/ng.2711 23933821
    [Google Scholar]
  27. Loh P.R. Bhatia G. Gusev A. Finucane H.K. Bulik-Sullivan B.K. Pollack S.J. de Candia T.R. Lee S.H. Wray N.R. Kendler K.S. O’Donovan M.C. Neale B.M. Patterson N. Price A.L. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components analysis. Nat. Genet. 2015 47 12 1385 1392 10.1038/ng.3431 26523775
    [Google Scholar]
  28. Chen G.B. Lee S.H. Brion M.J.A. Montgomery G.W. Wray N.R. Radford-Smith G.L. Visscher P.M. Estimation and partitioning of (co)heritability of inflammatory bowel disease from GWAS and immunochip data. Hum. Mol. Genet. 2014 23 17 4710 4720 10.1093/hmg/ddu174 24728037
    [Google Scholar]
  29. Jia G. Li Y. Zhang H. Chattopadhyay I. Boeck Jensen A. Blair D.R. Davis L. Robinson P.N. Dahlén T. Brunak S. Benson M. Edgren G. Cox N.J. Gao X. Rzhetsky A. Estimating heritability and genetic correlations from large health datasets in the absence of genetic data. Nat. Commun. 2019 10 1 5508 10.1038/s41467‑019‑13455‑0 31796735
    [Google Scholar]
  30. Wu Y. Burch K.S. Ganna A. Pajukanta P. Pasaniuc B. Sankararaman S. Fast estimation of genetic correlation for biobank-scale data. Am. J. Hum. Genet. 2022 109 1 24 32 10.1016/j.ajhg.2021.11.015 34861179
    [Google Scholar]
  31. Mai T.T. Reliable genetic correlation estimation via multiple sample splitting and smoothing. Mathematics 2023 11 9 2163 10.3390/math11092163
    [Google Scholar]
  32. Finucane H.K. Bulik-Sullivan B. Gusev A. Trynka G. Reshef Y. Loh P.R. Anttila V. Xu H. Zang C. Farh K. Ripke S. Day F.R. Purcell S. Stahl E. Lindstrom S. Perry J.R.B. Okada Y. Raychaudhuri S. Daly M.J. Patterson N. Neale B.M. Price A.L. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat. Genet. 2015 47 11 1228 1235 10.1038/ng.3404 26414678
    [Google Scholar]
  33. Lu Q. Li B. Ou D. Erlendsdottir M. Powles R.L. Jiang T. Hu Y. Chang D. Jin C. Dai W. He Q. Liu Z. Mukherjee S. Crane P.K. Zhao H. A powerful approach to estimating annotation-stratified genetic covariance via GWAS summary statistics. Am. J. Hum. Genet. 2017 101 6 939 964 10.1016/j.ajhg.2017.11.001 29220677
    [Google Scholar]
  34. Qi T. Song L. Guo Y. Chen C. Yang J. From genetic associations to genes: Methods, applications, and challenges. Trends Genet. 2024 40 8 642 667 10.1016/j.tig.2024.04.008 38734482
    [Google Scholar]
  35. Speed D. Balding D.J. SumHer better estimates the SNP heritability of complex traits from summary statistics. Nat. Genet. 2019 51 2 277 284 10.1038/s41588‑018‑0279‑5 30510236
    [Google Scholar]
  36. Ning Z. Pawitan Y. Shen X. High-definition likelihood inference of genetic correlations across human complex traits. Nat. Genet. 2020 52 8 859 864 10.1038/s41588‑020‑0653‑y 32601477
    [Google Scholar]
  37. Chen W. Wu Y. Zheng Z. Qi T. Visscher P.M. Zhu Z. Yang J. Improved analyses of GWAS summary statistics by reducing data heterogeneity and errors. Nat. Commun. 2021 12 1 7117 10.1038/s41467‑021‑27438‑7 34880243
    [Google Scholar]
  38. Gao B. Yang C. Liu J. Zhou X. Accurate genetic and environmental covariance estimation with composite likelihood in genome-wide association studies. PLoS Genet. 2021 17 1 1009293 10.1371/journal.pgen.1009293 33395406
    [Google Scholar]
  39. Zhao B. Zou F. Zhu H. Cross-trait prediction accuracy of summary statistics in genome-wide association studies. Biometrics 2023 79 2 841 853 10.1111/biom.13661 35278218
    [Google Scholar]
  40. Shi H. Mancuso N. Spendlove S. Pasaniuc B. Local genetic correlation gives insights into the shared genetic architecture of complex traits. Am. J. Hum. Genet. 2017 101 5 737 751 10.1016/j.ajhg.2017.09.022 29100087
    [Google Scholar]
  41. Zhang Y. Lu Q. Ye Y. Huang K. Liu W. Wu Y. Zhong X. Li B. Yu Z. Travers B.G. Werling D.M. Li J.J. Zhao H. SUPERGNOVA: Local genetic correlation analysis reveals heterogeneous etiologic sharing of complex traits. Genome Biol. 2021 22 1 262 10.1186/s13059‑021‑02478‑w 34493297
    [Google Scholar]
  42. Guo H. Li J.J. Lu Q. Hou L. Detecting local genetic correlations with scan statistics. Nat. Commun. 2021 12 1 2033 10.1038/s41467‑021‑22334‑6 33795679
    [Google Scholar]
  43. Werme J. van der Sluis S. Posthuma D. de Leeuw C.A. An integrated framework for local genetic correlation analysis. Nat. Genet. 2022 54 3 274 282 10.1038/s41588‑022‑01017‑y 35288712
    [Google Scholar]
  44. Gerring Z.F. Thorp J.G. Gamazon E.R. Derks E.M. A local genetic correlation analysis provides biological insights into the shared genetic architecture of psychiatric and substance use phenotypes. Biol. Psychiatry 2022 92 7 583 591 10.1016/j.biopsych.2022.03.001 35525699
    [Google Scholar]
  45. Reynolds R.H. Wagen A.Z. Lona-Durazo F. Scholz S.W. Shoai M. Hardy J. Gagliano Taliun S.A. Ryten M. Local genetic correlations exist among neurodegenerative and neuropsychiatric diseases. NPJ Parkinsons Dis. 2023 9 1 70 10.1038/s41531‑023‑00504‑1 37117178
    [Google Scholar]
  46. Ding L. Chen B. Zhou Z. Mei Z. Cao K. Lu X. Chen W. Exploring the genetic correlation and causal relationships between breast cancer and meningioma using bidirectional Mendelian randomization. Sci. Rep. 2025 15 1 4271 10.1038/s41598‑025‑88829‑0 39905226
    [Google Scholar]
  47. Wen Y.P. Yu Z.G. Identifying shared genetic loci and common risk genes of rheumatoid arthritis associated with three autoimmune diseases based on large-scale cross-trait genome-wide association studies. Front. Immunol. 2023 14 1160397 10.3389/fimmu.2023.1160397 37377963
    [Google Scholar]
  48. 1000 Genomes Project Consortium; Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 2015 526 7571 68 74 10.1038/nature15393 26432245
    [Google Scholar]
  49. Su Z. Marchini J. Donnelly P. HAPGEN2: Simulation of multiple disease SNPs. Bioinformatics 2011 27 16 2304 2305 10.1093/bioinformatics/btr341 21653516
    [Google Scholar]
  50. Berisa T. Pickrell J.K. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics 2016 32 2 283 285 10.1093/bioinformatics/btv546 26395773
    [Google Scholar]
  51. Purcell S. Neale B. Todd-Brown K. Thomas L. Ferreira M.A.R. Bender D. Maller J. Sklar P. de Bakker P.I.W. Daly M.J. Sham P.C. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007 81 3 559 575 10.1086/519795 17701901
    [Google Scholar]
  52. Canela-Xandri O. Rawlik K. Tenesa A. An atlas of genetic associations in UK Biobank. Nat. Genet. 2018 50 11 1593 1599 10.1038/s41588‑018‑0248‑z 30349118
    [Google Scholar]
  53. Crouch D.J.M. Inshaw J.R. Robertson C.C. Enhanced genetic analysis of type 1 diabetes by selecting variants on both effect size and significance, and by integration with autoimmune thyroid disease. BioRxiv 2021 1 5 10.1101/2021.02.05.429962
    [Google Scholar]
  54. Sollis E. Mosaku A. Abid A. Buniello A. Cerezo M. Gil L. Groza T. Güneş O. Hall P. Hayhurst J. Ibrahim A. Ji Y. John S. Lewis E. MacArthur J.A.L. McMahon A. Osumi-Sutherland D. Panoutsopoulou K. Pendlington Z. Ramachandran S. Stefancsik R. Stewart J. Whetzel P. Wilson R. Hindorff L. Cunningham F. Lambert S.A. Inouye M. Parkinson H. Harris L.W. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023 51 D1 D977 D985 10.1093/nar/gkac1010 36350656
    [Google Scholar]
  55. Pearson K. III. Contributions to the mathematical theory of evolution. Philos. Trans. R. Soc. Lond., A 1894 185 71 110 10.1098/rsta.1894.0003
    [Google Scholar]
  56. Steiger J.H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 1980 87 2 245 251 10.1037/0033‑2909.87.2.245
    [Google Scholar]
  57. Mouri K. Guo M.H. de Boer C.G. Lissner M.M. Harten I.A. Newby G.A. DeBerg H.A. Platt W.F. Gentili M. Liu D.R. Campbell D.J. Hacohen N. Tewhey R. Ray J.P. Prioritization of autoimmune disease-associated genetic variants that perturb regulatory element activity in T cells. Nat. Genet. 2022 54 5 603 612 10.1038/s41588‑022‑01056‑5 35513721
    [Google Scholar]
  58. Harroud A. Hafler D.A. Common genetic factors among autoimmune diseases. Science 2023 380 6644 485 490 10.1126/science.adg2992 37141355
    [Google Scholar]
  59. Wang Z. Liang Q. Qian X. Hu B. Zheng Z. Wang J. Hu Y. Bao Z. Zhao K. Zhou Y. Feng X. Yi X. Li J. Shi J. Liu Z. Hao J. Chen K. Yu Y. Sham P.C. Lu W. Wang X. Song W. Li M.J. An autoimmune pleiotropic SNP modulates IRF5 alternative promoter usage through ZBTB3-mediated chromatin looping. Nat. Commun. 2023 14 1 1208 10.1038/s41467‑023‑36897‑z 36869052
    [Google Scholar]
  60. Orozco G. Viatte S. Bowes J. Martin P. Wilson A.G. Morgan A.W. Steer S. Wordsworth P. Hocking L.J. Barton A. Worthington J. Eyre S. Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended UK genome-wide association study. Arthritis Rheumatol. 2014 66 1 24 30 10.1002/art.38196 24449572
    [Google Scholar]
  61. Jakkula E. Leppä V. Sulonen A.M. Varilo T. Kallio S. Kemppinen A. Purcell S. Koivisto K. Tienari P. Sumelahti M.L. Elovaara I. Pirttilä T. Reunanen M. Aromaa A. Oturai A.B. Søndergaard H.B. Harbo H.F. Mero I.L. Gabriel S.B. Mirel D.B. Hauser S.L. Kappos L. Polman C. De Jager P.L. Hafler D.A. Daly M.J. Palotie A. Saarela J. Peltonen L. Genome-wide association study in a high-risk isolate for multiple sclerosis reveals associated variants in STAT3 gene. Am. J. Hum. Genet. 2010 86 2 285 291 10.1016/j.ajhg.2010.01.017 20159113
    [Google Scholar]
  62. Fernández-Hernando C. Suárez Y. ANGPTL4: A multifunctional protein involved in metabolism and vascular homeostasis. Curr. Opin. Hematol. 2020 27 3 206 213 10.1097/MOH.0000000000000580 32205586
    [Google Scholar]
  63. Makoveichuk E. Ruge T. Nilsson S. Södergren A. Olivecrona G. High concentrations of angiopoietin-like protein 4 detected in serum from patients with rheumatoid arthritis can be explained by non-specific antibody reactivity. PLoS One 2017 12 1 0168922 10.1371/journal.pone.0168922 28107351
    [Google Scholar]
  64. Wang H.H. Luo W.Y. Lin M. Li X.J. Xiang G.D. d Triganti S. Plasma asprosin, CCDC80 and ANGPTL4 levels are associated with metabolic and cardiovascular risk in patients with inflammatory bowel disease. Physiol. Res. 2021 70 2 203 211 10.33549/physiolres.934547 33676388
    [Google Scholar]
  65. Wang L. Feng Y. Yan D. Qin L. Grati M. Mittal R. Li T. Sundhari A.K. Liu Y. Chapagain P. Blanton S.H. Liao S. Liu X. A dominant variant in the PDE1C gene is associated with nonsyndromic hearing loss. Hum. Genet. 2018 137 6-7 437 446 10.1007/s00439‑018‑1895‑y 29860631
    [Google Scholar]
  66. Sandigursky S. Silverman G.J. Mor A. Targeting the programmed cell death-1 pathway in rheumatoid arthritis. Autoimmun. Rev. 2017 16 8 767 773 10.1016/j.autrev.2017.05.025 28572054
    [Google Scholar]
  67. Kilanowska A. Ziółkowska A. Role of phosphodiesterase in the biology and pathology of diabetes. Int. J. Mol. Sci. 2020 21 21 8244 10.3390/ijms21218244 33153226
    [Google Scholar]
  68. O’Leary N.A. Wright M.W. Brister J.R. Ciufo S. Haddad D. McVeigh R. Rajput B. Robbertse B. Smith-White B. Ako-Adjei D. Astashyn A. Badretdin A. Bao Y. Blinkova O. Brover V. Chetvernin V. Choi J. Cox E. Ermolaeva O. Farrell C.M. Goldfarb T. Gupta T. Haft D. Hatcher E. Hlavina W. Joardar V.S. Kodali V.K. Li W. Maglott D. Masterson P. McGarvey K.M. Murphy M.R. O’Neill K. Pujar S. Rangwala S.H. Rausch D. Riddick L.D. Schoch C. Shkeda A. Storz S.S. Sun H. Thibaud-Nissen F. Tolstoy I. Tully R.E. Vatsan A.R. Wallin C. Webb D. Wu W. Landrum M.J. Kimchi A. Tatusova T. DiCuccio M. Kitts P. Murphy T.D. Pruitt K.D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016 44 D1 D733 D745 10.1093/nar/gkv1189 26553804
    [Google Scholar]
  69. Suh J.H. Park M.C. Goughnour P.C. Min B.S. Kim S.B. Lee W.Y. Cho Y.B. Cheon J.H. Lee K.Y. Nam D.H. Kim S. Plasma lysyl-tRNA synthetase 1 (KARS1) as a novel diagnostic and monitoring biomarker for colorectal cancer. J. Clin. Med. 2020 9 2 533 10.3390/jcm9020533 32075312
    [Google Scholar]
  70. Jarrous N. Reiner R. Wesolowski D. Mann H. Guerrier-Takada C. Altman S. Function and subnuclear distribution of Rpp21, a protein subunit of the human ribonucleoprotein ribonuclease P. RNA 2001 7 8 1153 1164 10.1017/S1355838201010469 11497433
    [Google Scholar]
  71. McDermott E. Ryan E.J. Tosetto M. Gibson D. Burrage J. Keegan D. Byrne K. Crowe E. Sexton G. Malone K. Harris R.A. Kellermayer R. Mill J. Cullen G. Doherty G.A. Mulcahy H. Murphy T.M. DNA methylation profiling in inflammatory bowel disease provides new insights into disease pathogenesis. J. Crohn’s Colitis 2016 10 1 77 86 10.1093/ecco‑jcc/jjv176 26419460
    [Google Scholar]
  72. Jin Z. Zhu Z. The role of TRIM proteins in PRR signaling pathways and immune-related diseases. Int. Immunopharmacol. 2021 98 107813 10.1016/j.intimp.2021.107813 34126340
    [Google Scholar]
  73. Wan T. Li X. Li Y. The role of TRIM family proteins in autophagy, pyroptosis, and diabetes mellitus. Cell Biol. Int. 2021 45 5 913 926 10.1002/cbin.11550 33438267
    [Google Scholar]
  74. Zhang M. Yang B. Zhang L. Guo X. Zhang G. Che X. Li C. Hou K. Zhang X. Qu J. Wen T. Qu X. TRIM27 is an adverse prognostic biomarker and associated with immune and molecular profiles in right-sided colon cancer. Am. J. Cancer Res. 2022 12 11 4988 5003 36504896
    [Google Scholar]
  75. Smits D.J. Dekker J. Schot R. Tabarki B. Alhashem A. Demmers J.A.A. Dekkers D.H.W. Romito A. van der Spek P.J. van Ham T.J. Bertoli-Avella A.M. Mancini G.M.S. CLEC16A interacts with retromer and TRIM27, and its loss impairs endosomal trafficking and neurodevelopment. Hum. Genet. 2023 142 3 379 397 10.1007/s00439‑022‑02511‑3 36538041
    [Google Scholar]
  76. Wang J. Zhao D. Lei Z. Ge P. Lu Z. Chai Q. Zhang Y. Qiang L. Yu Y. Zhang X. Li B. Zhu S. Zhang L. Liu C.H. TRIM27 maintains gut homeostasis by promoting intestinal stem cell self-renewal. Cell. Mol. Immunol. 2023 20 2 158 174 10.1038/s41423‑022‑00963‑1 36596873
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936383234250804032135
Loading
/content/journals/cbio/10.2174/0115748936383234250804032135
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test