Skip to content
2000
image of Integrated Metabolic-related Transcription Factor Protein Activity for Stratification of Breast Cancer with Distinct Clinical Outcomes

Abstract

Introduction

Breast carcinoma continues to be a predominant factor contributing to cancer-associated mortality in women across the globe. Despite the significant advancements in medical technology today, there remain challenges in precisely stratifying patients based on their risk profiles and identifying the most effective treatment strategies for breast cancer. The regulation of metabolism and transcription factors is considered to have a close association with cancer progression.

Methods

In this study, the co-expression network was utilized to identify transcription factors associated with metabolic molecule subtypes, and ultimately, a risk scoring model was constructed. WGCNA is also employed to explore related transcription factor modules, and the VIPER method is used to infer the state of transcription factors. A machine learning methodology, specifically SVM, has been employed to model patient survival outcomes.

Results

We found that patients with lower risk scores exhibit extended survival durations and chemotherapy response in comparison to their high-risk counterparts. Meanwhile, high-risk patients exhibited higher levels of chromosomal instability and tumor immunogenicity relative to low-risk patients. Additionally, we constructed a ceRNA network and successfully identified 39 master regulators associated with survival outcomes.

Discussion

This study provided a method for using the protein activity of transcription factors for subtyping breast cancer patients.

Conclusion

We achieved risk stratification of breast cancer patients and accurately predicted their prognosis. The result also highlighted various contributors impacting the clinical prognosis of breast cancer patients.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936380191250710051557
2025-07-23
2025-10-31
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Giaquinto A.N. Sung H. Miller K.D. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  4. Siegel R.L. Miller K.D. Fuchs H.E. Jemal A. Cancer statistics, 2022. CA Cancer J. Clin. 2022 72 1 7 33 10.3322/caac.21708 35020204
    [Google Scholar]
  5. Wang Y.Q. Li H.Z. Gong W.W. Cancer incidence and mortality in zhejiang province, southeast china, 2016: A population-based study. Chin. Med. J. 2021 134 16 1959 1966 10.1097/CM9.0000000000001666 34334631
    [Google Scholar]
  6. Jana S. Brahma S. Arora S. Transcriptional-translational conflict is a barrier to cellular transformation and cancer progression. Cancer Cell 2023 41 5 853 870.e13 10.1016/j.ccell.2023.03.021 37084735
    [Google Scholar]
  7. Xie P. Peng Z. Chen Y. Neddylation of PTEN regulates its nuclear import and promotes tumor development. Cell Res. 2021 31 3 291 311 10.1038/s41422‑020‑00443‑z 33299139
    [Google Scholar]
  8. Lambert S.A. Jolma A. Campitelli L.F. The human transcription factors. Cell 2018 172 4 650 665 10.1016/j.cell.2018.01.029 29425488
    [Google Scholar]
  9. Xiong Y. Wang S. Wei H. Deep learning-based transcription factor activity for stratification of breast cancer patients. Biochim. Biophys. Acta. Gene Regul. Mech. 2022 1865 6 194838 10.1016/j.bbagrm.2022.194838 35690313
    [Google Scholar]
  10. Su D. Zhang H. Xiong Y. Stratification of ovarian cancer patients from the prospect of drug target-related transcription factor protein activity: The prognostic and genomic landscape analyses. Brief. Funct. Genomics 2023 22 4 351 365 10.1093/bfgp/elad008 37103222
    [Google Scholar]
  11. Kant R. Manne R.K. Anas M. Deregulated transcription factors in cancer cell metabolisms and reprogramming. Semin. Cancer Biol. 2022 86 Pt 3 1158 1174 10.1016/j.semcancer.2022.10.001 36244530
    [Google Scholar]
  12. Hsieh T.H. Hsu C.Y. Wu C.W. Vorinostat decrease M2 macrophage polarization through ARID1A6488delG/HDAC6/IL-10 signaling pathway in endometriosis-associated ovarian carcinoma. Biomed. Pharmacother. 2023 161 114500 10.1016/j.biopha.2023.114500 36958195
    [Google Scholar]
  13. Hawe J.S. Wilson R. Schmid K.T. Genetic variation influencing DNA methylation provides insights into molecular mechanisms regulating genomic function. Nat. Genet. 2022 54 1 18 29 10.1038/s41588‑021‑00969‑x 34980917
    [Google Scholar]
  14. Su D. Xiong Y. Wei H. Integrated analysis of ovarian cancer patients from prospective transcription factor activity reveals subtypes of prognostic significance. Heliyon 2023 9 5 16147 10.1016/j.heliyon.2023.e16147 37215759
    [Google Scholar]
  15. Wei H. Luo X. Lan R. Integrated analysis of patients with bladder cancer from prospective transcription factor activity: Implications for personalized treatment approaches. Methods 2024 230 32 43 10.1016/j.ymeth.2024.07.006 39079653
    [Google Scholar]
  16. Alvarez M.J. Shen Y. Giorgi F.M. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 2016 48 8 838 847 10.1038/ng.3593 27322546
    [Google Scholar]
  17. Houston S. STAT3 and autoimmunity. Nat. Immunol. 2023 24 1 1 1 36596898
    [Google Scholar]
  18. Li Y.J. Zhang C. Martincuks A. Herrmann A. Yu H. STAT proteins in cancer: Orchestration of metabolism. Nat. Rev. Cancer 2023 23 3 115 134 10.1038/s41568‑022‑00537‑3 36596870
    [Google Scholar]
  19. Montaigne D. Butruille L. Staels B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021 18 12 809 823 10.1038/s41569‑021‑00569‑6 34127848
    [Google Scholar]
  20. Tutsoy O. Sumbul H.E. A novel deep machine learning algorithm with dimensionality and size reduction approaches for feature elimination: Thyroid cancer diagnoses with randomly missing data. Brief. Bioinform. 2024 25 4 bbae344 10.1093/bib/bbae344 39007597
    [Google Scholar]
  21. Curtis C. Shah S.P. Chin S.F. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012 486 7403 346 352 10.1038/nature10983 22522925
    [Google Scholar]
  22. Brueffer C. Vallon-Christersson J. Grabau D. Clinical value of RNA sequencing–based classifiers for prediction of the five conventional breast cancer biomarkers: A report from the population-based multicenter Sweden cancerome analysis network-breast initiative. JCO Precis. Oncol. 2018 2 2 1 18 10.1200/PO.17.00135 32913985
    [Google Scholar]
  23. Davis S. Meltzer P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007 23 14 1846 1847 10.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  24. Garcia-Alonso L. Holland C.H. Ibrahim M.M. Turei D. Saez-Rodriguez J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 2019 29 8 1363 1375 10.1101/gr.240663.118 31340985
    [Google Scholar]
  25. McKenzie A.T. Katsyv I. Song W.M. Wang M. Zhang B. DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC Syst. Biol. 2016 10 1 106 10.1186/s12918‑016‑0349‑1 27846853
    [Google Scholar]
  26. Wang Y. Zeng T. Tang D. Cui H. Wan Y. Tang H. Integrated multi-omics analyses reveal lipid metabolic signature in osteoarthritis. J. Mol. Biol. 2025 437 6 168888 10.1016/j.jmb.2024.168888 39643156
    [Google Scholar]
  27. Liu T. Qiao H. Wang Z. CodLncscape provides a self‐enriching framework for the systematic collection and exploration of coding LncRNAs. Adv. Sci. 2024 11 22 2400009 10.1002/advs.202400009 38602457
    [Google Scholar]
  28. Wang Y. Kong Q. Li M. Prediction of immune and targeted drug efficacy in pain-related risk subtypes for bladder cancer patients. Heliyon 2023 9 7 17690 10.1016/j.heliyon.2023.e17690 37455996
    [Google Scholar]
  29. Zhang H. Chi M. Su D. A random forest-based metabolic risk model to assess the prognosis and metabolism-related drug targets in ovarian cancer. Comput. Biol. Med. 2023 153 106432 10.1016/j.compbiomed.2022.106432 36608460
    [Google Scholar]
  30. He Y. Wei H. Liao S. Integrated machine learning algorithms for stratification of patients with bladder cancer. Curr. Bioinform. 2024 19 10 963 976 10.2174/0115748936288453240124082031
    [Google Scholar]
  31. Su D. Lu Q. Pan Y. Immune-related gene-based prognostic signature for the risk stratification analysis of breast cancer. Curr. Bioinform. 2022 17 2 196 205 10.2174/1574893616666211005110732
    [Google Scholar]
  32. Lu Q. Wang S. Pan Y. The immune-based prognostic score for the immunogenomic landscape aanalysis and application of chemotherapy in breast cancer. Curr. Bioinform. 2022 17 7 624 631 10.2174/1574893617666220524123825
    [Google Scholar]
  33. Liu Y. Li H. Zeng T. Integrated bulk and single-cell transcriptomes reveal pyroptotic signature in prognosis and therapeutic options of hepatocellular carcinoma by combining deep learning. Brief. Bioinform. 2023 25 1 bbad487 10.1093/bib/bbad487 38197309
    [Google Scholar]
  34. Robinson M.D. McCarthy D.J. Smyth G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010 26 1 139 140 10.1093/bioinformatics/btp616 19910308
    [Google Scholar]
  35. Wu T. Hu E. Xu S. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation 2021 2 3 100141 10.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  36. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  37. Subramanian A. Tamayo P. Mootha V.K. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  38. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  39. Bhattacharya S. Dunn P. Thomas C.G. ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci. Data 2018 5 1 180015 10.1038/sdata.2018.15 29485622
    [Google Scholar]
  40. Rosario S.R. Long M.D. Affronti H.C. Rowsam A.M. Eng K.H. Smiraglia D.J. Pan-cancer analysis of transcriptional metabolic dysregulation using The Cancer Genome Atlas. Nat. Commun. 2018 9 1 5330 10.1038/s41467‑018‑07232‑8 30552315
    [Google Scholar]
  41. Hänzelmann S. Castelo R. Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  42. Yang W. Soares J. Greninger P. Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res. 2013 41 Database issue D955 D961 23180760
    [Google Scholar]
  43. Jia P. Hu R. Pei G. Dai Y. Wang Y.Y. Zhao Z. Deep generative neural network for accurate drug response imputation. Nat. Commun. 2021 12 1 1740 10.1038/s41467‑021‑21997‑5 33741950
    [Google Scholar]
  44. Zou X. Ren L. Cai P. Accurately identifying hemagglutinin using sequence information and machine learning methods. Front. Med. 2023 10 1281880 10.3389/fmed.2023.1281880 38020152
    [Google Scholar]
  45. Arif M. Musleh S. Ghulam A. Fida H. Alqahtani Y. Alam T. StackDPPred: Multiclass prediction of defensin peptides using stacked ensemble learning with optimized features. Methods 2024 230 129 139 10.1016/j.ymeth.2024.08.001 39173785
    [Google Scholar]
  46. Musleh S. Arif M. Alajez N.M. Alam T. Unified mRNA subcellular localization predictor based on machine learning techniques. BMC Genomics 2024 25 1 151 10.1186/s12864‑024‑10077‑9 38326777
    [Google Scholar]
  47. Liu T. Chen J.M. Zhang D. ApoPred: Identification of apolipoproteins and their subfamilies with multifarious features. Front. Cell Dev. Biol. 2021 8 621144 10.3389/fcell.2020.621144 33490085
    [Google Scholar]
  48. Zhang H.Q. Arif M. Thafar M.A. PMPred-AE: A computational model for the detection and interpretation of pathological myopia based on artificial intelligence. Front. Med. 2025 12 1529335 10.3389/fmed.2025.1529335 40182849
    [Google Scholar]
  49. Zulfiqar H. Guo Z. Ahmad R.M. Deep-STP: A deep learning-based approach to predict snake toxin proteins by using word embeddings. Front. Med. 2024 10 1291352 10.3389/fmed.2023.1291352 38298505
    [Google Scholar]
  50. Arif M. Musleh S. Fida H. Alam T. PLMACPred prediction of anticancer peptides based on protein language model and wavelet denoising transformation. Sci. Rep. 2024 14 1 16992 10.1038/s41598‑024‑67433‑8 39043738
    [Google Scholar]
  51. Wang S. Xiong Y. Zhang Q. Clinical significance and immunogenomic landscape analyses of the immune cell signature based prognostic model for patients with breast cancer. Brief. Bioinform. 2020 33302293
    [Google Scholar]
  52. Wang S. Zhang Q. Yu C. Cao Y. Zuo Y. Yang L. Immune cell infiltration-based signature for prognosis and immunogenomic analysis in breast cancer. Brief. Bioinform. 2021 22 2 2020 2031 10.1093/bib/bbaa026 32141494
    [Google Scholar]
  53. Martínez-Reyes I. Chandel N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021 21 10 669 680 10.1038/s41568‑021‑00378‑6 34272515
    [Google Scholar]
  54. Xiao Y. Ma D. Yang Y.S. Comprehensive metabolomics expands precision medicine for triple-negative breast cancer. Cell Res. 2022 32 5 477 490 10.1038/s41422‑022‑00614‑0 35105939
    [Google Scholar]
  55. Zhang Y. Yang Y. Ren L. Predicting intercellular communication based on metabolite-related ligand-receptor interactions with MRCLinkdb. BMC Biol. 2024 22 1 152 10.1186/s12915‑024‑01950‑w 38978014
    [Google Scholar]
  56. Sweeney K. McClean M.N. Transcription factor localization dynamics and DNA binding drive distinct promoter interpretations. Cell Rep. 2023 42 5 112426 10.1016/j.celrep.2023.112426 37087734
    [Google Scholar]
  57. Paull E.O. Aytes A. Jones S.J. A modular master regulator landscape controls cancer transcriptional identity. Cell 2021 184 2 334 351.e20 10.1016/j.cell.2020.11.045 33434495
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936380191250710051557
Loading
/content/journals/cbio/10.2174/0115748936380191250710051557
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test