Skip to content
2000
image of A Comprehensive Database of Human Transmembrane Protein Mutations

Abstract

Introduction

Transmembrane proteins are essential for elucidating human disease mechanisms. This study establishes a comprehensive, current database of transmembrane protein mutations to advance research into disease processes and therapeutic innovation.

Methods

The study constructed a robust database of transmembrane protein mutations by integrating data from Swiss-Prot, Humsavar, COSMIC, and ClinVar. The Variant Effect Predictor (VEP) was employed to predict the functional consequences of mutations, and mutation sequence generation scripts were developed to generate and annotate mutation sequences. Stringent filtering criteria were applied to ensure data quality, and a thorough analysis of mutation types, distribution, and impact levels was conducted.

Results

The resulting dataset encompasses 138,235 entries across 202 annotation fields, incorporating standard identifiers (., gene names, Ensembl IDs, genomic positions), as well as additional functional effects fields generated by different methods. The dataset is publicly accessible at http://tmliang.cn/memPmut/.

Discussion

The database highlights the functional significance of missense mutations and the prevalence of subtle effects from moderate-impact variants. Nucleotide transition biases suggest potential hotspots, while the web server facilitates research into disease mechanisms and therapeutic targets.

Conclusion

This study provides a cohesive, high-quality database that aids the research on transmembrane protein mutation by consolidating diverse data sources and hundreds of mutation function effects.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936369628250714051437
2025-08-04
2025-10-31
Loading full text...

Full text loading...

References

  1. Ryu H. Fuwad A. Yoon S. Biomimetic membranes with transmembrane proteins: State-of-the-art in transmembrane protein applications. Int. J. Mol. Sci. 2019 20 6 1437 10.3390/ijms20061437 30901910
    [Google Scholar]
  2. Herrera-Quiterio GA Encarnación-Guevara S The transmembrane proteins (TMEM) and their role in cell proliferation, migration, invasion, and epithelial-mesenchymal transition in cancer. Front Oncol 2023 13 1244740 10.3389/fonc.2023.1244740 37936608
    [Google Scholar]
  3. Belardi B. Son S. Felce J.H. Dustin M.L. Fletcher D.A. Cell–cell interfaces as specialized compartments directing cell function. Nat. Rev. Mol. Cell Biol. 2020 21 12 750 764 10.1038/s41580‑020‑00298‑7 33093672
    [Google Scholar]
  4. Otzen D. Membrane protein folding and stability. Arch. Biochem. Biophys. 2014 564 262 264 10.1016/j.abb.2014.10.014 25447840
    [Google Scholar]
  5. von Heijne G. The distribution of positively charged residues] in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 1986 5 11 3021 3027 10.1002/j.1460‑2075.1986.tb04601.x 16453726
    [Google Scholar]
  6. Meng Y. Huang K. Shi M. Research advances in the role of the tropomyosin family in cancer. Int. J. Mol. Sci. 2023 24 17 13295 10.3390/ijms241713295 37686101
    [Google Scholar]
  7. Zaucha J. Heinzinger M. Kulandaisamy A. Mutations in transmembrane proteins: Diseases, evolutionary insights, prediction and comparison with globular proteins. Brief. Bioinform. 2021 22 3 bbaa132 10.1093/bib/bbaa132 32672331
    [Google Scholar]
  8. Zhang T.M. Liao L. Yang S.Y. TOLLIP-mediated autophagic degradation pathway links the VCP-TMEM63A-DERL1 signaling axis to triple-negative breast cancer progression. Autophagy 2023 19 3 805 821 10.1080/15548627.2022.2103992 35920704
    [Google Scholar]
  9. Tate J.G. Bamford S. Jubb H.C. COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019 47 D1 D941 D947 10.1093/nar/gky1015 30371878
    [Google Scholar]
  10. Landrum M.J. Lee J.M. Benson M. ClinVar: Public archive of interpretations of clinically relevant variants. Nucleic Acids Res. 2016 44 D1 D862 D868 10.1093/nar/gkv1222 26582918
    [Google Scholar]
  11. Kulandaisamy A. Binny Priya S. Sakthivel R. MutHTP: mutations in human transmembrane proteins. Bioinformatics 2018 34 13 2325 2326 10.1093/bioinformatics/bty054 29401218
    [Google Scholar]
  12. UniProt The universal protein knowledgebase. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  13. McLaren W. Gil L. Hunt S.E. The Ensembl Variant Effect Predictor. Genome Biol. 2016 17 1 122 10.1186/s13059‑016‑0974‑4 27268795
    [Google Scholar]
  14. Boutet E. Lieberherr D. Tognolli M. Schneider M. Bairoch A. UniProtKB/Swiss-Prot. Methods Mol. Biol. 2007 406 89 112 10.1007/978‑1‑59745‑535‑0_4 18287689
    [Google Scholar]
  15. Martin F.J. Amode M.R. Aneja A. Ensembl 2023. Nucleic Acids Res. 2023 51 D1 D933 D941 10.1093/nar/gkac958 36318249
    [Google Scholar]
  16. Kalfakakou D. Konstantopoulou I. Yannoukakos D. Fostira F. Pitfalls in variant annotation for hereditary cancer diagnostics: The example of Illumina® VariantStudio®. Genomics 2021 113 1 748 754 10.1016/j.ygeno.2020.10.005 33053411
    [Google Scholar]
  17. Ng P.C. Henikoff S. SIFT: Predicting amino acid changes that] affect protein function. Nucleic Acids Res. 2003 31 13 3812 3814 10.1093/nar/gkg509 12824425
    [Google Scholar]
  18. Adzhubei I. Jordan D.M. Sunyaev S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 2013 10.1002/0471142905.hg0720s76 23315928
    [Google Scholar]
  19. Feng B.J. PERCH: A unified framework for disease gene prioritization. Hum. Mutat. 2017 38 3 243 251 10.1002/humu.23158 27995669
    [Google Scholar]
  20. Kircher M. Witten D.M. Jain P. O’Roak B.J. Cooper G.M. Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014 46 3 310 315 10.1038/ng.2892 24487276
    [Google Scholar]
  21. Dong C. Wei P. Jian X. Comparison and integration of] deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 2015 24 8 2125 2137 10.1093/hmg/ddu733 25552646
    [Google Scholar]
  22. Li C. Ma K. Xu N. SNPAAMapper-Python: A highly] efficient genome-wide SNP variant analysis pipeline for] next-generation sequencing data. Front Artif Intell 2022 5 991733 10.3389/frai.2022.991733 36171799
    [Google Scholar]
  23. Yates A. Beal K. Keenan S. The ensembl REST API:] Ensembl data for any language. Bioinformatics 2015 31 1 143 145 10.1093/bioinformatics/btu613 25236461
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936369628250714051437
Loading
/content/journals/cbio/10.2174/0115748936369628250714051437
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test