Skip to content
2000
image of A Diagnostic Aid Platform to Detect the Transition of Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD)

Abstract

Introduction

Alzheimer's disease (AD), a leading cause of dementia, affects millions globally. By 2050, it is expected to impact over 100 million people. Mild cognitive impairment (MCI) is often considered a precursor to AD, but not all MCI patients progress to AD. Therefore, accurately predicting the risk of MCI patients converting to AD is essential.

Methods

This study is a cross-sectional study analyzing routine blood test data collected from AD and MCI patients in Hong Kong between 2000 and 2019. To reduce gender and age bias, subjects were divided into four groups. Models were trained using machine learning and routine blood markers.

Results

On the independent test set, the model for females aged 65–74 performed best with an AUC of 0.76. For other age groups, the AUCs were as follows: 0.65 for males aged 65–74, 0.66 for females aged 75–89, and 0.67 for males aged 75–89. Based on this, we developed a platform named MAP (http://lab.malab.cn/~lijing/MAP.html) to predict the risk of MCI converting to AD, assisting clinicians and MCI patients in early diagnosis and prevention.

Discussion

Routine blood markers combined with machine learning offer a practical, non-invasive approach for predicting the risk of MCI-to-AD conversion. Predictive performance varies by age and gender.

Conclusion

This study supports the use of blood-based machine learning models as cost-effective tools for early AD risk screening in MCI patients.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936367942250706092947
2025-10-21
2025-10-31
Loading full text...

Full text loading...

References

  1. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  2. Silva M.V.F. Loures C.M.G. Alves L.C.V. de Souza L.C. Borges K.B.G. Carvalho M.G. Alzheimer’s disease: Risk factors and potentially protective measures. J. Biomed. Sci. 2019 26 1 33 10.1186/s12929‑019‑0524‑y 31072403
    [Google Scholar]
  3. Chaudhary R.K. Mateti U.V. Khanal P. Alzheimer’s Disease: Epidemiology, neuropathology, and neurochemistry. In: Computational and Experimental Studies in Alzheimer’s Disease. CRC Press 2024 1 14
    [Google Scholar]
  4. Better M.A. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  5. Barnes D.E. Yaffe K. The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 2011 10 9 819 828 10.1016/S1474‑4422(11)70072‑2 21775213
    [Google Scholar]
  6. Wortmann M. Dementia: A global health priority - highlights from an ADI and World Health Organization report. Alzheimers Res. Ther. 2012 4 5 40 10.1186/alzrt143 22995353
    [Google Scholar]
  7. Li X. Feng X. Sun X. Hou N. Han F. Liu Y. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019. Front. Aging Neurosci. 2022 14 937486 10.3389/fnagi.2022.937486 36299608
    [Google Scholar]
  8. The global dementia observatory reference guide. In: Department of Mental Health and Substance Abuse World Health Organization Geneva, Switzerland 2018
    [Google Scholar]
  9. Jia J. Wei C. Chen S. Li F. Tang Y. Qin W. Zhao L. Jin H. Xu H. Wang F. Zhou A. Zuo X. Wu L. Han Y. Han Y. Huang L. Wang Q. Li D. Chu C. Shi L. Gong M. Du Y. Zhang J. Zhang J. Zhou C. Lv J. Lv Y. Xie H. Ji Y. Li F. Yu E. Luo B. Wang Y. Yang S. Qu Q. Guo Q. Liang F. Zhang J. Tan L. Shen L. Zhang K. Zhang J. Peng D. Tang M. Lv P. Fang B. Chu L. Jia L. Gauthier S. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement. 2018 14 4 483 491 10.1016/j.jalz.2017.12.006 29433981
    [Google Scholar]
  10. Tay L.X. Ong S.C. Tay L.J. Ng T. Parumasivam T. Economic burden of alzheimer’s disease: A systematic review. Value Health Reg. Issues 2024 40 1 12 10.1016/j.vhri.2023.09.008 37972428
    [Google Scholar]
  11. Kerwin D. Abdelnour C. Caramelli P. Ogunniyi A. Shi J. Zetterberg H. Traber M. Alzheimer’s disease diagnosis and management: Perspectives from around the world. Alzheimers Dement. 2022 14 1 e12334 10.1002/dad2.12334 35898519
    [Google Scholar]
  12. Grassi M. Rouleaux N. Caldirola D. Loewenstein D. Schruers K. Perna G. Dumontier M. A novel ensemble-based machine learning algorithm to predict the conversion from mild cognitive impairment to Alzheimer’s Disease using socio-demographic characteristics, clinical information, and neuropsychological measures. Front. Neurol. 2019 10 756 10.3389/fneur.2019.00756 31379711
    [Google Scholar]
  13. Anderson N.D. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019 24 1 78 87 10.1017/S1092852918001347 30651152
    [Google Scholar]
  14. Petersen R.C. Doody R. Kurz A. Mohs R.C. Morris J.C. Rabins P.V. Ritchie K. Rossor M. Thal L. Winblad B. Current concepts in mild cognitive impairment. Arch. Neurol. 2001 58 12 1985 1992 10.1001/archneur.58.12.1985 11735772
    [Google Scholar]
  15. Gomersall T. Smith S.K. Blewett C. Astell A. ‘It’s definitely not Alzheimer’s’: Perceived benefits and drawbacks of a mild cognitive impairment diagnosis. Br. J. Health Psychol. 2017 22 4 786 804 10.1111/bjhp.12255 28628736
    [Google Scholar]
  16. Moradi E. Pepe A. Gaser C. Huttunen H. Tohka J. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 2015 104 398 412 10.1016/j.neuroimage.2014.10.002 25312773
    [Google Scholar]
  17. Zhang T. Liao Q. Zhang D. Zhang C. Yan J. Ngetich R. Zhang J. Jin Z. Li L. Predicting MCI to AD conversation using integrated sMRI and rs-fMRI: Machine learning and graph theory approach. Front. Aging Neurosci. 2021 13 688926 10.3389/fnagi.2021.688926 34421570
    [Google Scholar]
  18. Syaifullah A.H. Shiino A. Kitahara H. Ito R. Ishida M. Tanigaki K. Machine learning for diagnosis of AD and prediction of MCI progression from brain MRI using brain anatomical analysis using diffeomorphic deformation. Front. Neurol. 2021 11 576029 10.3389/fneur.2020.576029 33613411
    [Google Scholar]
  19. Minhas S Khanum A Alvi A Early MCI-to-AD conversion prediction using future value forecasting of multimodal features. CIN 2021 1 1 12 10.1155/2021/6628036
    [Google Scholar]
  20. Chen Y. Qian X. Zhang Y. Su W. Huang Y. Wang X. Chen X. Zhao E. Han L. Ma Y. Prediction models for conversion from mild cognitive impairment to Alzheimer’s Disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2022 14 840386 10.3389/fnagi.2022.840386 35493941
    [Google Scholar]
  21. Mapstone M. Cheema A.K. Fiandaca M.S. Zhong X. Mhyre T.R. MacArthur L.H. Hall W.J. Fisher S.G. Peterson D.R. Haley J.M. Nazar M.D. Rich S.A. Berlau D.J. Peltz C.B. Tan M.T. Kawas C.H. Federoff H.J. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 2014 20 4 415 418 10.1038/nm.3466 24608097
    [Google Scholar]
  22. Boccardi V. Bubba V. Murasecco I. Pigliautile M. Monastero R. Cecchetti R. Scamosci M. Bastiani P. Mecocci P. Serum alkaline phosphatase is elevated and inversely correlated with cognitive functions in subjective cognitive decline: Results from the ReGAl 2.0 project. Aging Clin. Exp. Res. 2021 33 3 603 609 10.1007/s40520‑020‑01572‑6 32363431
    [Google Scholar]
  23. Wu K. Xu C. Qiu G. Guo Q. Chen C. Liu W. Liu J. Liu K. Zhu F. Association of lower liver function with cognitive impairment in the Shenzhen ageing-related disorder cohort in China. Front. Aging Neurosci. 2022 14 1012219 10.3389/fnagi.2022.1012219 36313027
    [Google Scholar]
  24. Chen S.H. Bu X.L. Jin W.S. Shen L.L. Wang J. Zhuang Z.Q. Zhang T. Zeng F. Yao X.Q. Zhou H.D. Wang Y.J. Altered peripheral profile of blood cells in Alzheimer disease. Medicine 2017 96 21 e6843 10.1097/MD.0000000000006843 28538375
    [Google Scholar]
  25. Proitsi P. Kim M. Whiley L. Simmons A. Sattlecker M. Velayudhan L. Lupton M.K. Soininen H. Kloszewska I. Mecocci P. Tsolaki M. Vellas B. Lovestone S. Powell J.F. Dobson R.J.B. Legido-Quigley C. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimers Dement. 2017 13 2 140 151 10.1016/j.jalz.2016.08.003 27693183
    [Google Scholar]
  26. Baldini A. Greco A. Lomi M. Giannelli R. Canale P. Diana A. Dolciotti C. Del Carratore R. Bongioanni P. Blood Analytes as biomarkers of mechanisms involved in Alzheimer’s disease progression. Int. J. Mol. Sci. 2022 23 21 13289 10.3390/ijms232113289 36362077
    [Google Scholar]
  27. Gomes K.B. Pereira R.G. Braga A.A. Guimarães H.C. Resende E.P.F. Teixeira A.L. Barbosa M.T. Junior W.M. Carvalho M.G. Caramelli P. Machine learning-based routine laboratory tests predict one-year cognitive and functional decline in a population aged 75+ years. Brain Sci. 2023 13 4 690 10.3390/brainsci13040690 37190655
    [Google Scholar]
  28. Kononenko I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001 23 1 89 109 10.1016/S0933‑3657(01)00077‑X 11470218
    [Google Scholar]
  29. Zhang F. Li Z. Zhang B. Du H. Wang B. Zhang X. Multi-modal deep learning model for auxiliary diagnosis of Alzheimer’s disease. Neurocomputing 2019 361 185 195 10.1016/j.neucom.2019.04.093
    [Google Scholar]
  30. Yu K. Tan L. Lin L. Cheng X. Yi Z. Sato T. Deep-learning-empowered breast cancer auxiliary diagnosis for 5GB remote E-health. IEEE Wirel. Commun. 2021 28 3 54 61 10.1109/MWC.001.2000374
    [Google Scholar]
  31. Inoue M. Suzuki H. Meno K. Liu S. Korenaga T. Uchida K. Identification of plasma proteins as biomarkers for mild cognitive impairment and Alzheimer’s disease using liquid chromatography–tandem mass spectrometry. Int. J. Mol. Sci. 2023 24 17 13064 10.3390/ijms241713064 37685872
    [Google Scholar]
  32. Falahati F. Westman E. Simmons A. Multivariate data analysis and machine learning in Alzheimer’s disease with a focus on structural magnetic resonance imaging. J. Alzheimers Dis. 2014 41 3 685 708 10.3233/JAD‑131928 24718104
    [Google Scholar]
  33. Tanveer M. Richhariya B. Khan R.U. Rashid A.H. Khanna P. Prasad M. Lin C.T. Machine learning techniques for the diagnosis of Alzheimer’s disease: A review. ACM Trans. Multimed. Comput. Commun. Appl. 2020 16 1s 1 35 [TOMM]. 10.1145/3344998
    [Google Scholar]
  34. Sexton C. Solis M. Aharon-Peretz J. Alexopoulos P. Apostolova L.G. Bayen E. Birkenhager B. Cappa S. Constantinidou F. Fortea J. Gerritsen D.L. Hassanin H.I. Ibanez A. Ioannidis P. Karageorgiou E. Korczyn A. Leroi I. Lichtwarck B. Logroscino G. Lynch C. Mecocci P. Molinuevo J.L. Papatriantafyllou J. Papegeorgiou S. Politis A. Raman R. Ritchie K. Sanchez-Juan P. Sano M. Scarmeas N. Spiru L. Stathi A. Tsolaki M. Yener G. Zaganas I. Zygouris S. Carrillo M. Alzheimer’s disease research progress in the Mediterranean region: The Alzheimer’s Association International Conference Satellite Symposium. Alzheimers Dement. 2022 18 10 1957 1968 10.1002/alz.12588 35184367
    [Google Scholar]
  35. Gantini T. Langi A.Z. Artificial intelligence for healty aging: A literature review. 2023 10.1109/ICISS59129.2023.10291625
    [Google Scholar]
  36. Lorenzon G. Brain heterogeneity within aging and cognitive impairment: Implications for precision medicine and prevention. Thesis: Karolinska Institutet 2024
    [Google Scholar]
  37. Sriman B. Vigneshkumar M. Kumar K.D. Praveenkumar J. Suganya K. Predictive precision harnessing AI for early Alzheimer’s detection. Deep Generative Models for Integrative Analysis of Alzheimer’s Biomarkers. IGI Global 2025 215 240
    [Google Scholar]
  38. Kirimtat A. Krejcar O. Maresova P. Selamat A. Kuca K. Advancements in high-performance computing in early diagnosis of Alzheimer’s disease: A systematic review. IEEE Access 2024 12 156492 156504 10.1109/ACCESS.2024.3484928
    [Google Scholar]
  39. Chamakuri R. Janapana H. A systematic review on recent methods on deep learning for automatic detection of Alzheimer’s disease. Medicine in Novel Technology and Devices 2024 100343
    [Google Scholar]
  40. International statistical classification of diseases and related health problems: Alphabetical index. 2004 Available from: https://www.cdc.gov/nchs/nvss/manuals/2022/2e_volume3_2022.htm
  41. Wan X. Wang W. Liu J. Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med. Res. Methodol. 2014 14 1 135 10.1186/1471‑2288‑14‑135 25524443
    [Google Scholar]
  42. Sharaff A. Gupta H. Extra-tree classifier with metaheuristics approach for email classification. Advances in Computer Communication and Computational Sciences. Springer, Singapore, 22 May 2019, pp. 189–197 10.1007/978‑981‑13‑6861‑5_17
    [Google Scholar]
  43. Rigatti S.J. Random Forest. J. Insur. Med. 2017 47 1 31 39 10.17849/insm‑47‑01‑31‑39.1 28836909
    [Google Scholar]
  44. Friedman J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002 38 4 367 378 10.1016/S0167‑9473(01)00065‑2
    [Google Scholar]
  45. Bentéjac C. Csörgő A. Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021 54 3 1937 1967 10.1007/s10462‑020‑09896‑5
    [Google Scholar]
  46. Feng D.C. Liu Z.T. Wang X.D. Chen Y. Chang J-Q. Wei D-F. Jiang Z-M. Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach. Constr. Build. Mater. 2020 230 117000 10.1016/j.conbuildmat.2019.117000
    [Google Scholar]
  47. Wright RE Logistic regression. In: Reading and understanding multivariate statistics American Psychological Association 1995 217 244
    [Google Scholar]
  48. Balakrishnama S Ganapathiraju A Linear discriminant analysis-a brief tutorial. ISIP 1998 18 1998 1 8
    [Google Scholar]
  49. Hearst M.A. Dumais S.T. Osuna E. Platt J. Scholkopf B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998 13 4 18 28 10.1109/5254.708428
    [Google Scholar]
  50. Suthaharan S Suthaharan S. Support vector machine. In: Machine Learning Models and Algorithms for Big Data Classification Springer Boston, MA 2016 207 235 10.1007/978‑1‑4899‑7641‑3_9
    [Google Scholar]
  51. Ontivero-Ortega M. Lage-Castellanos A. Valente G. Goebel R. Valdes-Sosa M. Fast Gaussian Naïve Bayes for searchlight classification analysis. Neuroimage 2017 163 471 479 10.1016/j.neuroimage.2017.09.001 28877514
    [Google Scholar]
  52. Pedregosa F Varoquaux G Gramfort A Scikit-learn: Machine learning in Python. JMLR 2011 12 2825 2830
    [Google Scholar]
  53. Branco P. Torgo L. Ribeiro R.P. A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. 2017 49 2 1 50 [CSUR]. 10.1145/2907070
    [Google Scholar]
  54. Haixiang G. Yijing L. Shang J. Mingyun G. Yuanyue H. Bing G. Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 2017 73 220 239 10.1016/j.eswa.2016.12.035
    [Google Scholar]
  55. Sagi O. Rokach L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018 8 4 e1249 10.1002/widm.1249
    [Google Scholar]
  56. Dong X. Yu Z. Cao W. Shi Y. Ma Q. A survey on ensemble learning. Front. Comput. Sci. 2020 14 2 241 258 10.1007/s11704‑019‑8208‑z
    [Google Scholar]
  57. Meyer H. Reudenbach C. Hengl T. Katurji M. Nauss T. Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environ. Model. Softw. 2018 101 1 9 10.1016/j.envsoft.2017.12.001
    [Google Scholar]
  58. Kamalov F. Elnaffar S. Cherukuri A. Jonnalagadda A. Forward feature selection: Empirical analysis. J Intell Syst Internet Things. 2024 11 1 44 54
    [Google Scholar]
  59. He S. Guo F. Zou Q. MRMD2. 0: A python tool for machine learning with feature ranking and reduction. Curr. Bioinform. 2020 15 10 1213 1221 10.2174/2212392XMTA2bMjko1
    [Google Scholar]
  60. Shah C. Du Q. Xu Y. Enhanced TabNet: Attentive interpretable tabular learning for hyperspectral image classification. Remote Sens. 2022 14 3 716 10.3390/rs14030716
    [Google Scholar]
  61. Arik S.Ö. Pfister T. Tabnet: Attentive interpretable tabular learning. Proc. AAAI Conf. Artif. 2021 35 8 6679 6687 10.1609/aaai.v35i8.16826
    [Google Scholar]
  62. Kellett K.A.B. Williams J. Vardy E.R.L.C. Smith A.D. Hooper N.M. Plasma alkaline phosphatase is elevated in Alzheimer’s disease and inversely correlates with cognitive function. Int. J. Mol. Epidemiol. Genet. 2011 2 2 114 121 21686125
    [Google Scholar]
  63. Vardy E.R.L.C. Kellett K.A.B. Cocklin S.L. Hooper N.M. Alkaline phosphatase is increased in both brain and plasma in Alzheimer’s disease. Neurodegener. Dis. 2012 9 1 31 37 10.1159/000329722 22024719
    [Google Scholar]
  64. Tao X. Yin Y. Zhang Y. Yang C. Wu S. Tang W. Li C. Song T. He J. Alkaline phosphatase is associated with vascular depression in patients with severe white matter hyperintensities. Front. Neurosci. 2024 18 1477867 10.3389/fnins.2024.1477867 39654644
    [Google Scholar]
  65. Xu J. Begley P. Church S.J. Patassini S. Hollywood K.A. Jüllig M. Curtis M.A. Waldvogel H.J. Faull R.L.M. Unwin R.D. Cooper G.J.S. Graded perturbations of metabolism in multiple regions of human brain in Alzheimer’s disease: Snapshot of a pervasive metabolic disorder. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 6 1084 1092 10.1016/j.bbadis.2016.03.001 26957286
    [Google Scholar]
  66. Roberts BR Doecke JD Rembach A Rubidium and potassium levels are altered in Alzheimer's disease brain and blood but not in cerebrospinal fluid. Acta Neuropathol Commun 2016 4 1 10.1186/s40478‑016‑0390‑8 27842602
    [Google Scholar]
  67. Owsianowska J. Kamińska M.S. Bosiacki M. Chlubek D. Karakiewicz B. Jurczak A. Stanisławska M. Barczak K. Grochans E. Depression, changes in peripheral blood cell count, and changes in selected biochemical parameters related to lead concentration in whole blood (Pb-B) of women in the menopausal period. J. Trace Elem. Med. Biol. 2020 61 126501 10.1016/j.jtemb.2020.126501 32289550
    [Google Scholar]
  68. Contaldi E. Magistrelli L. Cosentino M. Marino F. Comi C. Lymphocyte count and neutrophil-to-lymphocyte ratio are associated with mild cognitive impairment in Parkinson’s disease: A single-center longitudinal study. J. Clin. Med. 2022 11 19 5543 10.3390/jcm11195543 36233411
    [Google Scholar]
  69. Tang A.S. Rankin K.P. Cerono G. Leveraging electronic health records and knowledge networks for Alzheimer’s disease prediction and sex-specific biological insights. Nat Aging 2024 4 3 379 395 10.1038/s43587‑024‑00573‑8 38383858
    [Google Scholar]
  70. Hoops S. Nazem S. Siderowf A.D. Duda J.E. Xie S.X. Stern M.B. Weintraub D. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology 2009 73 21 1738 1745 10.1212/WNL.0b013e3181c34b47 19933974
    [Google Scholar]
  71. Cockrell JR Folstein MF Mini-mental state examination. Psychopharmacol Bull 2002 24 4 689 692 3249771
    [Google Scholar]
  72. Zetterberg H. Wahlund L.O. Blennow K. Cerebrospinal fluid markers for prediction of Alzheimer’s disease. Neurosci. Lett. 2003 352 1 67 69 10.1016/j.neulet.2003.08.011 14615052
    [Google Scholar]
  73. Iqbal K. Liu F. Gong C.X. Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr. Alzheimer Res. 2010 7 8 656 664 10.2174/156720510793611592 20678074
    [Google Scholar]
  74. Fossati S. Ramos Cejudo J. Debure L. Pirraglia E. Sone J.Y. Li Y. Chen J. Butler T. Zetterberg H. Blennow K. de Leon M.J. Plasma tau complements CSF tau and P‐tau in the diagnosis of Alzheimer’s disease. Alzheimers Dement. 2019 11 1 483 492 10.1016/j.dadm.2019.05.001 31334328
    [Google Scholar]
  75. Pinto T.C.C. Machado L. Bulgacov T.M. Rodrigues-Júnior A.L. Costa M.L.G. Ximenes R.C.C. Sougey E.B. Is the montreal cognitive assessment (MoCA) screening superior to the mini-mental state examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly? Int. Psychogeriatr. 2019 31 4 491 504 10.1017/S1041610218001370 30426911
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936367942250706092947
Loading
/content/journals/cbio/10.2174/0115748936367942250706092947
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test