Skip to content
2000
image of Attention Graphical Neural Networks-based Single-cell Multi-omics Fusion Analysis of Chromatin Accessibility and Transcriptome Characterization in Alzheimer's Disease

Abstract

Introduction

Single-cell multi-omics technologies provide a comprehensive view of cellular states and transcriptional regulatory mechanisms by integrating diverse omics data. However, their complexity and heterogeneity present significant analytical challenges, particularly in understanding neurodegenerative disorders such as Alzheimer's disease (AD), an irreversible and progressive condition.

Methods

This study introduces the Multi-Omics Attention Graphical Convolutional Networks (MOAGCN), a novel multilayer deep learning model that addresses the heterogeneity in single-cell multi-omics data to enhance the analysis of multi-omics datasets and uncover potential mechanisms underlying AD. MOAGCN combines Graph Convolutional Networks (GCNs) and Graph Attention Networks (GATs) to simultaneously capture local cellular connectivity and dynamically weight cell-to-cell interactions. The model was applied to AD-related single-cell RNA-seq and ATAC-seq datasets to identify significant gene expression and epigenetic alterations. It was further validated on datasets including DNA methylation, mRNA, and miRNA from other diseases. The model's performance was compared with conventional methods using metrics such as AUC, accuracy, and F1 scores.

Results

MOAGCN effectively revealed key gene regulatory and protein interaction networks associated with AD, identifying significant changes in gene expression and epigenetic markers. In comparative validation across multiple datasets, MOAGCN outperformed traditional approaches in feature extraction and classification, achieving higher AUC, accuracy, and F1 scores. These results demonstrate its robustness in minimizing false positives and negatives while accurately identifying relevant features.

Discussion

By testing in the classification of cell types and disease samples, MOAGCN achieved remarkable results, showing that its performance outperformed eight leading algorithms in multi-omics data classification tasks. Further analysis of MOAGCN's accuracy revealed a 95% confidence interval for its performance, reinforcing the model's robustness and stability across different datasets.

Conclusion

MOAGCN presents a robust and adaptable framework for integrating single-cell multi-omics data, addressing the challenges of complexity and heterogeneity. Its application to AD datasets highlights its potential to uncover regulatory mechanisms and bio-signals, advancing our understanding of complex diseases. This innovative approach holds promise for broad applications in multi-omics data analysis, particularly in elucidating mechanisms underlying neurodegenerative disorders.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936367139250801163310
2025-08-28
2025-12-30
Loading full text...

Full text loading...

References

  1. Yu M. Nie Y. Yang J. Integrative multi-omic profiling of adult mouse brain endothelial cells and potential implications in Alzheimer’s disease. Cell Rep. 2023 42 11 113392 37925638
    [Google Scholar]
  2. Zhang J. Sun X. Jia X. Integrative multi‐omics analysis reveals the critical role of the PBXIP1 gene in Alzheimer’s disease. Aging Cell 2024 23 2 e14044 10.1111/acel.14044 37984333
    [Google Scholar]
  3. Hardy J.A. Higgins G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992 256 5054 184 185 10.1126/science.1566067 1566067
    [Google Scholar]
  4. Wang Y. Mandelkow E. Tau in physiology and pathology. Nat. Rev. Neurosci. 2016 17 1 22 35 10.1038/nrn.2015.1 26631930
    [Google Scholar]
  5. Scheff S.W. Price D.A. Schmitt F.A. Scheff M.A. Mufson E.J. Synaptic loss in the inferior temporal gyrus in mild cognitive impairment and Alzheimer’s disease. J. Alzheimers Dis. 2011 24 3 547 557 10.3233/JAD‑2011‑101782 21297265
    [Google Scholar]
  6. De Strooper B. Karran E. The cellular phase of Alzheimer’s disease. Cell 2016 164 4 603 615 10.1016/j.cell.2015.12.056 26871627
    [Google Scholar]
  7. Min E.J. Long Q. Sparse multiple co-Inertia analysis with application to integrative analysis of multi -Omics data. BMC Bioinformatics 2020 21 1 141 10.1186/s12859‑020‑3455‑4 32293260
    [Google Scholar]
  8. Stuart T. Satija R. Integrative single-cell analysis. Nat. Rev. Genet. 2019 20 5 257 272 10.1038/s41576‑019‑0093‑7 30696980
    [Google Scholar]
  9. Jiang X. Wang H. Chen Y. MNN: A universal and efficient inference engine. arXiv:200212418 2020 2 1 13
    [Google Scholar]
  10. Chen L Xu J Li SC Deep MF DeepMF: deciphering the latent patterns in omics profiles with a deep learning method. BMC Bioinformatics 2019 20 S23 648.(Suppl. 23) 10.1186/s12859‑019‑3291‑6 31881818
    [Google Scholar]
  11. Barkas N. Petukhov V. Nikolaeva D. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 2019 16 8 695 698 10.1038/s41592‑019‑0466‑z 31308548
    [Google Scholar]
  12. Cao K. Hong Y. Wan L. Manifold alignment for heterogeneous single-cell multi-omics data integration using Pamona. Bioinformatics 2021 38 1 211 219 10.1093/bioinformatics/btab594 34398192
    [Google Scholar]
  13. Yuan Y. Bar-Joseph Z. GCNG: Graph convolutional networks for inferring gene interaction from spatial transcriptomics data. Genome Biol. 2020 21 1 300 10.1186/s13059‑020‑02214‑w 33303016
    [Google Scholar]
  14. Corces M.R. Shcherbina A. Kundu S. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 2020 52 11 1158 1168 10.1038/s41588‑020‑00721‑x 33106633
    [Google Scholar]
  15. Qu Z. Yao T. Liu X. Wang G. A graph convolutional network based on univariate neurodegeneration biomarker for alzheimer’s disease diagnosis. IEEE J. Transl. Eng. Health Med. 2023 11 405 416 10.1109/JTEHM.2023.3285723 37492469
    [Google Scholar]
  16. Johnson E.C.B. Dammer E.B. Duong D.M. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat. Med. 2020 26 5 769 780 10.1038/s41591‑020‑0815‑6 32284590
    [Google Scholar]
  17. Morabito S. Miyoshi E. Michael N. Single-nucleus chromatin accessibility and transcriptomic characterization of Alzheimer’s disease. Nat. Genet. 2021 53 8 1143 1155 10.1038/s41588‑021‑00894‑z 34239132
    [Google Scholar]
  18. Argelaguet R. Arnol D. Bredikhin D. MOFA+: A statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biol. 2020 21 1 111 10.1186/s13059‑020‑02015‑1 32393329
    [Google Scholar]
  19. Zhang L. Zhang S. Learning common and specific patterns from data of multiple interrelated biological scenarios with matrix factorization. Nucleic Acids Res. 2019 47 13 6606 6617 10.1093/nar/gkz488 31175825
    [Google Scholar]
  20. Hao Y. Stuart T. Kowalski M.H. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat. Biotechnol. 2024 42 2 293 304 10.1038/s41587‑023‑01767‑y 37231261
    [Google Scholar]
  21. Peng T. Chen G.M. Tan K. GLUER: Integrative analysis of single-cell omics and imaging data by deep neural network. BioRxiv 2021 2021.01 10.1101/2021.01.25.427845
    [Google Scholar]
  22. Gao H. Zhang B. Liu L. Li S. Gao X. Yu B. A universal framework for single-cell multi-omics data integration with graph convolutional networks. Brief. Bioinform. 2023 24 3 bbad081 10.1093/bib/bbad081 36929841
    [Google Scholar]
  23. de Kanter J.K. Lijnzaad P. Candelli T. Margaritis T. Holstege F.C.P. CHETAH: A selective, hierarchical cell type identification method for single-cell RNA sequencing. Nucleic Acids Res. 2019 47 16 e95 e5 10.1093/nar/gkz543 31226206
    [Google Scholar]
  24. Shao X. Yang H. Zhuang X. scDeepSort: A pre-trained cell-type annotation method for single-cell transcriptomics using deep learning with a weighted graph neural network. Nucleic Acids Res. 2021 49 21 e122 e2 10.1093/nar/gkab775 34500471
    [Google Scholar]
  25. Mathys H. Davila-Velderrain J. Peng Z. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019 570 7761 332 337 10.1038/s41586‑019‑1195‑2 31042697
    [Google Scholar]
  26. Zhou Y. Song W.M. Andhey P.S. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 2020 26 1 131 142 10.1038/s41591‑019‑0695‑9 31932797
    [Google Scholar]
  27. Lake B.B. Ai R. Kaeser G.E. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016 352 6293 1586 1590 10.1126/science.aaf1204 27339989
    [Google Scholar]
  28. Welch J.D. Kozareva V. Ferreira A. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 2019 177 7 1873 1887 10.1016/j.cell.2019.05.006 31178122
    [Google Scholar]
  29. Leng K. Li E. Eser R. Molecular characterization of selectively vulnerable neurons in Alzheimer’s disease. Nat. Neurosci. 2021 24 2 276 287 10.1038/s41593‑020‑00764‑7 33432193
    [Google Scholar]
  30. Papalexi E. Satija R. Single-cell RNA sequencing to explore immune cell heterogeneity. Nat. Rev. Immunol. 2018 18 1 35 45 10.1038/nri.2017.76 28787399
    [Google Scholar]
  31. Trapnell C. Defining cell types and states with single-cell genomics. Genome Res. 2015 25 10 1491 1498 10.1101/gr.190595.115 26430159
    [Google Scholar]
  32. Argelaguet R. Clark S.J. Mohammed H. Multi-omics profiling of mouse gastrulation at single-cell resolution. Nature 2019 576 7787 487 491 10.1038/s41586‑019‑1825‑8 31827285
    [Google Scholar]
  33. Sun Y.V. Hu Y.J. Integrative analysis of multi-omics data for discovery and functional studies of complex human diseases. Adv. Genet. 2016 93 147 190 10.1016/bs.adgen.2015.11.004 26915271
    [Google Scholar]
  34. Subramanian I. Verma S. Kumar S. Jere A. Anamika K. Multi-omics data integration, interpretation, and its application. Bioinform. Biol. Insights 2020 14 1177932219899051 32076369
    [Google Scholar]
  35. Xu W. Liu W. Huang X. Yang J. Qiu S. Multi-modal self-paced learning for image classification. Neurocomputing 2018 309 134 144 10.1016/j.neucom.2018.04.075
    [Google Scholar]
  36. Tran H.T.N. Ang K.S. Chevrier M. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020 21 1 12 10.1186/s13059‑019‑1850‑9 31948481
    [Google Scholar]
  37. Kapoor S. Narayanan A. Leakage and the reproducibility crisis in machine-learning-based science. Patterns 2023 4 9 100804 10.1016/j.patter.2023.100804 37720327
    [Google Scholar]
  38. Stark SG Ficek J Locatello F SCIM: Universal single-cell matching with unpaired feature sets. Bioinformatics 2020 36 i919 27 Suppl. 2 10.1093/bioinformatics/btaa843 33381818
    [Google Scholar]
  39. Wang X Gao H Qi R. scBKAP: A clustering model for single-cell RNA-Seq data based on bisecting K-means. IEEE/ACM Trans Comput Biol Bioinform 2023 20 3 2007 15 10.1109/TCBB.2022.3230098 37015596
    [Google Scholar]
  40. Yu B. Chen C. Qi R. scGMAI: A Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder. Brief. Bioinform. 2021 22 4 bbaa316 10.1093/bib/bbaa316 33300547
    [Google Scholar]
  41. Zhang Y. Qian L. Liu Y. Liu Y. Yu W. Zhao Y. CircRNA-ceRNA network revealing the potential regulatory roles of circRNA in Alzheimer’s disease involved the cGMP-PKG signal pathway. Front. Mol. Neurosci. 2021 14 665788 10.3389/fnmol.2021.665788 34093124
    [Google Scholar]
  42. Tiwari S. Atluri V. Kaushik A. Yndart A. Nair M. Alzheimer’s disease: Pathogenesis, diagnostics, and therapeutics. Int. J. Nanomedicine 2019 14 5541 5554 10.2147/IJN.S200490 31410002
    [Google Scholar]
  43. Hansen D.V. Hanson J.E. Sheng M. Microglia in Alzheimer’s disease. J. Cell Biol. 2018 217 2 459 472 10.1083/jcb.201709069 29196460
    [Google Scholar]
  44. Zhang F. Hu W. Liu Y. GCMM: Graph convolution network based on multimodal attention mechanism for drug repurposing. BMC Bioinformatics 2022 23 1 372 10.1186/s12859‑022‑04911‑8 36100897
    [Google Scholar]
  45. Luecken M.D. Theis F.J. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol. Syst. Biol. 2019 15 6 e8746 10.15252/msb.20188746 31217225
    [Google Scholar]
  46. Hafemeister C. Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019 20 1 296 10.1186/s13059‑019‑1874‑1 31870423
    [Google Scholar]
  47. Cusanovich D.A. Hill A.J. Aghamirzaie D. A single-cell atlas of in vivo mammalian chromatin accessibility. Cell 2018 174 5 1309 1324 10.1016/j.cell.2018.06.052 30078704
    [Google Scholar]
  48. Ranstam J. Cook J.A. LASSO regression. Br. J. Surg. 2018 105 10 1348 8 10.1002/bjs.10895
    [Google Scholar]
  49. Chen T. Guestrin C. XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining San Francisco, California, USA 2016 785 794 10.1145/2939672.2939785
    [Google Scholar]
  50. Li X. Ma J. Leng L. MoGCN: A multi-omics integration method based on graph convolutional network for cancer subtype analysis. Front. Genet. 2022 13 806842 10.3389/fgene.2022.806842 35186034
    [Google Scholar]
  51. Nativio R. Lan Y. Donahue G. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat. Genet. 2020 52 10 1024 1035 10.1038/s41588‑020‑0696‑0 32989324
    [Google Scholar]
  52. Zhang B. Gaiteri C. Bodea L.G. Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell 2013 153 3 707 720 10.1016/j.cell.2013.03.030 23622250
    [Google Scholar]
  53. De Jager P.L. Srivastava G. Lunnon K. Alzheimer’s disease: Early alterations in brain DNA methylation at ANK1, BIN1, RHBDF2 and other loci. Nat. Neurosci. 2014 17 9 1156 1163 10.1038/nn.3786 25129075
    [Google Scholar]
  54. Selkoe D.J. Alzheimer’s disease is a synaptic failure. Science 2002 298 5594 789 791 10.1126/science.1074069 12399581
    [Google Scholar]
  55. Koffie R.M. Meyer-Luehmann M. Hashimoto T. Oligomeric amyloid β associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA 2009 106 10 4012 4017 10.1073/pnas.0811698106 19228947
    [Google Scholar]
  56. Heneka M.T. Carson M.J. Khoury J.E. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015 14 4 388 405 10.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  57. Cummings J. Lee G. Ritter A. Sabbagh M. Zhong K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. 2019 5 1 272 293 10.1016/j.trci.2019.05.008 31334330
    [Google Scholar]
  58. Hampel H. Hardy J. Blennow K. The amyloid-β pathway in Alzheimer’s disease. Mol. Psychiatry 2021 26 10 5481 5503 10.1038/s41380‑021‑01249‑0 34456336
    [Google Scholar]
  59. Bucak S.S. Gunsel B. Incremental subspace learning via non-negative matrix factorization. Pattern Recognit. 2009 42 5 788 797 10.1016/j.patcog.2008.09.002
    [Google Scholar]
  60. Smith A.M. Davey K. Tsartsalis S. Diverse human astrocyte and microglial transcriptional responses to Alzheimer’s pathology. Acta Neuropathol. 2022 143 1 75 91 10.1007/s00401‑021‑02372‑6 34767070
    [Google Scholar]
  61. Pratapa A. Jalihal A.P. Law J.N. Bharadwaj A. Murali T.M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 2020 17 2 147 154 10.1038/s41592‑019‑0690‑6 31907445
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936367139250801163310
Loading
/content/journals/cbio/10.2174/0115748936367139250801163310
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test