Skip to content
2000
Volume 20, Issue 8
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Sequence alignment, pattern matching, and mining are important cornerstones in bioinformatics, and they include identifying genome structure, protein function, and biological metabolic regulatory network. However, because it helps speed up the dealing process, the parallel sequential pattern recognition method has gained attention as data volume has increased. This review summarizes the GPU-based sequence alignment, pattern matching, and mining with the tools and their applications in bioinformatics. After giving an overview of the background, this review first introduces the concept and database of sequence alignment, pattern matching, and mining. Then, the basic architecture and parallel computing principle of GPU are briefly described. Next, the design of GPU-based algorithms and optimization strategies in sequence alignment, pattern matching, and mining are listed in detail. By comparing and analyzing the existing research, the summarization of the advantages and challenges of GPU application in bioinformatics are given. Finally, the future research direction is prospected, including the further development of the algorithm combined with machine learning and deep learning.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936353476241230105816
2025-01-28
2025-10-26
Loading full text...

Full text loading...

References

  1. HsiehY.H. ChenM.S. Toward green computing: Striking the trade-off between memory usage and energy consumption of sequential pattern mining on GPU.2018 IEEE First International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)Laguna Hills, CA, USA, 26-28 September 2018, pp. 152-155.10.1109/AIKE.2018.00033
    [Google Scholar]
  2. AouarA. YahiaouiS. SadegL. Nouali-TaboudjematN. Beghdad BeyK. Distributed partial simulation for graph pattern matching.Comput. J.202467111012610.1093/comjnl/bxac161
    [Google Scholar]
  3. ParkS. HongJ. SongJ. KimH. KimY. LeeJ. Agatha: Fast and efficient GPU acceleration of guided sequence alignment for long read mapping.Proceedings of the 29th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel ProgrammingEdinburgh, United Kingdom, 2024, pp. 431–444.
    [Google Scholar]
  4. IslamM.A. AhmedC.F. AlamM.T. LeungC.K.S. Graph-based substructure pattern mining with edge-weight.Appl. Intell.20245453756378510.1007/s10489‑024‑05356‑7
    [Google Scholar]
  5. AjayS. PraveenV. VargheseK. An FPGA based accelerator of the bidirectional wavefront algorithm for pairwise sequence alignment.2023 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)Hyderabad, India, 19-22 November 2023, pp. 40-44.10.1109/APCCAS60141.2023.00021
    [Google Scholar]
  6. KaurK. ChakrabortyS. Kumar GuptaM. Accelerating Smith-Waterman algorithm for faster sequence alignment using graphical processing unit.J. Phys. Conf. Ser.20222161101202810.1088/1742‑6596/2161/1/012028
    [Google Scholar]
  7. PengW. LiuH. DaiW. YuN. WangJ. Predicting cancer drug response using parallel heterogeneous graph convolutional networks with neighborhood interactions.Bioinformatics202238194546455310.1093/bioinformatics/btac57435997568
    [Google Scholar]
  8. GrailuH. Compression of high-sampling-rate heart sound signals based on downsampling and pattern matching.Multimedia Tools Appl.202483120122610.1007/s11042‑023‑15714‑1
    [Google Scholar]
  9. ZhaoW. RaoY. ZhouJ. LuJ. DIML: Deep interpretable metric learning via structural matching.IEEE Trans. Pattern Anal. Mach. Intell.20244642518253210.1109/TPAMI.2023.333666838019629
    [Google Scholar]
  10. LeeS.E. YooH. ChungK. Pose pattern mining using transformer for motion classification.Appl. Intell.20245453841385810.1007/s10489‑024‑05325‑0
    [Google Scholar]
  11. Machorro-CanoI. Ríos-MéndezI.A. Palet-GuzmánJ.A. Rodríguez-MazahuaN. Rodríguez-MazahuaL. Alor-HernándezG. Olmedo-AguirreJ.O. Medical opinions analysis about the decrease of autopsies using emerging pattern mining.Data202391210.3390/data9010002
    [Google Scholar]
  12. JazayeriA. YangC.C. Frequent pattern mining in continuous-time temporal networks.IEEE Trans. Pattern Anal. Mach. Intell.202446130532110.1109/TPAMI.2023.332479937843999
    [Google Scholar]
  13. NgA. OdesileA. SiD. GPU accelerated ray tracing for the beta-barrel detection from three-dimensional cryo-EM maps.Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer ScienceSpringer, Cham, 13 July 2018, pp 217–226.10.1007/978‑3‑319‑94968‑0_20
    [Google Scholar]
  14. AhmedN. LévyJ. RenS. MushtaqH. BertelsK. Al-ArsZ. GASAL2: A GPU accelerated sequence alignment library for high-throughput NGS data.BMC Bioinformatics201920152010.1186/s12859‑019‑3086‑9
    [Google Scholar]
  15. SchultzD.W. XuB. On k-mismatch shortest unique substring queries using GPU.Bioinformatics Research and Applications. ISBRA 2018. Lecture Notes in Computer ScienceSpringer, Cham, 13 July 2018, pp 193–204.10.1007/978‑3‑319‑94968‑0_18
    [Google Scholar]
  16. VuL. AlaghbandG. A self-adaptive method for frequent pattern mining using a CPU-GPU hybrid model.Proceedings of the Symposium on High Performance ComputingAlexandria, Virginia, 12 April 2015, pp. 192–201.
    [Google Scholar]
  17. GuJ. LiuH. ZhouY. WangX. Deepprof: Performance analysis for deep learning applications via mining GPU execution patterns.CoRR2017
    [Google Scholar]
  18. LimónX. Guerra-HernándezA. Cruz-RamírezN. Acosta-MesaH.G. GrimaldoF. A windowing strategy for distributed data mining optimized through GPUs.Pattern Recognit. Lett.201793233010.1016/j.patrec.2016.11.006
    [Google Scholar]
  19. ReddyA.S. ReddyP.K. MondalA. PriyakumarU.D. Mining subgraph coverage patterns from graph transactions.Int. J. Data Sci. Anal.202213210512110.1007/s41060‑021‑00292‑y34873579
    [Google Scholar]
  20. PettiS. BhattacharyaN. RaoR. DauparasJ. ThomasN. ZhouJ. RushA.M. KooP. OvchinnikovS. End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman.Bioinform.2023391btac724
    [Google Scholar]
  21. HuL. ZouL. A GPU-based graph pattern mining system.Proceedings of the 31st ACM International Conference on Information \& Knowledge ManagementAtlanta, GA, USA, 17 October 2022, pp. 4867 - 4871.
    [Google Scholar]
  22. NaithaniA. JainV. RajpalT.S. MistryV. AI based goalkeeper for penalty shot prediction using RNN and pattern matching algorithm.2024 12th International Symposium on Digital Forensics and Security (ISDFS)San Antonio, TX, USA, 2024, pp. 1-7.10.1109/ISDFS60797.2024.10527307
    [Google Scholar]
  23. WangK. ZhangY. SongY. XuJ. ZhangS. TanJ. Deep pattern matching for energy consumption prediction of complex structures in ecological additive manufacturing.IEEE Trans. Industr. Inform.20242033510352010.1109/TII.2023.3281649
    [Google Scholar]
  24. SarkarA. RayK. ChowdhuryD. SahuK. KunduS. GhoshS. Time and space efficient optimal pairwise sequence alignment using GPU.TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON)Kochi, India, 17-20 October 2019, pp. 423-428.10.1109/TENCON.2019.8929482
    [Google Scholar]
  25. ZhangP. LiuH. WeiY. ZhaiY. TianQ. ZouQ. FMAlign2: A novel fast multiple nucleotide sequence alignment method for ultralong datasets.Bioinformatics2024401btae01410.1093/bioinformatics/btae01438200554
    [Google Scholar]
  26. SinghS. LeN.Q.K. WangC. VF-Pred: Predicting virulence factor using sequence alignment percentage and ensemble learning models.Comput. Biol. Med.202416810766210.1016/j.compbiomed.2023.10766237979206
    [Google Scholar]
  27. SanzV. PousaA. NaioufM. De GiustiA. Efficient pattern matching on CPU-GPU heterogeneous systems.In: Algorithms and Architectures for Parallel Processing.Springer202039140310.1007/978‑3‑030‑38991‑8_26
    [Google Scholar]
  28. AmirO. AmirA. FraenkelA. SarneD. On the practical power of automata in pattern matching.SN Comput. Sci.20245440010.1007/s42979‑024‑02679‑7
    [Google Scholar]
  29. LiL. LiuP. BuC. ZhangZ. WuX. Fuzzy ranking-based preference completion via graph pattern matching and rematching.IEEE Trans. Emerg. Top. Comput. Intell.2024822009202110.1109/TETCI.2024.3359096
    [Google Scholar]
  30. ZhengY. HanC. ZhangT. ZhangF. WangJ. A dependence graph pattern mining method for processor performance analysis.Perform. Eval.202416410240910.1016/j.peva.2024.102409
    [Google Scholar]
  31. GengsenH. Taspm: Targeted sequential pattern mining.ACM Trans. Knowl. Discov. Data2024185114118
    [Google Scholar]
  32. Cruz-GameroF.L. C’aceresJ.C.G. Optimization of BLAST seed indexing in the alignment of DNA sequences with GPU using CUDA.018 XLIV Latin American Computer Conference (CLEI)Sao Paulo, Brazil, 01-05 October 2018, pp. 527-532.10.1109/CLEI.2018.00069
    [Google Scholar]
  33. de OliveiraG.B. PedriniH. DiasZ. Fusion of BLAST and ensemble of classifiers for protein secondary structure prediction.2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)Porto de Galinhas, Brazil, 2020, pp. 308-315.10.1109/SIBGRAPI51738.2020.00049
    [Google Scholar]
  34. RiouxN. HuangX. OliveiraB.C.d.S. ZdancewicS. A bowtie for a beast: Overloading, eta expansion, and extensible data types in f▷◁.Proc. ACM Program. Lang.20237POPL515543
    [Google Scholar]
  35. LangaritaR. ArmejachA. IbáñezP. Alastruey-BenedéJ. MoretóM. Porting and optimizing BWA-MEM2 using the fujitsu A64FX processor.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232053139315310.1109/TCBB.2023.326451437018085
    [Google Scholar]
  36. VieiraI.H.P. BotelhoE.B. de Souza GomesT.J. KistR. CaceresR.A. ZanchiF.B. Visual dynamics: A WEB application for molecular dynamics simulation using GROMACS.BMC Bioinformatics202324110710.1186/s12859‑023‑05234‑y36949402
    [Google Scholar]
  37. JiangH. GanesanN. CUDAMPF: A multi-tiered parallel framework for accelerating protein sequence search in HMMER on CUDA-enabled GPU.BMC Bioinformatics201617110610.1186/s12859‑016‑0946‑426920848
    [Google Scholar]
  38. YamadaT. 7bgzf: Replacing samtools bgzip deflation for archiving and real-time compression.Comput. Biol. Chem.20208510720710.1016/j.compbiolchem.2020.10720732092548
    [Google Scholar]
  39. HügelJ. SaxU. MurphyS.N. EstiriH. tSPM+; A high-performance algorithm for mining transitive sequential patterns from clinical data.CoRR2023
    [Google Scholar]
  40. HryhorukC.C. LeungC.K. LiJ. NarineB.A. WedelF. Multi-level frequent pattern mining on pipeline incident data.In: Advanced Information Networking and Applications.SpringerCham202410.1007/978‑3‑031‑57853‑3_32
    [Google Scholar]
  41. MoritzP. NishiharaR. WangS. TumanovA. LiawR. LiangE. ElibolM. YangZ. PaulW. JordanM.I. StoicaI. Ray: A distributed framework for emerging AI applications.OSDI'18: Proceedings of the 13th USENIX conference on Operating Systems Design and ImplementationCarlsbad, CA, USA, 08 October 2018, pp. 561 - 577.
    [Google Scholar]
  42. PetrelliM. Parallel computing and scaling with dask.In: Machine Learning for Earth Sciences.SpringerCham202316117510.1007/978‑3‑031‑35114‑3_10
    [Google Scholar]
  43. KongX. ShenC. TangJ. Cuk-band: A CUDA-based multiple genomic sequence alignment on GPU.In: Advanced Intelligent Computing in Bioinformatics. ICIC 2024. Lecture Notes in Computer ScienceSpringerSingapore20248495
    [Google Scholar]
  44. TanenbaumA.S. van SteenM. Distributed systems - Principles and paradigms.2nd edPearson Education2007
    [Google Scholar]
  45. WangY. ChenZ. HanY. Accelerating the Smith-Waterman algorithm by GPU for high-throughput sequence alignment.MICML '23: Proceedings of the 2023 International Conference on Mathematics, Intelligent Computing and Machine LearningChengdu, China, 29 January 2024, pp. 77 - 84.10.1145/3638264.3638280
    [Google Scholar]
  46. LiuY. YuanH. ZhangQ. WangZ. XiongS. WenN. ZhangY. Multiple sequence alignment based on deep reinforcement learning with self-attention and positional encoding.Bioinformatics20233911btad63610.1093/bioinformatics/btad63637856335
    [Google Scholar]
  47. HungC.L. HsuT.H. WangH.H. LinC.Y. A GPU-based bit-parallel multiple pattern matching algorithm.2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS)HPCC/SmartCity/DSSExeter, UK, 28-30 June 2018, pp. 1219-1222.10.1109/HPCC/SmartCity/DSS.2018.00205
    [Google Scholar]
  48. YuanY. YeH. VedulaS. KazaW. TalatiN. Everest: GPU-accelerated system for mining temporal motifs.Proc. VLDB Endow202317216217410.14778/3626292.3626299
    [Google Scholar]
  49. HuL. ZouL. ÖzsuM.T. GAMMA: A graph pattern mining framework for large graphs on GPU.2023 IEEE 39th International Conference on Data Engineering (ICDE)Anaheim, CA, USA, 2023, pp. 273-286.10.1109/ICDE55515.2023.00028
    [Google Scholar]
  50. FerrazS. DiasV. TeixeiraC.H. TeodoroG. MeiraW. Efficient strategies for graph pattern mining algorithms on GPUs.2022 IEEE 34th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)2022, pp. 110-119.10.1109/SBAC‑PAD55451.2022.00022
    [Google Scholar]
  51. SoroushniaS. DaneshtalabM. PahikkalaT. PlosilaJ. Parallel implementation of fuzzified pattern matching algorithm on GPU.2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based ProcessingTurku, Finland, 2015, pp. 341-344.10.1109/PDP.2015.75
    [Google Scholar]
  52. Bani BakerQ. Al-HussienR.A. Al-AyyoubM. Accelerating multiple sequence alignments using parallel computing.Computation20241223210.3390/computation12020032
    [Google Scholar]
  53. ZhangT. CaiX. ChenL. YangZ. GaoY. CaoB. FanJ. Towards efficient simulation-based constrained temporal graph pattern matching.World Wide Web20242732210.1007/s11280‑024‑01259‑2
    [Google Scholar]
  54. Terra-NevesM. AmaralJ. LemosA. QuintinoR. ResendeP. AlegriaA. Sat-based algorithms for regular graph pattern matching.Proc. Conf. AAAI Artif. Intell.20243888136814510.1609/aaai.v38i8.28653
    [Google Scholar]
  55. SharmaA. MehtaD. WuB. Understanding high-performance subgraph pattern matching: A systems perspective.Proceedings of the 7th Joint Workshop on Graph Data Management Experiences \& Systems (GRADES) and Network Data Analytics (NDA)Santiago, AA, Chile, 09 June 2024, pp. 1-12.10.1145/3661304.3661897
    [Google Scholar]
  56. Zafarani-MoattarE. KangavariM.R. RahmaniA.M. A comprehensive study on frequent pattern mining and clustering categories for topic detection in Persian text stream.CoRR2024
    [Google Scholar]
  57. KadıoğluS. WangX. HosseininasabA. van HoeveW.J. Seq2Pat: Sequence‐to‐pattern generation to bridge pattern mining with machine learning.AI Mag.2023441546610.1002/aaai.12081
    [Google Scholar]
  58. ZhouJ. YuK.M. WuB.C. Parallel frequent patterns mining algorithm on GPU.SMC201043544010.1109/ICSMC.2010.5641778
    [Google Scholar]
  59. GuoF. LiS.C. WangL. P-binder: A system for the protein-protein binding sites identification.Bioinformatics Research and Applications. ISBRA 2012. Lecture Notes in Computer ScienceSpringerBerlin, Heidelberg.201212713810.1007/978‑3‑642‑30191‑9_13
    [Google Scholar]
  60. LiY. WangY. WangC. MaA. MaQ. LiuB. A weighted two-stage sequence alignment framework to identify motifs from ChIP-exo data.Patterns20245310092710.1016/j.patter.2024.10092738487805
    [Google Scholar]
  61. ZengG. ZhuJ. ZhangY. ChenG. YuanZ. WeiS. LiuL. A high-performance genomic accelerator for accurate sequence-to-graph alignment using dynamic programming algorithm.IEEE Trans. Parallel Distrib. Syst.202435223724910.1109/TPDS.2023.3325137
    [Google Scholar]
  62. WeiY. ZouQ. TangF. YuL. WMSA: A novel method for multiple sequence alignment of DNA sequences.Bioinformatics202238225019502510.1093/bioinformatics/btac65836179076
    [Google Scholar]
  63. YeungW. ZhouZ. LiS. KannanN. Alignment-free estimation of sequence conservation for identifying functional sites using protein sequence embeddings.Brief. Bioinform.2023241bbac59910.1093/bib/bbac59936631405
    [Google Scholar]
  64. ReddyB. FieldsR. Performance analysis of multiple sequence alignment tools.ACM202416717410.1145/3603287.3651216
    [Google Scholar]
  65. WaliaS. YeC. BeraA. LodhaviaD. TurakhiaY. TALCO: Tiling genome sequence alignment using convergence of traceback pointers.2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)Edinburgh, United Kingdom, 2024, pp. 91-107.10.1109/HPCA57654.2024.00044
    [Google Scholar]
  66. ShenC. LiuB. WilliamsK.P. WarnowT. EMMA: A new method for computing multiple sequence alignments given a constraint subset alignment.Algorithms Mol. Biol.20231812110.1186/s13015‑023‑00247‑x38062452
    [Google Scholar]
  67. Aguado-PuigQ. DoblasM. MatzorosC. EspinosaA. MoureJ.C. Marco-SolaS. MoretoM. WFA-GPU: Gap-affine pairwise read-alignment using GPUs.Bioinformatics20233912btad70110.1093/bioinformatics/btad70137975878
    [Google Scholar]
  68. DiabS. NassereldineA. AlserM. Gómez LunaJ. MutluO. El HajjI. A framework for high-throughput sequence alignment using real processing-in-memory systems.Bioinformatics2023395btad15510.1093/bioinformatics/btad15536971586
    [Google Scholar]
  69. VarsamisG.D. KarafyllidisI.G. GilkesK.M. ArranzU. Martin-CuevasR. CallejaG. DimitrakisP. KolovosP. SandaltzopoulosR. JessenH.C. WongJ. Quantum gate algorithm for reference-guided DNA sequence alignment.Comput. Biol. Chem.202310710795910.1016/j.compbiolchem.2023.10795937717360
    [Google Scholar]
  70. KhodjiH. ColletP. ThompsonJ.D. Jeannin-GirardonA. De-MISTED: Image-based classification of erroneous multiple sequence alignments using convolutional neural networks.Appl. Intell.20235315188061882010.1007/s10489‑022‑04390‑7
    [Google Scholar]
  71. ChenX. WangC. TangS. YuC. ZouQ. CMSA: A heterogeneous CPU/GPU computing system for multiple similar RNA/DNA sequence alignment.BMC Bioinformatics201718131510.1186/s12859‑017‑1725‑628646874
    [Google Scholar]
  72. CarrollT.C. OjiakuJ.T. WongP.W.H. Semiglobal sequence alignment with gaps using GPU.IEEE/ACM Trans. Comput. Biol. Bioinformatics20201762086209710.1109/TCBB.2019.291410531056513
    [Google Scholar]
  73. AljouieA. ZhongL. RoshanU. High scoring segment selection for pairwise whole genome sequence alignment with the maximum scoring subsequence and GPUs.Int. J. Comput. Biol. Drug Des.2020131718110.1504/IJCBDD.2020.105097
    [Google Scholar]
  74. AwanM.G. DeslippeJ. BulucA. SelvitopiO. HofmeyrS. OlikerL. YelickK. ADEPT: A domain independent sequence alignment strategy for gpu architectures.BMC Bioinformatics202021140610.1186/s12859‑020‑03720‑132933482
    [Google Scholar]
  75. ParkS. KimH. AhmadT. AhmedN. Al-ArsZ. HofsteeH.P. KimY. LeeJ. Maximizing data locality and workload balance for fast sequence alignment on GPUs.2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS)Lyon, France, 30 May 2022 - 03 June 2022, pp. 728-738.
    [Google Scholar]
  76. MüllerA. SchmidtB. MembarthR. LeißaR. HackS. AnySeq/GPU: A novel approach for faster sequence alignment on GPUs.Proceedings of the 36th ACM International Conference on SupercomputingVirtual Event, 28 June 2022, pp. 1–11.
    [Google Scholar]
  77. Perez-WohlfeilE. TrellesO. GuilN. Irregular alignment of arbitrarily long DNA sequences on GPU.J. Supercomput.20237988699872810.1007/s11227‑022‑05007‑z
    [Google Scholar]
  78. PeverelliF. Di TucciL. SantambrogioM.D. DingN. HofmeyrS. Bulu¸cA. OlikerL. YelickK. GPU accelerated partial order multiple sequence alignment for long reads self-correction.2020 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)New Orleans, LA, USA, 18-22 May 2020, pp. 1-9.10.1109/IPDPSW50202.2020.00039
    [Google Scholar]
  79. ZhangH. LiJ. Speeding up pattern matching in streaming time-series via block vector and multilevel lower bound.Neural Comput. Appl.20243673389340310.1007/s00521‑023‑09291‑5
    [Google Scholar]
  80. ZhukovaB. New space-time trade-offs for pattern matching with compressed indexes.FinlandUniversity of Helsinki2024
    [Google Scholar]
  81. AroraT. BalasubramanianV. StranieriA. MenonV.G. Modified early warning score (MEWS) visualization and pattern matching imputation in remote patient monitoring.IEEE Access202412747847479410.1109/ACCESS.2024.3396274
    [Google Scholar]
  82. SteinerT.A. Differentially private approximate pattern matching.arXiv preprint2023
    [Google Scholar]
  83. KociumakaT. NoglerJ. WellnitzP. On the communication complexity of approximate pattern matching.arXiv preprint202410.1145/3618260.3649604
    [Google Scholar]
  84. IbrahimO.A.S. HamedB.A. El-HafeezT.A. A new fast technique for pattern matching in biological sequences.J. Supercomput.202379136738810.1007/s11227‑022‑04673‑3
    [Google Scholar]
  85. HungC.L. LinC.Y. WuP.C. An efficient GPU-based multiple pattern matching algorithm for packet filtering.J. Signal Process. Syst. Signal Image Video Technol.2017862-334735810.1007/s11265‑016‑1139‑0
    [Google Scholar]
  86. MahmudP. RahmanA. Hasan TalukderK. An improved hashing approach for biological sequence to solve exact pattern matching problems.Appl. Comput. Intell. Soft Comput.20232023111610.1155/2023/3278505
    [Google Scholar]
  87. HamedB.A. IbrahimO.A.S. Abd El-HafeezT. Optimizing classification efficiency with machine learning techniques for pattern matching.J. Big Data202310112410.1186/s40537‑023‑00804‑6
    [Google Scholar]
  88. BayneE. FergusonR.I. SampsonA.T. OpenForensics: A digital forensics GPU pattern matching approach for the 21st century.Digit. Invest.201824S29S3710.1016/j.diin.2018.01.005
    [Google Scholar]
  89. SanzV. PousaA. NaioufM. De GiustiA. Accelerating pattern matching with CPU-GPU collaborative computing.In: Algorithms and Architectures for Parallel Processing. ICA3PP 2018. Lecture Notes in Computer ScienceSpringerCham201810.1007/978‑3‑030‑05051‑1_22
    [Google Scholar]
  90. SinnapoluG. AlawnehS. GPU accelerated implementation for sunday string pattern matching algorithm.IEEE International Conference on Electro/Information Technology (EIT)Rochester, MI, USA, 2018, pp. 0007-0011.10.1109/EIT.2018.8500261
    [Google Scholar]
  91. StylianopoulosC. KindströmS. AlmgrenM. LandsiedelO. PapatriantafilouM. Co-evaluation of pattern matching algorithms on IoT devices with embedded GPUs.ACSAC '19: Proceedings of the 35th Annual Computer Security Applications ConferenceSan Juan, Puerto Rico, USA, 09 December 2019, pp. 17 - 27.10.1145/3359789.3359811
    [Google Scholar]
  92. NunesL.S.N. BordimJ.L. ItoY. NakanoK. A rabin-karp implementation for handling multiple pattern-matching on the GPU.IEICE Trans. Inf. Syst.2020E103D2412242010.1587/transinf.2020PAP0002
    [Google Scholar]
  93. SadiqM.U. YousafM.M. Space-efficient computation of parallel approximate string matching.J. Supercomput.20237989093912610.1007/s11227‑022‑05038‑6
    [Google Scholar]
  94. WeiY. JiangP. STMatch: Accelerating graph pattern matching on GPU with stack-based loop optimizations.SC22: International Conference for High Performance Computing, Networking, Storage and Analysis,Dallas, TX, USA, 13-18 November 2022, pp. 1-13.
    [Google Scholar]
  95. DayarathneN. RagelR. Accelerating rabin karp on a graphics processing unit (GPU) using compute unified device architecture (CUDA).7th International Conference on Information and Automation for SustainabilityColombo, Sri Lanka, 22-24 December 2014, pp. 1-6.
    [Google Scholar]
  96. NagdaB.M. WhiteR.T. promSEMBLE: Hard pattern mining and ensemble learning for detecting DNA promoter sequences.IEEE/ACM Trans Comput Biol Bioinform.2024Jan-Feb21120821410.1109/TCBB.2023.3339597
    [Google Scholar]
  97. ZhuB. JiangY. GuM. DengY. A GPU acceleration framework for motif and discord based pattern mining.IEEE Trans. Parallel Distrib. Syst.20213281987200410.1109/TPDS.2021.3055765
    [Google Scholar]
  98. WuY.C. YehM.Y. KuoT.W. Fast frequent pattern mining without candidate generations on GPU by low latency memory allocation.2019 IEEE International Conference on Big Data (Big Data)Los Angeles, CA, USA, 2019, pp. 1407-1416.10.1109/BigData47090.2019.9006541
    [Google Scholar]
  99. GanW. LinJ.C.W. Fournier-VigerP. ChaoH.C. YuP.S. A survey of parallel sequential pattern mining.ACM Trans. Knowl. Discov. Data201913313410.1145/3314107
    [Google Scholar]
  100. ChenX. DathathriR. GillG. PingaliK. Pangolin: An efficient and flexible graph pattern mining system on CPU and GPU.arXiv2019
    [Google Scholar]
  101. JamshidiK. MahadasaR. VoraK. Peregrine: A pattern-aware graph mining system.Proceedings of the Fifteenth European Conference on Computer SystemsHeraklion, Greece, 17 April 2020, pp. 1 - 16.
    [Google Scholar]
  102. ChenX. Efficient and scalable graph pattern mining on GPUs.This paper is included in the Proceedings of the 16th USENIX Symposium on Operating Systems Design and Implementation.July 11–13, 2022 Carlsbad, CA, USA.
    [Google Scholar]
  103. FangW. JiangH. LuH. SunJ. WuX. LinJ.C.W. GPU-based efficient parallel heuristic algorithm for high-utility itemset mining in large transaction datasets.IEEE Trans. Knowl. Data Eng.20243665266710.1109/TKDE.2023.3290371
    [Google Scholar]
  104. FuC. WangZ. ZhaiY. A CPU-GPU data transfer optimization approach based on code migration and merging.2017 16th International Symposium on Distributed Computing and Applications to Business, Engineering and Science (DCABES)Anyang, China, 13-16 October 2017, pp. 23-26.10.1109/DCABES.2017.13
    [Google Scholar]
  105. MuthukrishnanH. NellansD.W. LustigD. FesslerJ.A. WenischT.F. Efficient multi-GPU shared memory via automatic optimization of fine-grained transfers.2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA)Valencia, Spain, 14-18 June 2021, pp. 139-152.10.1109/ISCA52012.2021.00020
    [Google Scholar]
  106. LubranoF. VercellinoC. VitaliG. VivianiP. SciontiA. TerzoO. Advanced resource allocation in the context of heterogeneous workflows management.WiDE '24: Proceedings of the 2nd Workshop on Workflows in Distributed EnvironmentsAthens, Greece, 22 April 2024, pp. 14 - 20.10.1145/3642978.3652835
    [Google Scholar]
  107. HungC.L. TangC.Y. Bioinformatics tools with deep learning based on GPU.2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Kansas City, MO, USA, 2017, pp. 1906-1908.10.1109/BIBM.2017.8217950
    [Google Scholar]
  108. PaengB. ParkI.B. ParkJ. Deep reinforcement learning for minimizing tardiness in parallel machine scheduling with sequence dependent family setups.IEEE Access2021910139010140110.1109/ACCESS.2021.3097254
    [Google Scholar]
  109. ShiC. SunY. SuiY. ChenY. WangH. ZhangY. oclCUB: An OpenCL parallel computing library for deep learning operators.CCF Trans. High Perform. Comput.20246331932910.1007/s42514‑024‑00181‑3
    [Google Scholar]
  110. JinZ. VetterJ.S. Understanding performance portability of bioinformatics applications in SYCL on an NVIDIA GPU.2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)Las Vegas, NV, USA, 06-08 December 2022, pp. 2190-2195.10.1109/BIBM55620.2022.9995222
    [Google Scholar]
  111. ChonK.W. KimC. GMiner++: Boosting GPU-based frequent itemset mining by reducing redundant computations.Expert Syst. Appl.202425025012392810.1016/j.eswa.2024.123928
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936353476241230105816
Loading
/content/journals/cbio/10.2174/0115748936353476241230105816
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test