Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

N6-Methyladenosine (m6A) plays a crucial role in determining the fate of RNA after transcription. Understanding the downstream functions of individual m6A sites is of critical interest in epitranscriptomics. In published studies, two main approaches have been used to decipher the specific impact of m6A sites on gene expression and disease/traits: the m6A quantitative trait loci (m6A-QTL) and mutation prediction by Machine Learning (ML) models. However, earlier works still lack independent validation for the performance of ML-based methods.

Methods

In this study, we use m6A-QTL as ground truth to evaluate the outcomes of mutation models. We benchmark both the newly trained machine learning models using genomic or sequence features and the existing model inference results published in mutation-dependent databases against m6A-QTL.

Results

We found that the consistency between mutation and m6A-QTL is weak, regardless of the ML algorithms and predictive features used. This trend was also similar across multiple published databases based on mutation, including RMDisease2, m6AVar, and RMVar.

Conclusion

These results emphasize the importance of critical empirical evaluations for ML models in future SNP-m6A association studies and suggest the need for more high-quality m6A-QTL experiments to guide model development.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936332078240826105023
2024-09-24
2025-09-08
Loading full text...

Full text loading...

/deliver/fulltext/cbio/20/7/CBIO-20-7-04.html?itemId=/content/journals/cbio/10.2174/0115748936332078240826105023&mimeType=html&fmt=ahah

References

  1. HuangW. ChenT.Q. FangK. ZengZ.C. YeH. ChenY.Q. N6-methyladenosine methyltransferases: functions, regulation, and clinical potential.J. Hematol. Oncol.202114111710.1186/s13045‑021‑01129‑8 34315512
    [Google Scholar]
  2. LuoJ. XuT. SunK. N6-methyladenosine RNA modification in inflammation: roles, mechanisms, and applications.Front. Cell Dev. Biol.2021967071110.3389/fcell.2021.670711 34150765
    [Google Scholar]
  3. JiangX. LiuB. NieZ. The role of m6A modification in the biological functions and diseases.Signal Transduct. Target. Ther.2021617410.1038/s41392‑020‑00450‑x 33611339
    [Google Scholar]
  4. WangT. KongS. TaoM. JuS. The potential role of RNA N6-methyladenosine in Cancer progression.Mol. Cancer20201918810.1186/s12943‑020‑01204‑7 32398132
    [Google Scholar]
  5. ZhangN. DingC. ZuoY. PengY. ZuoL. N6-methyladenosine and neurological diseases.Mol. Neurobiol.20225931925193710.1007/s12035‑022‑02739‑0 35032318
    [Google Scholar]
  6. HeL. LiH. WuA. PengY. ShuG. YinG. Functions of N6-methyladenosine and its role in cancer.Mol. Cancer201918117610.1186/s12943‑019‑1109‑9 31801551
    [Google Scholar]
  7. Azizzadeh-RoodpishS. GarzonM.H. MainaliS. Classifying single nucleotide polymorphisms in humans.Mol. Genet. Genomics202129651161117310.1007/s00438‑021‑01805‑x 34259913
    [Google Scholar]
  8. ShastryB.S. SNPs: impact on gene function and phenotype. Single nucleotide polymorphisms.Methods Protoc.20092009322
    [Google Scholar]
  9. LiangZ. ZhangL. ChenH. HuangD. SongB. m6A-Maize: Weakly supervised prediction of m6A-carrying transcripts and m6A-affecting mutations in maize (Zea mays).Methods202220322623210.1016/j.ymeth.2021.11.010 34843978
    [Google Scholar]
  10. XiongX. HouL. ParkY.P. Genetic drivers of m6A methylation in human brain, lung, heart and muscle.Nat. Genet.20215381156116510.1038/s41588‑021‑00890‑3 34211177
    [Google Scholar]
  11. ZhaoZ. PengH. LanC. ZhengY. FangL. LiJ. Imbalance learning for the prediction of N6-Methylation sites in mRNAs.BMC Genomics201819157410.1186/s12864‑018‑4928‑y 30068294
    [Google Scholar]
  12. ZhengY. NieP. PengD. m6AVar: a database of functional variants involved in m6A modification.Nucleic Acids Res.201846D1D139D14510.1093/nar/gkx895 29036329
    [Google Scholar]
  13. PowderK.E. Quantitative trait loci (QTL) mapping. eQTL Analysis.Methods Protoc.20202082211229
    [Google Scholar]
  14. HeP.C. HeC. m6A RNA methylation: from mechanisms to therapeutic potential.EMBO J.2021403e10597710.15252/embj.2020105977 33470439
    [Google Scholar]
  15. ZhangZ. LuoK. ZouZ. Genetic analyses support the contribution of mRNA N6-methyladenosine (m6A) modification to human disease heritability.Nat. Genet.202052993994910.1038/s41588‑020‑0644‑z 32601472
    [Google Scholar]
  16. KoraniW. ClevengerJ.P. ChuY. Ozias-AkinsP. Machine learning as an effective method for identifying true single nucleotide polymorphisms in polyploid plants.Plant Genome201912118002310.3835/plantgenome2018.05.0023 30951095
    [Google Scholar]
  17. ChenK. WeiZ. ZhangQ. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach.Nucleic Acids Res.2019477e41e110.1093/nar/gkz074 30993345
    [Google Scholar]
  18. KörtelN. RückléC. ZhouY. Deep and accurate detection of m6A RNA modifications using miCLIP2 and m6A boost machine learning.Nucleic Acids Res.20214916e92e210.1093/nar/gkab485 34157120
    [Google Scholar]
  19. LuoZ. LouL. QiuW. XuZ. XiaoX. Predicting N6-methyladenosine sites in multiple tissues of mammals through ensemble deep learning.Int. J. Mol. Sci.202223241549010.3390/ijms232415490 36555143
    [Google Scholar]
  20. ZhangS.Y. ZhangS.W. ZhangT. FanX.N. MengJ. Recent advances in functional annotation and prediction of the epitranscriptome.Comput. Struct. Biotechnol. J.2021193015302610.1016/j.csbj.2021.05.030 34136099
    [Google Scholar]
  21. ZhangY. HamadaM. DeepM6ASeq: prediction and characterization of m6A-containing sequences using deep learning.BMC Bioinform.201819S19Suppl. 1952410.1186/s12859‑018‑2516‑4 30598068
    [Google Scholar]
  22. LuoX. LiH. LiangJ. RMVar: an updated database of functional variants involved in RNA modifications.Nucleic Acids Res.202149D1D1405D141210.1093/nar/gkaa811 33021671
    [Google Scholar]
  23. ChenK. SongB. TangY. RMDisease: a database of genetic variants that affect RNA modifications, with implications for epitranscriptome pathogenesis.Nucleic Acids Res.202149D1D1396D140410.1093/nar/gkaa790 33010174
    [Google Scholar]
  24. SongB. WangX. LiangZ. RMDisease V2.0: an updated database of genetic variants that affect RNA modifications with disease and trait implication.Nucleic Acids Res.202351D1D1388D139610.1093/nar/gkac750 36062570
    [Google Scholar]
  25. TangY. ChenK. SongB. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome.Nucleic Acids Res.202149D1D134D14310.1093/nar/gkaa692 32821938
    [Google Scholar]
  26. LiuL. SongB. ChenK. WHISTLE server: A high-accuracy genomic coordinate-based machine learning platform for RNA modification prediction.Methods202220337838210.1016/j.ymeth.2021.07.003 34245870
    [Google Scholar]
  27. JingyiY. RuiS. TianqiW. Classification of images by using TensorFlow.2021 6th International Conference on Intelligent Computing and Signal Processing (ICSP). 09-11 April 2021, Xi'an, China202162262610.1109/ICSP51882.2021.9408796
    [Google Scholar]
  28. SzumilasM. Explaining odds ratios.J. Can. Acad. Child Adolesc. Psychiatry2010193227229 20842279
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936332078240826105023
Loading
/content/journals/cbio/10.2174/0115748936332078240826105023
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test