Skip to content
2000
Volume 20, Issue 9
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

With the development of brain imaging technology and genotyping technology, the brain imaging genetic method has become a powerful means to investigate the pathogenesis of Alzheimer's disease (AD). However, AD generally exhibits progression, multiplicity, and intricacy, and different diagnostic groups may carry different biomarkers. At the same time, traditional models often ignore the nonlinear relationship and inherent topological characteristics of brain imaging genetic data.

Objective

Therefore, developing a more reliable method to identify diagnosis-specific genotypes and phenotypes is indispensable for exploring the pathogenesis of AD. In this paper, a novel deep self-reconstruction multitask association analysis (DS-MTAA) method is proposed for AD-related biomarkers extraction and AD classification.

Methods

First, a deep neural network is designed to learn the nonlinear relationships between samples. Also, the self-expression idea based on hypergraph regularization is utilized to perform subspace clustering on the output of the network. Then, a multitask model consisting of sparse canonical correlation analysis and regular logistic regression is constructed, in which each task is responsible for learning a diagnosis-specific genotype-phenotype pattern.

Results

Finally, the RobustBoost classifier is employed to perform the classification experiments under 5-fold cross-validations. The experimental results show that DS-MTAA can achieve better classification performance than other advanced comparison methods and identify more effective brain biomarkers and genetic markers that are strongly associated with diseases.

Conclusion

Therefore, it can be concluded that a novel multitask association analysis model with deep self-reconstruction for the diagnosis of Alzheimer’s Disease can further understand the pathogenesis of AD.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936317352240826064558
2024-09-26
2025-10-26
Loading full text...

Full text loading...

References

  1. BrookmeyerR. JohnsonE. Ziegler-GrahamK. ArrighiH.M. Forecasting the global burden of Alzheimer’s disease.Alzheimers Dement.20073318619110.1016/j.jalz.2007.04.381 19595937
    [Google Scholar]
  2. MoonS.W. Neuroimaging genetics and network analysis in Alzheimer’s disease.Curr. Alzheimer Res.202320852653810.2174/0115672050265188231107072215 37957920
    [Google Scholar]
  3. RamzanF. KhanM.U.G. RehmatA. A deep learning approach for automated diagnosis and multi-class classification of Alzheimer’s disease stages using resting-state fMRI and residual neural networks.J. Med. Syst.20204423710.1007/s10916‑019‑1475‑2 31853655
    [Google Scholar]
  4. GrøntvedtG.R. SchröderT.N. SandoS.B. WhiteL. BråthenG. DoellerC.F. Alzheimer’s disease.Curr. Biol.20182811R645R64910.1016/j.cub.2018.04.080 29870699
    [Google Scholar]
  5. ZhaoY. MaB. CheT. Multi-view prediction of Alzheimer’s disease progression with end-to-end integrated framework.J. Biomed. Inform.202212510397810.1016/j.jbi.2021.103978 34922021
    [Google Scholar]
  6. ChiE.C. AllenG.I. ZhouH. KohannimO. LangeK. ThompsonP.M. Imaging genetics via sparse canonical correlation analysis.2013 IEEE 10th International Symposium on Biomedical Imaging, .San Francisco, CA, USA, 07-11 April201374074310.1109/ISBI.2013.6556581
    [Google Scholar]
  7. HuW. LinD. CaoS. Adaptive sparse multiple canonical correlation analysis with application to imaging (epi)genomics study of Schizophrenia.IEEE Trans. Biomed. Eng.2017652110.1109/TBME.2017.2771483 29364120
    [Google Scholar]
  8. DuL. LiuK. YaoX. Detecting genetic associations with brain imaging phenotypes in Alzheimer’s disease via a novel structured SCCA approach.Med. Image Anal.20206110165610.1016/j.media.2020.101656 32062154
    [Google Scholar]
  9. DuL. HuangH. YanJ. Structured sparse canonical correlation analysis for brain imaging genetics: An improved GraphNet method.Bioinformatics201632101544155110.1093/bioinformatics/btw033 26801960
    [Google Scholar]
  10. HaoX. TanQ. GuoY. Identifying modality-consistent and modality-specific features via label-guided multi-task sparse canonical correlation analysis for neuroimaging genetics.IEEE Trans. Biomed. Eng.202370383184010.1109/TBME.2022.3203152 36044490
    [Google Scholar]
  11. KimM. MinE.J. LiuK. Multi-task learning based structured sparse canonical correlation analysis for brain imaging genetics.Med. Image Anal.20227610229710.1016/j.media.2021.102297 34871929
    [Google Scholar]
  12. YinN. ShenL. XiongH. Messages are never propagated alone: Collaborative hypergraph neural network for time-series forecasting.IEEE Trans. Pattern Anal. Mach. Intell.20244642333234710.1109/TPAMI.2023.3331389 37943653
    [Google Scholar]
  13. JuW. Hypergraph-enhanced dual semi-supervised graph classification.arXiv: 240504773202410.48550/arXiv.2405.04773
    [Google Scholar]
  14. ZhaoY. LuoX. JuW. ChenC. HuaX.S. ZhangM. Dynamic hypergraph structure learning for traffic flow forecasting.2023 IEEE 39th International Conference on Data Engineering (ICDE)Anaheim, CA, USA, 03-07 April20232303231610.1109/ICDE55515.2023.00178
    [Google Scholar]
  15. RisacherS.L. KimS. NhoK. APOE effect on Alzheimer’s disease biomarkers in older adults with significant memory concern.Alzheimers Dement.201511121417142910.1016/j.jalz.2015.03.003 25960448
    [Google Scholar]
  16. MahleyR.W. RallS.C.Jr ApolipoproteinE. Far more than a lipid transport protein.Annu. Rev. Genomics Hum. Genet.20001150753710.1146/annurev.genom.1.1.507 11701639
    [Google Scholar]
  17. AshburnerJ. FristonK.J. Voxel based morphometry. In: Encyclopedia of Neuroscience.OxfordAcademic Press200947147710.1016/B978‑008045046‑9.00306‑5
    [Google Scholar]
  18. Tzourio-MazoyerN. LandeauB. PapathanassiouD. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain.Neuroimage200215127328910.1006/nimg.2001.0978 11771995
    [Google Scholar]
  19. WangM. ShaoW. HuangS. ZhangD. Deep self-reconstruction sparse canonical correlation analysis for brain imaging genetics.2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)Nice, France, 13-16 April20211790179310.1109/ISBI48211.2021.9434077
    [Google Scholar]
  20. ElhamifarE. VidalR. Sparse subspace clustering: Algorithm, theory, and applications.IEEE Trans. Pattern Anal. Mach. Intell.201335112765278110.1109/TPAMI.2013.57 24051734
    [Google Scholar]
  21. HaoY.J. GaoY.L. HouM.X. DaiL.Y. LiuJ.X. Hypergraph regularized discriminative nonnegative matrix factorization on sample classification and co-differentially expressed gene selection.Complexity2019201911210.1155/2019/7081674
    [Google Scholar]
  22. BiX. ZhouW. LiL. XingZ. Detecting risk gene and pathogenic brain region in EMCI using a novel GERF algorithm based on brain imaging and genetic data.IEEE J. Biomed. Health Inform.20212583019302810.1109/JBHI.2021.3067798 33750717
    [Google Scholar]
  23. DuL. LiuK. YaoX. Multi-task sparse canonical correlation analysis with application to multi-modal brain imaging genetics.IEEE/ACM Trans. Comput. Biol. Bioinformatics202118122723910.1109/TCBB.2019.2947428 31634139
    [Google Scholar]
  24. WangR. XiuN. ZhouS. An extended Newton-type algorithm for ℓ 2 -regularized sparse logistic regression and its efficiency for classifying large-scale datasets.J. Comput. Appl. Math.202139711365610.1016/j.cam.2021.113656
    [Google Scholar]
  25. KimM. WonJ.H. YounJ. ParkH. Joint-connectivity-based sparse canonical correlation analysis of imaging genetics for detecting biomarkers of Parkinson’s disease.IEEE Trans. Med. Imaging2020391233410.1109/TMI.2019.2918839 31144631
    [Google Scholar]
  26. PengX. XiaoS. FengJ. YauW-Y. YiZ. Deep subspace clustering with sparsity prior.International Joint Conference on Artificial IntelligenceNew York, USA, 09 July20161925193110.1155/S1110757X03212055
    [Google Scholar]
  27. SorensenD.C. ZhouY. Direct methods for matrix Sylvester and Lyapunov equations.J. Appl. Math.20032003627730310.1155/S1110757X03212055
    [Google Scholar]
  28. KrishnapuramB. CarinL. FigueiredoM.A.T. HarteminkA.J. Sparse multinomial logistic regression: Fast algorithms and generalization bounds.IEEE Trans. Pattern Anal. Mach. Intell.200527695796810.1109/TPAMI.2005.127 15943426
    [Google Scholar]
  29. YanJ. RisacherS.L. NhoK. SaykinA.J. ShenL.I. Identification of discriminative imaging proteomics associations in Alzheimer’s disease via a novel sparse correlation model.In: Biocomputing2017. WORLD SCIENTIFIC20169410410.1142/9789813207813_0010
    [Google Scholar]
  30. DuL. Identifying diagnosis-specific genotype-phenotype associations via joint multitask sparse canonical correlation analysis and classification.Bioinformatics202036Supplement_1i371i37910.1093/bioinformatics/btaa434
    [Google Scholar]
  31. ChenX. LiuH. An efficient optimization algorithm for structured sparse CCA, with applications to eQTL mapping.Stat. Biosci.20124132610.1007/s12561‑011‑9048‑z
    [Google Scholar]
  32. UchikadoH. LinW.L. DeLuciaM.W. DicksonD.W. Alzheimer disease with amygdala Lewy bodies: A distinct form of α-synucleinopathy.J. Neuropathol. Exp. Neurol.200665768569710.1097/01.jnen.0000225908.90052.07 16825955
    [Google Scholar]
  33. GriffithH.R. StewartC.C. StoeckelL.E. Magnetic resonance imaging volume of the angular gyri predicts financial skill deficits in people with amnestic mild cognitive impairment.J. Am. Geriatr. Soc.201058226527410.1111/j.1532‑5415.2009.02679.x 20374402
    [Google Scholar]
  34. WeinerK.S. The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex.Neuroimage20148445346510.1016/j.neuroimage.2013.08.068
    [Google Scholar]
  35. AndrásiE. FarkasÉ. ScheiblerH. RéffyA. BezúrL. Al, Zn, Cu, Mnand Fe levels in brain in Alzheimer’s disease.Arch. Gerontol. Geriatr.1995211899710.1016/0167‑4943(95)00643‑Y 15374228
    [Google Scholar]
  36. Van HoesenG.W. AugustinackJ.C. DierkingJ. RedmanS.J. ThangavelR. The parahippocampal gyrus in Alzheimer’s disease. Clinical and preclinical neuroanatomical correlates.Ann. N. Y. Acad. Sci.2000911125427410.1111/j.1749‑6632.2000.tb06731.x 10911879
    [Google Scholar]
  37. GellersenH.M. GuoC.C. O’CallaghanC. TanR.H. SamiS. HornbergerM. Cerebellar atrophy in neurodegeneration—a meta-analysis.J. Neurol. Neurosurg. Psychiatry201788978078810.1136/jnnp‑2017‑315607 28501823
    [Google Scholar]
  38. ShenL. KimS. RisacherS.L. Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort.Neuroimage20105331051106310.1016/j.neuroimage.2010.01.042 20100581
    [Google Scholar]
  39. LeeE.G. ChenS. LeongL. TullochJ. YuC.E. TOMM40 RNA transcription in Alzheimer’s disease brain and its implication in mitochondrial dysfunction.Genes (Basel)202112687110.3390/genes12060871 34204109
    [Google Scholar]
  40. ReddyJ.S. AllenM. HoC.C.G. Genome-wide analysis identifies a novel LINC-PINT splice variant associated with vascular amyloid pathology in Alzheimer’s disease.Acta Neuropathol. Commun.2021919310.1186/s40478‑021‑01199‑2 34020725
    [Google Scholar]
  41. CervantesS. SamaranchL. Vidal-TaboadaJ.M. Genetic variation in APOE cluster region and Alzheimer’s disease risk.Neurobiol. Aging201132112107.e72107.e1710.1016/j.neurobiolaging.2011.05.023 21752496
    [Google Scholar]
  42. GuoY. XuW. LiJ.Q. Genome-wide association study of hippocampal atrophy rate in non-demented elders.Aging20191122104681048410.18632/aging.102470 31760383
    [Google Scholar]
  43. EckerströmC. OlssonE. BorgaM. Small baseline volume of left hippocampus is associated with subsequent conversion of MCI into dementia: The Göteborg MCI study.J. Neurol. Sci.20082721-2485910.1016/j.jns.2008.04.024 18571674
    [Google Scholar]
  44. de JongL.W. van der HieleK. VeerI.M. Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: An MRI study.Brain2008131123277328510.1093/brain/awn278 19022861
    [Google Scholar]
  45. KillianyR.J. MossM.B. AlbertM.S. SandorT. TiemanJ. JoleszF. Temporal lobe regions on magnetic resonance imaging identify patients with early Alzheimer’s disease.Arch. Neurol.199350994995410.1001/archneur.1993.00540090052010 8363449
    [Google Scholar]
  46. Pineda-BautistaB.B. Carrasco-OchoaJ.A. Martínez-TrinidadJ.F. General framework for class-specific feature selection.Expert Syst. Appl.2011388100181002410.1016/j.eswa.2011.02.016
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936317352240826064558
Loading
/content/journals/cbio/10.2174/0115748936317352240826064558
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test