Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

The interaction between circular RNA (circRNA) and RNA binding protein (RBP) plays an important biological role in the occurrence and development of various diseases. High-throughput biological experimental methods such as CLIP-seq can effectively analyze the interaction between the two, but biological experiments are inefficient and expensive, and they can only capture binding sites of a specific RBP on circRNA in a selected cell environment at a time. These biological experiments still rely on downstream data analysis to understand the mechanisms behind many biological structures and physiological processes. However, the rapid growth of experimental data dimensions and production speed pose challenges to traditional analysis methods. In recent years, deep learning has made great progress in the genome and transcriptome, and some deep learning prediction algorithms for RBP binding sites on circRNA have also emerged. In this paper, we briefly introduce some biological background knowledge related to circRNA-RBP interaction; present relevant deep learning techniques in this field, including the problem formulation, data source, sequence encoding, deep learning model and overall process of RBP binding sites prediction on circRNA; deeply analyze the current deep learning methods. Finally, some problems existing in the current research and the direction of future research are discussed. It is hoped to help researchers without basic knowledge of deep learning or basic biological background quickly understand the RBP binding sites prediction on circRNA.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936308564240712053215
2024-07-31
2025-09-10
Loading full text...

Full text loading...

References

  1. AdelmanK. EganE. More uses for genomic junk.Nature2017543764418318510.1038/543183a 28277509
    [Google Scholar]
  2. HuangA. ZhengH. WuZ. ChenM. HuangY. Circular RNA-protein interactions: functions, mechanisms, and identification.Theranostics20201083503351710.7150/thno.42174 32206104
    [Google Scholar]
  3. ZangJ. LuD. XuA. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function.J. Neurosci. Res.2020981879710.1002/jnr.24356 30575990
    [Google Scholar]
  4. DasA. SinhaT. ShyamalS. PandaA.C. Emerging role of circular RNA–protein interactions.Noncoding RNA2021734810.3390/ncrna7030048 34449657
    [Google Scholar]
  5. HansenT.B. JensenT.I. ClausenB.H. Natural RNA circles function as efficient microRNA sponges.Nature2013495744138438810.1038/nature11993 23446346
    [Google Scholar]
  6. LiuY. ChengZ. PangY. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia.J. Hematol. Oncol.20191215110.1186/s13045‑019‑0734‑5 31126316
    [Google Scholar]
  7. ZhongY. DuY. YangX. Circular RNAs function as ceRNAs to regulate and control human cancer progression.Mol. Cancer20181717910.1186/s12943‑018‑0827‑8 29626935
    [Google Scholar]
  8. OkholmT.L.H. SatheS. ParkS.S. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.Genome Med.202012111210.1186/s13073‑020‑00812‑8 33287884
    [Google Scholar]
  9. XieF. HuangC. LiuF. CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression.Mol. Cancer20212016810.1186/s12943‑021‑01359‑x 33853613
    [Google Scholar]
  10. ErrichelliL. Dini ModiglianiS. LaneveP. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons.Nat. Commun.2017811474110.1038/ncomms14741 28358055
    [Google Scholar]
  11. AktaşT. Avşar Ilıkİ. MaticzkaD. DHX9 suppresses RNA processing defects originating from the Alu invasion of the human genome.Nature2017544764811511910.1038/nature21715 28355180
    [Google Scholar]
  12. LeCunY. BengioY. HintonG. Deep learning.Nature2015521755343644410.1038/nature14539 26017442
    [Google Scholar]
  13. AoC JiaoS WangY YuL ZouQ. Biological sequence classification: A review on data and general methods.Research202220220011
    [Google Scholar]
  14. QuK. WeiL. ZouQ. A review of DNA-binding proteins prediction methods.Curr. Bioinform.201914324625410.2174/1574893614666181212102030
    [Google Scholar]
  15. SinhaD. DasmandalT. YeasinM. MishraD.C. RaiA. ArchakS. EpiSemble: A novel ensemble-based machine-learning framework for prediction of DNA N6-methyladenine sites using hybrid features selection approach for crops.Curr. Bioinform.202318758759710.2174/1574893618666230316151648
    [Google Scholar]
  16. TranH.V. NguyenQ.H. iAnt: combination of convolutional neural network and random Forest models using PSSM and BERT features to identify antioxidant proteins.Curr. Bioinform.202217218419510.2174/1574893616666210820095144
    [Google Scholar]
  17. JohnC. SahooJ. MadhavanM. MathewO.K. Convolutional neural networks: A promising deep learning architecture for biological sequence analysis.Curr. Bioinform.202318753755810.2174/1574893618666230320103421
    [Google Scholar]
  18. HeY. ShenZ. ZhangQ. WangS. HuangD.S. A survey on deep learning in DNA/RNA motif mining.Brief. Bioinform.2021224bbaa22910.1093/bib/bbaa229 33005921
    [Google Scholar]
  19. KooP.K. EddyS.R. Representation learning of genomic sequence motifs with convolutional neural networks.PLOS Comput. Biol.20191512e100756010.1371/journal.pcbi.1007560 31856220
    [Google Scholar]
  20. ZhengW. ZhouX. WuyunQ. PearceR. LiY. ZhangY. FUpred: detecting protein domains through deep-learning-based contact map prediction.Bioinformatics202036123749375710.1093/bioinformatics/btaa217 32227201
    [Google Scholar]
  21. AlipanahiB. DelongA. WeirauchM.T. FreyB.J. Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning.Nat. Biotechnol.201533883183810.1038/nbt.3300 26213851
    [Google Scholar]
  22. ZengX. LinW. GuoM. ZouQ. A comprehensive overview and evaluation of circular RNA detection tools.PLOS Comput. Biol.2017136e100542010.1371/journal.pcbi.1005420 28594838
    [Google Scholar]
  23. NiuM. ZhangJ. LiY. CirRNAPL: A web server for the identification of circRNA based on extreme learning machine.Comput. Struct. Biotechnol. J.20201883484210.1016/j.csbj.2020.03.028 32308930
    [Google Scholar]
  24. GlažarP. PapavasileiouP. RajewskyN. circBase: a database for circular RNAs.RNA201420111666167010.1261/rna.043687.113 25234927
    [Google Scholar]
  25. DudekulaD.B. PandaA.C. GrammatikakisI. DeS. AbdelmohsenK. GorospeM. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs.RNA Biol.2016131344210.1080/15476286.2015.1128065 26669964
    [Google Scholar]
  26. XiaS. FengJ. ChenK. CSCD: a database for cancer-specific circular RNAs.Nucleic Acids Res.201846D1D925D92910.1093/nar/gkx863 29036403
    [Google Scholar]
  27. FengJ. ChenW. DongX. CSCD2: an integrated interactional database of cancer-specific circular RNAs.Nucleic Acids Res.202250D1D1179D118310.1093/nar/gkab830 34551437
    [Google Scholar]
  28. YangJ.H. LiJ.H. ShaoP. ZhouH. ChenY.Q. QuL.H. starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data.Nucleic Acids Res.201139Database issueSuppl. 1D202D20910.1093/nar/gkq1056 21037263
    [Google Scholar]
  29. LiJ.H. LiuS. ZhouH. QuL.H. YangJ.H. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data.Nucleic Acids Res.201442D1D92D9710.1093/nar/gkt1248 24297251
    [Google Scholar]
  30. RuanH. XiangY. KoJ. Comprehensive characterization of circular RNAs in ~ 1000 human cancer cell lines.Genome Med.20191115510.1186/s13073‑019‑0663‑5 31446897
    [Google Scholar]
  31. WuW. JiP. ZhaoF. CircAtlas: an integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes.Genome Biol.202021110110.1186/s13059‑020‑02018‑y 32345360
    [Google Scholar]
  32. LiuY.C. LiJ.R. SunC.H. CircNet: a database of circular RNAs derived from transcriptome sequencing data.Nucleic Acids Res.201644D1D209D21510.1093/nar/gkv940 26450965
    [Google Scholar]
  33. ChenY. YaoL. TangY. CircNet 2.0: an updated database for exploring circular RNA regulatory networks in cancers.Nucleic Acids Res.202250D1D93D10110.1093/nar/gkab1036 34850139
    [Google Scholar]
  34. VoJ.N. CieslikM. ZhangY. The landscape of circular RNA in cancer.Cell20191764869881.e1310.1016/j.cell.2018.12.021 30735636
    [Google Scholar]
  35. FanC LeiX FangZ JiangQ WuFX CircR2Disease: a manually curated database for experimentally supported circular RNAs associated with various diseases.Database2018; 2018.10.1093/database/bay044
    [Google Scholar]
  36. FanC. LeiX. TieJ. ZhangY. WuF.X. PanY. CircR2Disease v2.0: An updated web server for experimentally validated circRNA–disease associations and its application.Genomics Proteomics Bioinformatics202220343544510.1016/j.gpb.2021.10.002 34856391
    [Google Scholar]
  37. NiuM. ZouQ. WangC. GMNN2CD: identification of circRNA–disease associations based on variational inference and graph Markov neural networks.Bioinformatics20223882246225310.1093/bioinformatics/btac079 35157027
    [Google Scholar]
  38. ChenY. WangJ. WangC. LiuM. ZouQ. Deep learning models for disease-associated circRNA prediction: a review.Brief. Bioinform.2022236bbac36410.1093/bib/bbac364 36130259
    [Google Scholar]
  39. ChenY. WangY. DingY. SuX. WangC. RGCNCDA: Relational graph convolutional network improves circRNA-disease association prediction by incorporating microRNAs.Comput. Biol. Med.202214310532210.1016/j.compbiomed.2022.105322 35217342
    [Google Scholar]
  40. ChenY. YangF. FangE. Circular RNA circAGO2 drives cancer progression through facilitating HuR-repressed functions of AGO2-miRNA complexes.Cell Death Differ.20192671346136410.1038/s41418‑018‑0220‑6 30341421
    [Google Scholar]
  41. TsitsipatisD. GrammatikakisI. DriscollR.K. AUF1 ligand circPCNX reduces cell proliferation by competing with p21 mRNA to increase p21 production.Nucleic Acids Res.20214931631164610.1093/nar/gkaa1246 33444453
    [Google Scholar]
  42. ChenS. CaoX. ZhangJ. WuW. ZhangB. ZhaoF. circVAMP3 drives CAPRIN1 phase separation and inhibits hepatocellular carcinoma by suppressing c‐Myc translation.Adv. Sci. (Weinh.)202298210381710.1002/advs.202103817 35072355
    [Google Scholar]
  43. ZhengL. LiangH. ZhangQ. circPTEN1, a circular RNA generated from PTEN, suppresses cancer progression through inhibition of TGF-β/Smad signaling.Mol. Cancer20222114110.1186/s12943‑022‑01495‑y 35135542
    [Google Scholar]
  44. HuZ. ChenG. ZhaoY. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma.Mol. Cancer20232215510.1186/s12943‑023‑01759‑1 36932387
    [Google Scholar]
  45. ShangQ. DuH. WuX. FMRP ligand circZNF609 destabilizes RAC1 mRNA to reduce metastasis in acral melanoma and cutaneous melanoma.J. Exp. Clin. Cancer Res.202241117010.1186/s13046‑022‑02357‑7 35534866
    [Google Scholar]
  46. LiuY. YangY. XuC. Circular RNA circGlis3 protects against islet β-cell dysfunction and apoptosis in obesity.Nat. Commun.202314135110.1038/s41467‑023‑35998‑z 36681689
    [Google Scholar]
  47. DingF. LuL. WuC. circHIPK3 prevents cardiac senescence by acting as a scaffold to recruit ubiquitin ligase to degrade HuR.Theranostics202212177550756610.7150/thno.77630 36438474
    [Google Scholar]
  48. YaoB. ZhangQ. YangZ. CircEZH2/miR-133b/IGF2BP2 aggravates colorectal cancer progression via enhancing the stability of m6A-modified CREB1 mRNA.Mol. Cancer202221114010.1186/s12943‑022‑01608‑7 35773744
    [Google Scholar]
  49. HongY. QinH. LiY. FNDC3B circular RNA promotes the migration and invasion of gastric cancer cells via the regulation of E‐cadherin and CD44 expression.J. Cell. Physiol.201923411198951991010.1002/jcp.28588 30963578
    [Google Scholar]
  50. LiuY. QiuG. LuoY. Circular RNA ROCK1, a novel circRNA, suppresses osteosarcoma proliferation and migration via altering the miR-532-5p/PTEN axis.Exp. Mol. Med.20225471024103710.1038/s12276‑022‑00806‑z 35879346
    [Google Scholar]
  51. ArnaudÉ. ElbattahM. GignonM. DequenG. NLP-based prediction of medical specialties at hospital admission using triage notes.2021 IEEE 9th International Conference on Healthcare Informatics (ICHI).09-12 August 2021, Victoria, BC, Canada54855310.1109/ICHI52183.2021.00103
    [Google Scholar]
  52. HarrisS. HarrisD. Digital design and computer architecture.2nd edSan Francisco, Calif.Morgan Kaufmann2015
    [Google Scholar]
  53. KoppW. MontiR. TamburriniA. OhlerU. AkalinA. Deep learning for genomics using Janggu.Nat. Commun.2020111348810.1038/s41467‑020‑17155‑y 32661261
    [Google Scholar]
  54. ZhangQ. ZhuL. HuangD.S. High-order convolutional neural network architecture for predicting DNA-protein binding sites.IEEE/ACM Trans. Comput. Biol. Bioinformatics20191641184119210.1109/TCBB.2018.2819660 29993783
    [Google Scholar]
  55. WangZ. DaiQ. SongJ. DuanX. YangH. YangZ. Predicting RBP binding sites of RNA with high-order encoding features and CNN-BLSTM hybrid model.IEEE/ACM Trans. Comput. Biol. Bioinformatics20221942409241910.1109/TCBB.2021.3083930 34038367
    [Google Scholar]
  56. AsgariE. MofradM.R.K. Continuous distributed representation of biological sequences for deep proteomics and genomics.PLoS One20151011e014128710.1371/journal.pone.0141287 26555596
    [Google Scholar]
  57. IuchiH. MatsutaniT. YamadaK. Representation learning applications in biological sequence analysis.Comput. Struct. Biotechnol. J.2021193198320810.1016/j.csbj.2021.05.039 34141139
    [Google Scholar]
  58. ChurchK.W. Word2Vec.Nat. Lang. Eng.201723115516210.1017/S1351324916000334
    [Google Scholar]
  59. LeQ. MikolovT. Distributed representations of sentences and documents.PMLR201432211881196
    [Google Scholar]
  60. DevlinJ. ChangM-W. LeeK. ToutanovaK Bert: Pre-training of deep bidirectional transformers for language understandingarXiv:1810.048052018
  61. JiaC. BiY. ChenJ. LeierA. LiF. SongJ. PASSION: an ensemble neural network approach for identifying the binding sites of RBPs on circRNAs.Bioinformatics202036154276428210.1093/bioinformatics/btaa522 32426818
    [Google Scholar]
  62. LiH. DengZ. YangH. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier.Brief. Bioinform.2022231bbab39410.1093/bib/bbab394 34571539
    [Google Scholar]
  63. ZhangL. LuC. ZengM. LiY. WangJ. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features.Brief. Bioinform.2023241bbac53010.1093/bib/bbac530 36511222
    [Google Scholar]
  64. ZhouJ CuiG HuS Graph neural networks: A review of methods and applications.AI open202015781
    [Google Scholar]
  65. WuZ. PanS. ChenF. LongG. ZhangC. YuP.S. A comprehensive survey on graph neural networks.IEEE Trans. Neural Netw. Learn. Syst.202132142410.1109/TNNLS.2020.2978386 32217482
    [Google Scholar]
  66. KorenY. BellR. VolinskyC. Matrix factorization techniques for recommender systems.Computer2009428303710.1109/MC.2009.263
    [Google Scholar]
  67. XueH.J. DaiX. ZhangJ. HuangS. ChenJ. Deep Matrix Factorization Models for Recommender Systems.Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)1710.24963/ijcai.2017/447
    [Google Scholar]
  68. FriedmanN. Inferring cellular networks using probabilistic graphical models.Science2004303565979980510.1126/science.1094068 14764868
    [Google Scholar]
  69. KotiangS. EslamiA. A probabilistic graphical model for system-wide analysis of gene regulatory networks.Bioinformatics202036103192319910.1093/bioinformatics/btaa122 32096828
    [Google Scholar]
  70. Al HasanM ChaojiV SalemS ZakiM Link prediction using supervised learning.2006
    [Google Scholar]
  71. KumarA. SinghS.S. SinghK. BiswasB. Link prediction techniques, applications, and performance: A survey.Physica A202055312428910.1016/j.physa.2020.124289
    [Google Scholar]
  72. WangZ. LeiX. Matrix factorization with neural network for predicting circRNA-RBP interactions.BMC Bioinformatics202021122910.1186/s12859‑020‑3514‑x 32503474
    [Google Scholar]
  73. MordeletF. VertJ.P. A bagging SVM to learn from positive and unlabeled examples.Pattern Recognit. Lett.20143720120910.1016/j.patrec.2013.06.010
    [Google Scholar]
  74. ShaoM. HaoS. JiangL. CRIT: Identifying RNA-binding protein regulator in circRNA life cycle via non-negative matrix factorization.Mol. Ther. Nucleic Acids20223039840610.1016/j.omtn.2022.10.015 36420213
    [Google Scholar]
  75. LiR. YuanX. RadfarM. Graph signal processing, graph neural network and graph learning on biological data: a systematic review.IEEE Rev. Biomed. Eng.202316109135 34699368
    [Google Scholar]
  76. ZhangZ. ChenL. ZhongF. Graph neural network approaches for drug-target interactions.Curr. Opin. Struct. Biol.20227310232710.1016/j.sbi.2021.102327 35074533
    [Google Scholar]
  77. ZhangX.M. LiangL. LiuL. TangM.J. Graph neural networks and their current applications in bioinformatics.Front. Genet.20211269004910.3389/fgene.2021.690049 34394185
    [Google Scholar]
  78. MuzioG. O’BrayL. BorgwardtK. Biological network analysis with deep learning.Brief. Bioinform.20212221515153010.1093/bib/bbaa257 33169146
    [Google Scholar]
  79. AlbawiS. MohammedT.A. Al-ZawiS. Understanding of a convolutional neural network.2017 International Conference on Engineering and Technology (ICET).21-23 August 2017, Antalya, Turkey1610.1109/ICEngTechnol.2017.8308186
    [Google Scholar]
  80. AlzubaidiL. ZhangJ. HumaidiA.J. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.J. Big Data2021815310.1186/s40537‑021‑00444‑8 33816053
    [Google Scholar]
  81. KooP.K. PloenzkeM. Improving representations of genomic sequence motifs in convolutional networks with exponential activations.Nat. Mach. Intell.20213325826610.1038/s42256‑020‑00291‑x 34322657
    [Google Scholar]
  82. PandeyA. RoyS.S. Protein sequence classification using convolutional neural network and natural language processing.In: Handbook of Machine Learning Applications for Genomics.Springer202213314410.1007/978‑981‑16‑9158‑4_9
    [Google Scholar]
  83. HeK. ZhangX. RenS. SunJ. Identity mappings in deep residual networks.14th European ConferenceOctober 11–14, 2016, Amsterdam, The Netherlands630645
    [Google Scholar]
  84. HanK. ShenL.C. ZhuY.H. XuJ. SongJ. YuD.J. MAResNet: predicting transcription factor binding sites by combining multi-scale bottom-up and top-down attention and residual network.Brief. Bioinform.2022231bbab44510.1093/bib/bbab445 34664074
    [Google Scholar]
  85. LiX. HanP. ChenW. MARPPI: boosting prediction of protein–protein interactions with multi-scale architecture residual network.Brief. Bioinform.2023241bbac52410.1093/bib/bbac524 36502435
    [Google Scholar]
  86. AlharbiW.S. RashidM. A review of deep learning applications in human genomics using next-generation sequencing data.Hum. Genomics20221612610.1186/s40246‑022‑00396‑x 35879805
    [Google Scholar]
  87. GunasekaranH. RamalakshmiK. Rex Macedo ArokiarajA. Deepa KanmaniS. VenkatesanC. Suresh Gnana DhasC. Analysis of DNA sequence classification using CNN and hybrid models.Comput. Mathe. Meth. Med.2021202183505610.1155/2021/1835056
    [Google Scholar]
  88. ZhangY BaoW CaoY CongH ChenB ChenY A survey on protein–DNA-binding sites in computational biology.Brief. Funct. Genomics202221535737510.1093/bfgp/elac009 35652477
    [Google Scholar]
  89. YaoZ. ZhangW. SongP. HuY. LiuJ. DeepFormer: a hybrid network based on convolutional neural network and flow-attention mechanism for identifying the function of DNA sequences.Brief. Bioinform.2023242bbad09510.1093/bib/bbad095 36917472
    [Google Scholar]
  90. SherstinskyA. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network.Physica D202040413230610.1016/j.physd.2019.132306
    [Google Scholar]
  91. ChenJ. ZouQ. LiJ. DeepM6ASeq-EL: prediction of human N6-methyladenosine (m6A) sites with LSTM and ensemble learning.Front. Comput. Sci.202216216230210.1007/s11704‑020‑0180‑0
    [Google Scholar]
  92. SharmaR. ShrivastavaS. Kumar SinghS. KumarA. SaxenaS. Kumar SinghR. Deep-ABPpred: identifying antibacterial peptides in protein sequences using bidirectional LSTM with word2vec.Brief. Bioinform.2021225bbab06510.1093/bib/bbab065 33784381
    [Google Scholar]
  93. NiuZ. ZhongG. YuH. A review on the attention mechanism of deep learning.Neurocomputing2021452486210.1016/j.neucom.2021.03.091
    [Google Scholar]
  94. ChoiS.R. LeeM. Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review.Biology (Basel)2023127103310.3390/biology12071033 37508462
    [Google Scholar]
  95. DuB. LiuZ. LuoF. Deep multi-scale attention network for RNA-binding proteins prediction.Inf. Sci.202258228730110.1016/j.ins.2021.09.025
    [Google Scholar]
  96. WangX. ZhangM. LongC. YaoL. ZhuM. Self-attention based neural network for predicting RNA-protein binding sites.IEEE/ACM Trans. Comput. Biol. Bioinformatics20232021469147910.1109/TCBB.2022.3204661 36067103
    [Google Scholar]
  97. SongZ. HuangD. SongB. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications.Nat. Commun.2021121401110.1038/s41467‑021‑24313‑3 34188054
    [Google Scholar]
  98. SutskeverI. VinyalsO. LeQ.V. Sequence to sequence learning with neural networks.Adv. Neural Inf. Process. Syst.201427
    [Google Scholar]
  99. YousufH. LahziM. SalloumS.A. ShaalanK. A systematic review on sequence-to-sequence learning with neural network and its models.Int J Elect Comput Engin202111320888708
    [Google Scholar]
  100. JiY. ZhouZ. LiuH. DavuluriR.V. DNABERT: pre-trained Bidirectional Encoder Representations from Transformers model for DNA-language in genome.Bioinformatics202137152112212010.1093/bioinformatics/btab083 33538820
    [Google Scholar]
  101. GuanS. ZouQ. WuH. DingY. Protein-dna binding residues prediction using a deep learning model with hierarchical feature extraction.IEEE/ACM Trans. Comput. Biol. Bioinformatics202211010.1109/TCBB.2022.3190933
    [Google Scholar]
  102. ZhangK. PanX. YangY. ShenH.B. CRIP: predicting circRNA–RBP-binding sites using a codon-based encoding and hybrid deep neural networks.RNA201925121604161510.1261/rna.070565.119 31537716
    [Google Scholar]
  103. WangZ. LeiX. WuF.X. Identifying cancer-specific circRNA–RBP binding sites based on deep learning.Molecules20192422403510.3390/molecules24224035 31703384
    [Google Scholar]
  104. WangZ. LeiX. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.Brief. Bioinform.2021226bbab34210.1093/bib/bbab342 34415289
    [Google Scholar]
  105. JuY. YuanL. YangY. ZhaoH. CircSLNN: Identifying RBP-binding sites on circRNAs via sequence labeling neural networks.Front. Genet.201910118410.3389/fgene.2019.01184 31824574
    [Google Scholar]
  106. LaffertyJ. McCallumA. PereiraF.C. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.Proceedings of the Eighteenth International Conference on Machine LearningSan Francisco2001282289
    [Google Scholar]
  107. LiuH. SetionoR. Incremental feature selection.Appl. Intell.19989321723010.1023/A:1008363719778
    [Google Scholar]
  108. ChenT. GuestrinC. Xgboost: A scalable tree boosting system.Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.13 Aug, 2016,San Francisco, CA, USA78579410.1145/2939672.2939785
    [Google Scholar]
  109. YangY. HouZ. WangY. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.Brief. Bioinform.2022232bbac02710.1093/bib/bbac027 35189638
    [Google Scholar]
  110. LeiX. PanY. An Encoding-decoding framework based on CNN for circRNA-RBP binding sites prediction.Chin. J. Electron.202433119
    [Google Scholar]
  111. YuanL. YangY. DeCban: Prediction of circRNA-RBP interaction sites by using double embeddings and cross-branch attention networks.Front. Genet.20211163286110.3389/fgene.2020.632861 33552144
    [Google Scholar]
  112. NiuM. ZouQ. LinC. CRBPDL: Identification of circRNA-RBP interaction sites using an ensemble neural network approach.PLOS Comput. Biol.2022181e100979810.1371/journal.pcbi.1009798 35051187
    [Google Scholar]
  113. WuH. PanX. YangY. ShenH.B. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.Brief. Bioinform.2021226bbab27910.1093/bib/bbab279 34297803
    [Google Scholar]
  114. ChiccoD. Siamese neural networks: An overview.Artificial neural net20217394
    [Google Scholar]
  115. GuoY. LeiX. A pseudo-Siamese framework for circRNA-RBP binding sites prediction integrating BiLSTM and soft attention mechanism.Methods2022207576410.1016/j.ymeth.2022.09.003 36113743
    [Google Scholar]
  116. GuoY. LeiX. LiuL. PanY. circ2CBA: prediction of circRNA-RBP binding sites combining deep learning and attention mechanism.Front. Comput. Sci.202317517590410.1007/s11704‑022‑2151‑0
    [Google Scholar]
  117. YangY. HouZ. MaZ. LiX. WongK.C. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.Brief. Bioinform.2021224bbaa27410.1093/bib/bbaa274 33126261
    [Google Scholar]
  118. DuX. XueZ. JLCRB: A unified multi-view-based joint representation learning for CircRNA binding sites prediction.J. Biomed. Inform.202213610423110.1016/j.jbi.2022.104231 36309196
    [Google Scholar]
  119. WangZ. LeiX. Identifying the sequence specificities of circRNA-binding proteins based on a capsule network architecture.BMC Bioinformatics20212211910.1186/s12859‑020‑03942‑3 33413092
    [Google Scholar]
  120. DongX. YuZ. CaoW. ShiY. MaQ. A survey on ensemble learning.Front. Comput. Sci.202014224125810.1007/s11704‑019‑8208‑z
    [Google Scholar]
  121. WangZ. LeiX. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.Methods202220517919010.1016/j.ymeth.2022.06.014 35810958
    [Google Scholar]
  122. LuoX. TuX. DingY. GaoG. DengM. Expectation pooling: an effective and interpretable pooling method for predicting DNA–protein binding.Bioinformatics20203651405141210.1093/bioinformatics/btz768 31598637
    [Google Scholar]
  123. LuoX. ChiW. DengM. Deepprune: Learning efficient and interpretable convolutional networks through weight pruning for predicting dna-protein binding.Front. Genet.201910114510.3389/fgene.2019.01145 31824562
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936308564240712053215
Loading
/content/journals/cbio/10.2174/0115748936308564240712053215
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): binding sites; biological role; circRNA; deep learning techniques; RBP; sequence encoding
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test