Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Background

Due to infection by the rice blast fungus, rice, a major global staple, faces yield challenges. While chemical control methods are common, their environmental and economic costs are growing concerns. Traditional biological experiments are also inefficient for exploring resistance genes. Therefore, understanding the interaction between rice and the rice blast fungus is urgent and important.

Objective

This study aims to use multi-omics data to uncover key elements in rice's defense against rice blast fungus . We built a detailed, multi-layered heterogeneous interaction network, employing an innovative graph embedding feature with a cross-layer random walk algorithm to identify crucial crucial resistance factors. This could inform strategies for enhancing disease resistance in rice.

Methods

We integrated genomics, transcriptomics, and proteomics data on infecting rice. This multi-omics data was used to construct a multi-layer heterogeneous network. An advanced graph embedding algorithm (BINE) provided rich vector representations of network nodes. A multi-layer network walking algorithm was then used to analyze the network and identify key regulatory small RNA (sRNAs) in rice.

Results

Node similarity rankings allowed us to identify significant regulatory sRNAs in rice that are integral to disease resistance. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses further revealed their roles in biological processes and key metabolic pathways. Our integrative method precisely and efficiently identified these crucial elements, offering a valuable systems biology tool.

Conclusion

By integrating multi-omics data with computational analysis, this study reveals key regulatory sRNAs in rice's disease resistance mechanism. These findings enhance our understanding of rice disease resistance and provide genetic resources for breeding disease-resistant rice. Despite limitations in sRNA functional interpretation, this research demonstrates the power of applying multi-omics data to address complex biological problems.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936305102240705052723
2024-07-22
2025-08-17
Loading full text...

Full text loading...

References

  1. DengY. ZhaiK. XieZ. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance.Science2017355632896296510.1126/science.aai8898 28154240
    [Google Scholar]
  2. FireA. XuS. MontgomeryM.K. KostasS.A. DriverS.E. MelloC.C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans.Nature1998391666980681110.1038/35888 9486653
    [Google Scholar]
  3. ChangH. ZhangH. QinM. Identification of novel Phytophthora infestans small RNAs involved in potato late blight reveals potential cross-kingdom regulation to facilitate oomycete infection.Int. J. Data Min. Bioinform.202023211914110.1504/IJDMB.2020.107379
    [Google Scholar]
  4. ZhangH. LiY. LiuY. Role of plant MicroRNA in cross-species regulatory networks of humans.BMC Syst. Biol.20161016010.1186/s12918‑016‑0292‑1 27502923
    [Google Scholar]
  5. ZhangH. Mining sRNAs with potential transboundary regulation of rice genes associated with growth and defense through expression profile analysis of the pathogen-infected rice.Front. Genet.20191010.3389/fgene.2019.00296 30984250
    [Google Scholar]
  6. ZhangH. ZhanM. ChangH. SongS. ZhangC. LiuY. Research progress of exogenous plant MiRNAs in cross-kingdom regulation.Curr. Bioinform.201914324124510.2174/1574893613666181113142414
    [Google Scholar]
  7. SunJ. SunC.H. ChangH.W. Cyclophilin BcCyp2 regulates infection-related development to facilitate virulence of the gray mold fungus Botrytis cinerea.Int. J. Mol. Sci.2021224169410.3390/ijms22041694 33567582
    [Google Scholar]
  8. ChengA.P. LedererB. OberkoflerL. A fungal RNA-dependent RNA polymerase is a novel player in plant infection and cross-kingdom RNA interference.PLoS Pathog.20231912e101188510.1371/journal.ppat.1011885 38117848
    [Google Scholar]
  9. WangX. ZhangR. ShiZ. Multi-omics analysis of the development and fracture resistance for maize internode.Sci. Rep.201991818310.1038/s41598‑019‑44690‑6 31160669
    [Google Scholar]
  10. ChiJ. ZhangH. ZhangT. Exploring the common mechanism of fungal sRNA transboundary regulation of plants based on ensemble learning methods.Front. Genet.20221381647810.3389/fgene.2022.816478 35222537
    [Google Scholar]
  11. YangY. SaandM.A. HuangL. Applications of multi-omics technologies for crop improvement.Front Plant Sci20211256395310.3389/fpls.2021.563953 34539683
    [Google Scholar]
  12. WellsK.M. HeK. PandeyA. Brucella activates the host RIDD pathway to subvert BLOS1-directed immune defense.eLife202211e7362510.7554/eLife.73625 35587649
    [Google Scholar]
  13. ChiJ.X. Research on the mechanism of soybean resistance to infection using machine learning Methods.Front. Genet.20211210.3389/fgene.2021.634635
    [Google Scholar]
  14. YanW. TangX. WangL. Applicability analysis of immunotherapy for lung cancer patients based on deep learning.Methods202220514915610.1016/j.ymeth.2022.07.004 35809770
    [Google Scholar]
  15. LiuT. SalgueroP. PetekM. PaintOmics 4: New tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases.Nucleic Acids Res.202250W1W551-910.1093/nar/gkac352 35609982
    [Google Scholar]
  16. LanY. SunR. OuyangJ. AtMAD: Arabidopsis thaliana multi-omics association database.Nucleic Acids Res.202149D1D1445D145110.1093/nar/gkaa1042 33219693
    [Google Scholar]
  17. ShenR. OlshenA.B. LadanyiM. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis.Bioinformatics200925222906291210.1093/bioinformatics/btp543 19759197
    [Google Scholar]
  18. ZhaoE.S. Construction of sRNA regulatory network for infecting rice based on multi-omics data.Front. Genet.20211276391510.3389/fgene.2021.763915 34868245
    [Google Scholar]
  19. ChangH. ZhangH. ZhangT. A multi-level iterative Bi-clustering method for discovering miRNA co-regulation network of abiotic stress tolerance in soybeans.Front Plant Sci20221386079110.3389/fpls.2022.860791 35463453
    [Google Scholar]
  20. ZhaoE. DongL. ZhaoH. A relationship prediction method for Magnaporthe oryzae–rice multi-omics data based on WGCNA and graph autoencoder.J. Fungi2023910100710.3390/jof9101007 37888263
    [Google Scholar]
  21. ChiJ. SongS. ZhangH. LiuY. ZhaoH. DongL. Corrigendum: Research on the mechanism of soybean resistance to Phytophthora infection using machine learning methods.Front. Genet.202213106292810.3389/fgene.2022.1062928 36353108
    [Google Scholar]
  22. ZhangH. GERWR: Identifying the key pathogenicity-associated srnas of Magnaporthe oryzae infection in rice based on graph embedding and random walk with restart.IEEE/ACM Trans. Comput. Biol. Bioinformatics202311410.1109/TCBB.2023.3258448
    [Google Scholar]
  23. WangC. XuS. SunD. LiuZ.P. ActivePPI: Quantifying protein–protein interaction network activity with Markov random fields.Bioinformatics2023399btad56710.1093/bioinformatics/btad567 37698984
    [Google Scholar]
  24. MaoG. PangZ. ZuoK. Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks.Brief. Bioinform.2023246bbad41410.1093/bib/bbad414 37985457
    [Google Scholar]
  25. WimalagunasekaraS.S. WeeramanJ.W.J.K. TirimanneS. FernandoP.C. Protein-protein interaction (PPI) network analysis reveals important hub proteins and sub-network modules for root development in rice (Oryza sativa).J. Genet. Eng. Biotechnol.20232116910.1186/s43141‑023‑00515‑8 37246172
    [Google Scholar]
  26. LiX. PengJ. YiC. The epitranscriptome of small non-coding RNAs.Noncoding RNA Res.20216416717310.1016/j.ncrna.2021.10.002 34820590
    [Google Scholar]
  27. ChenC. ZengZ. LiuZ. XiaR. Small RNAs, emerging regulators critical for the development of horticultural traits.Hortic. Res.2018516310.1038/s41438‑018‑0072‑8 30245834
    [Google Scholar]
  28. YooS.M. NaD. LeeS.Y. Design and use of synthetic regulatory small RNAs to control gene expression in Escherichia coli.Nat. Protoc.2013891694170710.1038/nprot.2013.105 23928502
    [Google Scholar]
  29. RamanV. SimonS.A. DemirciF. NakanoM. MeyersB.C. DonofrioN.M. Small RNA functions are required for growth and development of Magnaporthe oryzae.Mol. Plant Microbe Interact.201730751753010.1094/MPMI‑11‑16‑0236‑R 28504560
    [Google Scholar]
  30. FengQ. LiY. ZhaoZ.X. WangW.M. Contribution of small RNA pathway to interactions of rice with pathogens and insect pests.Rice (N. Y.)20211411510.1186/s12284‑021‑00458‑z 33547972
    [Google Scholar]
  31. DaiX. ZhuangZ. ZhaoP.X. psRNATarget: A plant small RNA target analysis server (2017 release).Nucleic Acids Res.201846W1W49-5410.1093/nar/gky316 29718424
    [Google Scholar]
  32. BonnetE. HeY. BilliauK. de PeerV.Y. TAPIR, a web server for the prediction of plant microRNA targets, including target mimics.Bioinformatics201026121566156810.1093/bioinformatics/btq233 20430753
    [Google Scholar]
  33. JonesP. BinnsD. ChangH.Y. InterProScan 5: Genome-scale protein function classification.Bioinformatics20143091236124010.1093/bioinformatics/btu031 24451626
    [Google Scholar]
  34. Garcia-GarciaJ. SchlekerS. Klein-SeetharamanJ. OlivaB. BIPS: BIANA interolog prediction server. A tool for protein–protein interaction inference.Nucleic Acids Res.201240W1W147-5110.1093/nar/gks553 22689642
    [Google Scholar]
  35. LiZ.G. HeF. ZhangZ. PengY.L. Prediction of protein–protein interactions between Ralstonia solanacearum and Arabidopsis thaliana.Amino Acids20124262363237110.1007/s00726‑011‑0978‑z 21786137
    [Google Scholar]
  36. PetersenT.N. BrunakS. von HeijneG. NielsenH. SignalP 4.0: Discriminating signal peptides from transmembrane regions.Nat. Methods201181078578610.1038/nmeth.1701 21959131
    [Google Scholar]
  37. SavojardoC. MartelliP.L. FariselliP. ProfitiG. CasadioR. BUSCA: An integrative web server to predict subcellular localization of proteins.Nucleic Acids Res.201846W1W459-6610.1093/nar/gky320 29718411
    [Google Scholar]
  38. KawaharaY. OonoY. KanamoriH. MatsumotoT. ItohT. MinamiE. Simultaneous RNA-seq analysis of a mixed transcriptome of rice and blast fungus interaction.PLoS One2012711e4942310.1371/journal.pone.0049423 23139845
    [Google Scholar]
  39. KroghA. LarssonB. von HeijneG. SonnhammerE.L.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes11Edited by F.Cohen. J Mol Biol200130535678010.1006/jmbi.2000.4315 11152613
    [Google Scholar]
  40. CaiH. ZhengV.W. ChangK.C.C. A comprehensive survey of graph embedding: Problems, techniques, and applications.IEEE Trans. Knowl. Data Eng.20183091616163710.1109/TKDE.2018.2807452
    [Google Scholar]
  41. LiJ.Z. ZhuJ. ZhangB. Discriminative deep random walk for network classification.Proceedings of the 54th Annual Meeting of the Association for Computational LinguisticsBerlin, GermanyAugust 7-12, 20161004101310.18653/v1/P16‑1095
    [Google Scholar]
  42. WangL. ZhangH. ChangH-W. GAEBic: A novel biclustering analysis method for mirna-targeted gene data based on graph autoencoder.J. Comput. Sci. Technol.202136229930910.1007/s11390‑021‑0804‑3
    [Google Scholar]
  43. CaoZ. WangL.L. de MeloG. Link prediction via subgraph embedding-based convex matrix completion.Proceedings of the AAAI Conference on Artificial Intelligence.2018-04-29322803281010.1609/aaai.v32i1.11655
    [Google Scholar]
  44. LuF CongP HuangX Utilizing textual information in knowledge graph embedding: A survey of methods and applications.IEEE Access20208110.1109/ACCESS.2020.2995074
    [Google Scholar]
  45. GaoM. BiNE: Bipartite network embeddingAcm/Sigir ProceedingsAnn Arbor, MI, USA, July 8–12201871572410.1145/3209978.3209987
    [Google Scholar]
  46. PerozziB. Al-RfouR. SkienaS. DeepWalk: Online learning of social representations.Proceedings of the 20th Acm Sigkdd International Conference on Knowledge Discovery and Data Mining (Kdd'14), 24 August201470171010.1145/2623330.2623732
    [Google Scholar]
  47. GroverA. LeskovecJ. node2vec: Scalable Feature Learning for Networks. Kdd’16 Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining.San FranciscoCA, USA, August 13 - 17201685586410.1145/2939672.2939754
    [Google Scholar]
  48. LiuW.Y. Principled Multilayer Network Embedding.2017 IEEE International Conference on Data Mining Workshops (ICDMW)New Orleans, LA, USA18-21 November 201713414110.1109/ICDMW.2017.23
    [Google Scholar]
  49. LiuQ. XueJ. ZhangL. JiangL. LiC. Unveiling the roles of LncRNA MOIRAs in rice blast disease resistance.Genes20241518210.3390/genes15010082 38254971
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936305102240705052723
Loading
/content/journals/cbio/10.2174/0115748936305102240705052723
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher's website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test