Skip to content
2000
Volume 20, Issue 10
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

The coronavirus disease COVID-19, caused by the SARS-CoV-2 virus, was a global pandemic that happened in March of 2020. The virus was mutated into several widely-spread strains such as Alpha, Beta, Gamma, Delta, and Omicron, and is continuing its unpredictable mutation.

Methods

Multi-Epitope Vaccine (MEV) is one type of recombinant vaccine with its sequence containing multiple epitopes and is considered as an effective way to fight against the infectious disease. Previous approaches to MEV construction have been constrained by their inability to predict molecular conformation structures accurately, consequently leading to inaccurate property evaluations. In this work, we designed a novel MEV for the future prevention of COVID-19 or similar diseases. We set strict thresholds to screen for epitope candidates in order to construct highly effective MEV and use the latest ColabFold (a modified version of AlphaFold2) to predict accurate tertiary structures of the MEV.

Results

We especially studied epitopes from the main proteins of SARS-CoV-2 (., the envelope, membrane, nucleo-, and spike proteins) that can provoke immunity response of B-cells, helper T-cells (Th), and cytotoxic T-cells (CTL), then we combined them through amino acid linkers to construct the MEV. We evaluated the vaccine in terms of its physicochemical properties, population coverage, safety for use, secondary and tertiary structure, docking immunity response, and immu nity response eliciting capability.

Conclusion

These assessments demonstrate that our proposed vaccine can elicit effective immune responses and it is safe to use with a high population coverage.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936303461240827061629
2024-09-26
2025-12-10
Loading full text...

Full text loading...

References

  1. LuR. ZhaoX. LiJ. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.Lancet20203951022456557410.1016/S0140‑6736(20)30251‑8 32007145
    [Google Scholar]
  2. ZhuN. ZhangD. WangW. A novel coronavirus from patients with pneumonia in china, 2019.N. Engl. J. Med.2020382872773310.1056/NEJMoa2001017 31978945
    [Google Scholar]
  3. ChanJ.F.W. KokK.H. ZhuZ. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan.Emerg. Microbes Infect.20209122123610.1080/22221751.2020.1719902 31987001
    [Google Scholar]
  4. HuB. GuoH. ZhouP. ShiZ.L. Characteristics of SARS-CoV-2 and COVID-19.Nat. Rev. Microbiol.202119314115410.1038/s41579‑020‑00459‑7 33024307
    [Google Scholar]
  5. ZipetoD. PalmeiraJ.F. ArgañarazG.A. ArgañarazE.R. Ace2/adam17/tmprss2 interplay may be the main risk factor for covid-19.Front. Immunol.20201157674510.3389/fimmu.2020.576745 33117379
    [Google Scholar]
  6. ScudellariM. How the coronavirus infects cells — and why Delta is so dangerous.Nature2021595786964064410.1038/d41586‑021‑02039‑y 34321669
    [Google Scholar]
  7. FehrA.R. PerlmanS. Coronaviruses: An overview of their replication and pathogenesis.Methods Mol. Biol.2015128212310.1007/978‑1‑4939‑2438‑7_1 25720466
    [Google Scholar]
  8. HuangY. YangC. XuX. XuW. LiuS. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19.Acta Pharmacol. Sin.20204191141114910.1038/s41401‑020‑0485‑4 32747721
    [Google Scholar]
  9. RashidF. XieZ. SulemanM. ShahA. KhanS. LuoS. Roles and functions of SARS-CoV-2 proteins in host immune evasion.Front. Immunol.20221394075610.3389/fimmu.2022.940756 36003396
    [Google Scholar]
  10. XiaH. CaoZ. XieX. Evasion of type I interferon by SARS-COV-2.Cell Rep.202033110823410.1016/j.celrep.2020.108234 32979938
    [Google Scholar]
  11. TutsoyO. TanrikuluM.Y. Priority and age specific vaccination algorithm for the pandemic diseases: A comprehensive parametric prediction model.BMC Med. Inform. Decis. Mak.2022221410.1186/s12911‑021‑01720‑6 34991566
    [Google Scholar]
  12. TutsoyO. Graph theory based large-scale machine learning with multi-dimensional con- strained optimization approaches for exact epidemiological modelling of pandemic diseases.IEEE Trans. Pattern Anal. Mach. Intell.20234589836984510.1109/TPAMI.2023.3256421 37028303
    [Google Scholar]
  13. MatrajtL. EatonJ. LeungT. BrownE.R. Vaccine optimization for COVID-19: Who to vaccinate first?Sci. Adv.202176eabf137410.1126/sciadv.abf1374 33536223
    [Google Scholar]
  14. CallawayE. Omicron likely to weaken COVID vaccine protection.Nature2021600788936736810.1038/d41586‑021‑03672‑3 34880488
    [Google Scholar]
  15. ChenJ. WangP. YuanL. A live attenuated virus-based intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2.Sci. Bull. (Beijing)202267131372138710.1016/j.scib.2022.05.018 35637645
    [Google Scholar]
  16. LiM. WangH. TianL. COVID-19 vaccine development: Milestones, lessons and prospects.Signal Transduct. Target. Ther.20227114610.1038/s41392‑022‑00996‑y 35504917
    [Google Scholar]
  17. HasanpourghadiM. NovikovM. ErtlH.C.J. Covid-19 vaccines based on adenovirus vectors.Trends Biochem. Sci.202146542943010.1016/j.tibs.2021.03.002 33810926
    [Google Scholar]
  18. ImaiM. Iwatsuki-HorimotoK. HattaM. Syrian hamsters as a small animal model for SARS-CoV-2 infection and countermeasure development.Proc. Natl. Acad. Sci. USA202011728165871659510.1073/pnas.2009799117 32571934
    [Google Scholar]
  19. FangE. LiuX. LiM. Advances in COVID-19 mRNA vaccine development.Signal Transduct. Target. Ther.2022719410.1038/s41392‑022‑00950‑y 35322018
    [Google Scholar]
  20. VerbekeR. LentackerI. De SmedtS.C. DewitteH. The dawn of mRNA vaccines: The COVID-19 case.J. Control. Release202133351152010.1016/j.jconrel.2021.03.043 33798667
    [Google Scholar]
  21. SzabóG.T. MahinyA.J. VlatkovicI. COVID-19 mRNA vaccines: Platforms and current developments.Mol. Ther.20223051850186810.1016/j.ymthe.2022.02.016 35189345
    [Google Scholar]
  22. YadavT. SrivastavaN. MishraG. Recombinant vaccines for COVID-19.Hum. Vaccin. Immunother.202016122905291210.1080/21645515.2020.1820808 33232211
    [Google Scholar]
  23. GebreM.S. BritoL.A. TostanoskiL.H. EdwardsD.K. CarfiA. BarouchD.H. Novel approaches for vaccine development.Cell202118461589160310.1016/j.cell.2021.02.030 33740454
    [Google Scholar]
  24. BrisseM. VrbaS.M. KirkN. LiangY. LyH. Emerging concepts and technologies in vaccine development.Front. Immunol.20201158307710.3389/fimmu.2020.583077 33101309
    [Google Scholar]
  25. ClemA. Fundamentals of vaccine immunology.J. Glob. Infect. Dis.201131737810.4103/0974‑777X.77299 21572612
    [Google Scholar]
  26. UlmerJ.B. ValleyU. RappuoliR. Vaccine manufacturing: Challenges and solutions.Nat. Biotechnol.200624111377138310.1038/nbt1261 17093488
    [Google Scholar]
  27. ExclerJ.L. SavilleM. BerkleyS. KimJ.H. Vaccine development for emerging infectious diseases.Nat. Med.202127459160010.1038/s41591‑021‑01301‑0 33846611
    [Google Scholar]
  28. SinghM. O’HaganD. Advances in vaccine adjuvants.Nat. Biotechnol.199917111075108110.1038/15058 10545912
    [Google Scholar]
  29. SanjuánR. Domingo-CalapP. Mechanisms of viral mutation.Cell. Mol. Life Sci.201673234433444810.1007/s00018‑016‑2299‑6 27392606
    [Google Scholar]
  30. DomingoE. García-CrespoC. Lobo-VegaR. PeralesC. Mutation rates, mutation fre- quencies, and proofreading-repair activities in RNA virus genetics.Viruses2021139188210.3390/v13091882 34578463
    [Google Scholar]
  31. CaiX. LanT. PingP. OliverB. LiJ. Intra-host co-existing strains of sars-cov-2 reference genome uncovered by exhaustive computational search.Viruses2023155106510.3390/v15051065 37243151
    [Google Scholar]
  32. TayJ.H. PorterA.F. WirthW. DucheneS. The emergence of sars-cov-2 variants of concern is driven by acceleration of the substitution rate.Mol. Biol. Evol.2022392msac01310.1093/molbev/msac013 35038741
    [Google Scholar]
  33. KooninE.V. DoljaV.V. KrupovicM. The logic of virus evolution.Cell Host Microbe202230791792910.1016/j.chom.2022.06.008 35834963
    [Google Scholar]
  34. LanT. SuS. PingP. Generating mutants of monotone affinity towards stronger protein complexes through adversarial learning.Nat. Mach. Intell.20246331532510.1038/s42256‑024‑00803‑z
    [Google Scholar]
  35. KimuraI. Virological characteristics of the SARS-CoV-2 Omicron BA.2 subvariants, including BA.4 and BA.5.Cell20221852139924007.e16
    [Google Scholar]
  36. NegahdaripourM. GolkarN. HajighahramaniN. KianpourS. NezafatN. GhasemiY. Harnessing self-assembled peptide nanoparticles in epitope vaccine design.Biotechnol. Adv.201735557559610.1016/j.biotechadv.2017.05.002 28522213
    [Google Scholar]
  37. ZhangL. Multi-epitope vaccines: A promising strategy against tumors and viral infections.Cell. Mol. Immunol.201815218218410.1038/cmi.2017.92 28890542
    [Google Scholar]
  38. NazA. ShahidF. ButtT.T. AwanF.M. AliA. MalikA. Designing multi-epitope vaccines to combat emerging coronavirus disease 2019 (covid-19) by employing immuno-informatics approach.Front. Immunol.202011166310.3389/fimmu.2020.01663 32754160
    [Google Scholar]
  39. OyarzunP. EllisJ.J. Gonzalez-GalarzaF.F. A bioinformatics tool for epitope-based vaccine design that accounts for human ethnic diversity: Application to emerging infectious diseases.Vaccine201533101267127310.1016/j.vaccine.2015.01.040 25629524
    [Google Scholar]
  40. ZhouW.Y. ShiY. WuC. Therapeutic efficacy of a multi-epitope vaccine against Helicobacter pylori infection in BALB/c mice model.Vaccine200927365013501910.1016/j.vaccine.2009.05.009 19446591
    [Google Scholar]
  41. SamadA. Designing a multi-epitope vaccine against sars-cov-2: An immunoinformatics approach.J. Biomol. Struct. Dyn.2020117 32677533
    [Google Scholar]
  42. AlshabrmiF.M. AlatawiE.A. Subtractive proteomics-guided vaccine targets identification and designing of multi-epitopes vaccine for immune response instigation against Burkholderia pseudomallei.Int. J. Biol. Macromol.2024270Pt 113210510.1016/j.ijbiomac.2024.132105 38710251
    [Google Scholar]
  43. AarthyM. PandiyanG.N. ParamasivanR. KumarA. GuptaB. Identification and prioritisation of potential vaccine candidates using subtractive proteomics and designing of a multi-epitope vaccine against Wuchereria bancrofti.Sci. Rep.2024141197010.1038/s41598‑024‑52457‑x 38263422
    [Google Scholar]
  44. SuhrbierA. Multi-epitope DNA vaccines.Immunol. Cell Biol.199775440240810.1038/icb.1997.63 9315485
    [Google Scholar]
  45. TarrahimofradH. RahimnahalS. ZamaniJ. JahangirianE. AminzadehS. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9.Sci. Rep.20211112448510.1038/s41598‑021‑03932‑2 34966175
    [Google Scholar]
  46. NaveedM. SherazM. AminA. Designing a novel peptide-based multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant providencia heimbachae.Vaccines (Basel)2022108130010.3390/vaccines10081300 36016188
    [Google Scholar]
  47. EnayatkhaniM. HasaniazadM. FaeziS. Reverse vaccinology approach to design a novel multi-epitope vaccine candidate against COVID-19: An in silico study.J. Biomol. Struct. Dyn.20213982857287210.1080/07391102.2020.1756411 32295479
    [Google Scholar]
  48. MirditaM. SchützeK. MoriwakiY. HeoL. OvchinnikovS. SteineggerM. ColabFold: Making protein folding accessible to all.Nat. Methods202219667968210.1038/s41592‑022‑01488‑1 35637307
    [Google Scholar]
  49. DoytchinovaI.A. FlowerD.R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines.BMC Bioinformatics200781410.1186/1471‑2105‑8‑4 17207271
    [Google Scholar]
  50. LundegaardC. LundO. NielsenM. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers.Bioinformatics200824111397139810.1093/bioinformatics/btn128 18413329
    [Google Scholar]
  51. LundegaardC. LamberthK. HarndahlM. BuusS. LundO. NielsenM. NetMHC-3.0: Accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11.Nucleic Acids Res.200836Suppl. 2W509-1210.1093/nar/gkn202 18463140
    [Google Scholar]
  52. ReynissonB. AlvarezB. PaulS. PetersB. NielsenM. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data.Nucleic Acids Res.202048W1W449-5410.1093/nar/gkaa379 32406916
    [Google Scholar]
  53. SturnioloT. BonoE. DingJ. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices.Nat. Biotechnol.199917655556110.1038/9858 10385319
    [Google Scholar]
  54. WangP. SidneyJ. DowC. MothéB. SetteA. PetersB. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach.PLOS Comput. Biol.200844e100004810.1371/journal.pcbi.1000048 18389056
    [Google Scholar]
  55. SahaS. RaghavaG.P.S. Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network.Proteins2006651404810.1002/prot.21078 16894596
    [Google Scholar]
  56. BuiH.H. SidneyJ. LiW. FussederN. SetteA. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines.BMC Bioinformatics20078136110.1186/1471‑2105‑8‑361 17897458
    [Google Scholar]
  57. BuiH.H. SidneyJ. DinhK. SouthwoodS. NewmanM.J. SetteA. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics20067115310.1186/1471‑2105‑7‑153 16545123
    [Google Scholar]
  58. NguyenM.N. KrutzN.L. LimviphuvadhV. LopataA.L. GerberickG.F. Maurer-StrohS. AllerCatPro 2.0: A web server for predicting protein allergenicity potential.Nucleic Acids Res.202250W1W36-4310.1093/nar/gkac446
    [Google Scholar]
  59. GuptaS. KapoorP. ChaudharyK. GautamA. KumarR. RaghavaG.P.S. In silico approach for predicting toxicity of peptides and proteins.PLoS One201389e7395710.1371/journal.pone.0073957 24058508
    [Google Scholar]
  60. ArtimoP. JonnalageddaM. ArnoldK. ExPASy: SIB bioinformatics resource portal.Nucleic Acids Res.201240W597-603 22661580
    [Google Scholar]
  61. DhandaS.K. VirP. RaghavaG.P.S. Designing of interferon-gamma inducing MHC class-II binders.Biol. Direct2013813010.1186/1745‑6150‑8‑30 24304645
    [Google Scholar]
  62. McGuffinL.J. BrysonK. JonesD.T. The PSIPRED protein structure prediction server.Bioinformatics200016440440510.1093/bioinformatics/16.4.404 10869041
    [Google Scholar]
  63. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  64. LeeG.R. WonJ. HeoL. SeokC. GalaxyRefine2: Simultaneous refinement of inaccurate local regions and overall protein structure.Nucleic Acids Res.201947W1W451-510.1093/nar/gkz288 31001635
    [Google Scholar]
  65. WiedersteinM SipplMJ ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins.Nucleic Acids Res200735Web ServerW4071010.1093/nar/gkm29017517781
    [Google Scholar]
  66. ColovosC. YeatesT.O. Verification of protein structures: Patterns of nonbonded atomic interactions.Protein Sci.1993291511151910.1002/pro.5560020916 8401235
    [Google Scholar]
  67. LaskowskiR.A. MacArthurM.W. MossD.S. ThorntonJ.M. PROCHECK: A program to check the stereochemical quality of protein structures.J. Appl. Cryst.199326228329110.1107/S0021889892009944
    [Google Scholar]
  68. YanY. TaoH. HeJ. HuangS.Y. The HDOCK server for integrated protein-protein docking.Nat. Protoc.20201551829185210.1038/s41596‑020‑0312‑x 32269383
    [Google Scholar]
  69. GroteA. HillerK. ScheerM. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host.Nucleic Acids Res.200533W526-3110.1093/nar/gki376 15980527
    [Google Scholar]
  70. CastiglioneF. DucaK. JarrahA. LaubenbacherR. HochbergD. Thorley-LawsonD. Simulating epstein-barr virus infection with C-ImmSim.Bioinformatics200723111371137710.1093/bioinformatics/btm044 17341499
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936303461240827061629
Loading
/content/journals/cbio/10.2174/0115748936303461240827061629
Loading

Data & Media loading...

Supplements

Supplementary material, along with the published article, is available on the publisher’s website.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test