Skip to content
2000
Volume 20, Issue 6
  • ISSN: 1574-8936
  • E-ISSN: 2212-392X

Abstract

Introduction

Traditional Chinese Medicine (TCM) has been extensively employed in the treatment of Monkeypox Virus (MPXV) infections, and it has historically played a significant role in combating diseases like contagious pox-like viral diseases in China.

Methods

Various traditional Chinese medicine (TCM) therapies have been recommended for patients with monkeypox virus (MPXV). However, as far as we know, there is no comprehensive database dedicated to preserving and coordinating TCM remedies for combating MPXV. To address this gap, we introduce TCM@MPXV, a carefully curated repository of research materials focusing on formulations with anti-MPXV properties. Importantly, TCM@MPXV extends its scope beyond herbal remedies, encompassing mineral-based medicines as well.

Results

The current iteration of TCM@MPXV boasts an impressive array of features, including (1) Documenting over 42 types of TCM herbs, with more than 27 unique herbs; (2) Recording over 285 bioactivity compounds within these herbs; (3) Launching a user-friendly web server for the docking, analysis, and visualization of 2D or 3D molecular structures; and (4) Providing 3D structures of druggable proteins of MPXV.

Conclusion

To summarize, TCM@MPXV presents a user-friendly and effective platform for recording, querying, and viewing anti-MPXV TCM resources and will contribute to the development and explanation of novel anti-MPXV mechanisms of action to aid in the ongoing battle against monkeypox. TCM@MPXV is accessible for academic use at http://101.34.238.132:5000/.

Loading

Article metrics loading...

/content/journals/cbio/10.2174/0115748936299878240723044438
2024-08-01
2025-09-11
Loading full text...

Full text loading...

References

  1. HraibM. JouniS. AlbitarM.M. AlaidiS. AlshehabiZ. The outbreak of monkeypox 2022: An overview.Ann. Med. Surg.20227910406910.1016/j.amsu.2022.104069 35860140
    [Google Scholar]
  2. KalerJ. HussainA. FloresG. KheiriS. DesrosiersD. Monkeypox: A comprehensive review of transmission, pathogenesis, and manifestation.Cureus2022147e2653110.7759/cureus.26531 35928395
    [Google Scholar]
  3. KaragozA. TombulogluH. AlsaeedM. Monkeypox (mpox) virus: Classification, origin, transmission, genome organization, antiviral drugs, and molecular diagnosis.J. Infect. Public Health202316453154110.1016/j.jiph.2023.02.003 36801633
    [Google Scholar]
  4. RizkJ.G. LippiG. HenryB.M. ForthalD.N. RizkY. Prevention and treatment of monkeypox.Drugs202282995796310.1007/s40265‑022‑01742‑y 35763248
    [Google Scholar]
  5. TuY. Artemisinin—a gift from traditional Chinese medicine to the world (Nobel lecture).Angew. Chem. Int. Ed.20165535102101022610.1002/anie.201601967 27488942
    [Google Scholar]
  6. YangY. IslamM.S. WangJ. LiY. ChenX. Traditional Chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective.Int. J. Biol. Sci.202016101708171710.7150/ijbs.45538 32226288
    [Google Scholar]
  7. Bajo-MoralesJ. Prieto-PrietoJ.C. HerreraL.J. RojasI. Castillo-SecillaD. COVID-19 biomarkers recognition classification using intelligent systems.Curr. Bioinform.202217542643910.2174/1574893617666220328125029
    [Google Scholar]
  8. SharmaS. RaniR. KalraN. Genomic characterization of emerging SARS-CoV-2: A systematic review.Curr. Bioinform.202318537540810.2174/1574893618666230228115423
    [Google Scholar]
  9. YuL. YangK. HeX. LiM. GaoL. ZhaY. Repositioning linifanib as a potent anti-necroptosis agent for sepsis.Cell Death Discov.2023915710.1038/s41420‑023‑01351‑y 36765040
    [Google Scholar]
  10. WangJ. XuC. WongY.K. Artemisinin, the magic drug discovered from traditional Chinese medicine.Engineering201951323910.1016/j.eng.2018.11.011
    [Google Scholar]
  11. ZhaoZ. LiY. ZhouL. Prevention and treatment of COVID-19 using Traditional Chinese Medicine: A review.Phytomedicine20218515330810.1016/j.phymed.2020.153308 32843234
    [Google Scholar]
  12. WenC.C. ShyurL.F. JanJ.T. Traditional Chinese medicine herbal extracts of Cibotium barometz, Gentiana scabra, Dioscorea batatas, Cassia tora, and Taxillus chinensis inhibit SARS-CoV replication.J. Tradit. Complement. Med.201111415010.1016/S2225‑4110(16)30055‑4 24716104
    [Google Scholar]
  13. BaoL. LiT. XiaX. ZhuK. LiH. YangX. How does working from home affect developer productivity? — A case study of Baidu during the COVID-19 pandemic.Sci. China Inf. Sci.202265414210210.1007/s11432‑020‑3278‑4
    [Google Scholar]
  14. Bajo-MoralesJ. Castillo-SecillaD. HerreraL.J. CabaO. PradosJ.C. RojasI. Predicting COVID-19 severity integrating rna-seq data using machine learning techniques.Curr. Bioinform.202318322123110.2174/1574893617666220718110053
    [Google Scholar]
  15. ZhangZ. CuiF. CaoC. WangQ. ZouQ. Single-cell RNA analysis reveals the potential risk of organ-specific cell types vulnerable to SARS-CoV-2 infections.Comput. Biol. Med.202214010509210.1016/j.compbiomed.2021.105092 34864302
    [Google Scholar]
  16. GhoshB. DasT. DasG. ChowdhuryN. BagchiA. GhoshZ. Mapping drug-gene interactions to identify potential drug candidates targeting envelope protein in SARS-CoV-2 infection.Curr. Bioinform.202318976077310.2174/1574893618666230605120640
    [Google Scholar]
  17. ZhouL. WangY. LiD. HanM. ShiG. LiQ. Consideration of monkeypox surveillance in China, 2022.China CDC Wkly2022441924928 36426291
    [Google Scholar]
  18. RabaanA.A. AbasA.H. TalleiT.E. Monkeypox outbreak 2022: What we know so far and its potential drug targets and management strategies.J. Med. Virol.2023951e2830610.1002/jmv.28306 36372558
    [Google Scholar]
  19. ChenL. YuL. GaoL. Potent antibiotic design via guided search from antibacterial activity evaluations.Bioinformatics2023392btad05910.1093/bioinformatics/btad059 36707990
    [Google Scholar]
  20. RussoA.T. GrosenbachD.W. ChinsangaramJ. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications.Expert Rev. Anti Infect. Ther.202119333134410.1080/14787210.2020.1819791 32882158
    [Google Scholar]
  21. AndreiG. FitenP. KrečmerováM. OpdenakkerG. TopalisD. SnoeckR. Poxviruses bearing DNA polymerase mutations show complex patterns of cross-resistance.Biomedicines202210358010.3390/biomedicines10030580 35327382
    [Google Scholar]
  22. PrichardM.N. KeithK.A. JohnsonM.P. Selective phosphorylation of antiviral drugs by vaccinia virus thymidine kinase.Antimicrob. Agents Chemother.20075151795180310.1128/AAC.01447‑06 17325220
    [Google Scholar]
  23. MirditaM. SchützeK. MoriwakiY. HeoL. OvchinnikovS. SteineggerM. ColabFold: Making protein folding accessible to all.Nat. Methods202219667968210.1038/s41592‑022‑01488‑1 35637307
    [Google Scholar]
  24. WaterhouseA. BertoniM. BienertS. SWISS-MODEL: homology modelling of protein structures and complexes.Nucleic Acids Res.201846W1W296-30310.1093/nar/gky427 29788355
    [Google Scholar]
  25. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174-8110.1093/nar/gkv342 25883148
    [Google Scholar]
  26. TangF. ChaoJ. WeiY. HAlign 3: Fast multiple alignment of ultra-large numbers of similar DNA/RNA sequences.Mol. Biol. Evol.2022398msac16610.1093/molbev/msac166 35915051
    [Google Scholar]
  27. WanS. ZouQ. HAlign-II: efficient ultra-large multiple sequence alignment and phylogenetic tree reconstruction with distributed and parallel computing.Algorithms Mol. Biol.20171212510.1186/s13015‑017‑0116‑x 29026435
    [Google Scholar]
  28. ZouQ. HuQ. GuoM. WangG. HAlign: Fast multiple similar DNA/RNA sequence alignment based on the centre star strategy.Bioinformatics201531152475248110.1093/bioinformatics/btv177 25812743
    [Google Scholar]
  29. KawabataT. Detection of cave pockets in large molecules: Spaces into which internal probes can enter, but external probes from outside cannot.Biophys. Physicobiol.201916039140610.2142/biophysico.16.0_391 31984193
    [Google Scholar]
  30. XiongG. WuZ. YiJ. ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  31. FangS. DongL. LiuL. HERB: A high-throughput experiment- and reference-guided database of traditional Chinese medicine.Nucleic Acids Res.202149D1D1197D120610.1093/nar/gkaa1063 33264402
    [Google Scholar]
  32. RuJ. LiP. WangJ. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  33. EzatA.A. AbduljalilJ.M. ElghareibA.M. SamirA. ElfikyA.A. The discovery of novel antivirals for the treatment of mpox: Is drug repurposing the answer?Expert Opin. Drug Discov.202318555156110.1080/17460441.2023.2199980 37032577
    [Google Scholar]
/content/journals/cbio/10.2174/0115748936299878240723044438
Loading
/content/journals/cbio/10.2174/0115748936299878240723044438
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test