Skip to content
2000
image of Cachexia: Unraveling its Complex Pathophysiology and Novel Therapeutic Approaches

Abstract

Cachexia is a complex, multifactorial syndrome marked by progressive weight loss, muscle wasting, and metabolic disturbances. It presents significant challenges in clinical practice and contributes to 20% of all cancer-related deaths. While cachexia is commonly linked to cancer, it is also associated with a range of chronic conditions, including chronic heart failure, chronic kidney disease, and autoimmune disorders. Additionally, cachexia is not limited to cancer. Still, it can also occur in end-stage or chronic diseases such as AIDS, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis, tuberculosis, and gastrointestinal diseases. This article aims to explore the intricate pathophysiological mechanisms underlying cachexia and discuss emerging therapeutic strategies for its management. This comprehensive review of the literature and clinical studies explores the intricate interactions between inflammation, disrupted metabolism, hormonal imbalances, and immune dysfunction in cachexia. Furthermore, this review highlights the importance of early detection and intervention in improving the devastating consequences of cachexia on patient outcomes. Finally, this review presents the latest advancements in therapeutic approaches, including pharmacological interventions, nutritional support, exercise regimens, and novel targeted therapies, while underscoring the need for multidisciplinary and personalized treatment strategies.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098355767250325074021
2025-04-23
2025-09-09
Loading full text...

Full text loading...

References

  1. Ferrer M. Anthony T.G. Ayres J.S. Biffi G. Brown J.C. Caan B.J. Cespedes Feliciano E.M. Coll A.P. Dunne R.F. Goncalves M.D. Grethlein J. Heymsfield S.B. Hui S. Jamal-Hanjani M. Lam J.M. Lewis D.Y. McCandlish D. Mustian K.M. O’Rahilly S. Perrimon N. White E.P. Janowitz T. Cachexia: A systemic consequence of progressive, unresolved disease. Cell 2023 186 9 1824 1845 10.1016/j.cell.2023.03.028 37116469
    [Google Scholar]
  2. Ni J. Zhang L. Cancer cachexia: Definition, staging, and emerging treatments. Cancer Manag. Res. 2020 12 5597 5605 10.2147/CMAR.S261585 32753972
    [Google Scholar]
  3. Nishikawa H. Goto M. Fukunishi S. Asai A. Nishiguchi S. Higuchi K. Cancer cachexia: Its mechanism and clinical significance. Int. J. Mol. Sci. 2021 22 16 8491 10.3390/ijms22168491 34445197
    [Google Scholar]
  4. De Brandt J. Beijers R.J.H.C.G. Chiles J. III Maddocks M. McDonald M.L.N. Schols A.M.W.J. Nyberg A. Update on the etiology, assessment, and management of COPD cachexia: Considerations for the clinician. Int. J. Chron. Obstruct. Pulmon. Dis. 2022 17 2957 2976 10.2147/COPD.S334228 36425061
    [Google Scholar]
  5. Baazim H. Antonio-Herrera L. Bergthaler A. The interplay of immunology and cachexia in infection and cancer. Nat. Rev. Immunol. 2022 22 5 309 321 10.1038/s41577‑021‑00624‑w 34608281
    [Google Scholar]
  6. Setiawan T. Sari I.N. Wijaya Y.T. Julianto N.M. Muhammad J.A. Lee H. Chae J.H. Kwon H.Y. Cancer cachexia: Molecular mechanisms and treatment strategies. J. Hematol. Oncol. 2023 16 1 54 10.1186/s13045‑023‑01454‑0 37217930
    [Google Scholar]
  7. Paval D.R. Patton R. McDonald J. Skipworth R.J.E. Gallagher I.J. Laird B.J. A systematic review examining the relationship between cytokines and cachexia in incurable cancer. J. Cachexia Sarcopenia Muscle 2022 13 2 824 838 10.1002/jcsm.12912 35080147
    [Google Scholar]
  8. Roeland E.J. Bohlke K. Baracos V.E. Bruera E. del Fabbro E. Dixon S. Fallon M. Herrstedt J. Lau H. Platek M. Rugo H.S. Schnipper H.H. Smith T.J. Tan W. Loprinzi C.L. Management of cancer cachexia: ASCO guideline. J. Clin. Oncol. 2020 38 21 2438 2453 10.1200/JCO.20.00611 32432946
    [Google Scholar]
  9. Argilés J.M. López-Soriano F.J. Stemmler B. Busquets S. Cancer-associated cachexia — Understanding the tumour macroenvironment and microenvironment to improve management. Nat. Rev. Clin. Oncol. 2023 20 4 250 264 10.1038/s41571‑023‑00734‑5 36806788
    [Google Scholar]
  10. Lord S.O. Johnston H.E. Samant R.S. Lai Y.C. Ubiquitylomics: An emerging approach for profiling protein ubiquitylation in skeletal muscle. J. Cachexia Sarcopenia Muscle 2024 15 6 2281 2294 10.1002/jcsm.13601 39279720
    [Google Scholar]
  11. Upadhyay A. Joshi V. The Ubiquitin tale: Current Strategies and future challenges. ACS Pharmacol. Transl. Sci. 2024 7 9 2573 2587 10.1021/acsptsci.4c00278 39296276
    [Google Scholar]
  12. Fearon K. Strasser F. Anker S.D. Bosaeus I. Bruera E. Fainsinger R.L. Jatoi A. Loprinzi C. MacDonald N. Mantovani G. Davis M. Muscaritoli M. Ottery F. Radbruch L. Ravasco P. Walsh D. Wilcock A. Kaasa S. Baracos V.E. Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 2011 12 5 489 495 10.1016/S1470‑2045(10)70218‑7 21296615
    [Google Scholar]
  13. Bozzetti F. Mariani L. Defining and classifying cancer cachexia: A proposal by the SCRINIO Working Group. JPEN J. Parenter. Enteral Nutr. 2009 33 4 361 367 10.1177/0148607108325076 19109514
    [Google Scholar]
  14. Blauwhoff-Buskermolen S. de van der Schueren M.A.E. Verheul H.M.W. Langius J.A.E. ‘Pre-cachexia’: A non-existing phenomenon in cancer? Ann. Oncol. 2014 25 8 1668 1669 10.1093/annonc/mdu178 24827129
    [Google Scholar]
  15. Honors M.A. Kinzig K.P. The role of insulin resistance in the development of muscle wasting during cancer cachexia. J. Cachexia Sarcopenia Muscle 2012 3 1 5 11 10.1007/s13539‑011‑0051‑5 22450024
    [Google Scholar]
  16. Blum D. Omlin A. Fearon K. Baracos V. Radbruch L. Kaasa S. Strasser F. Evolving classification systems for cancer cachexia: Ready for clinical practice? Support. Care Cancer 2010 18 3 273 279 10.1007/s00520‑009‑0800‑6 20076976
    [Google Scholar]
  17. Yin L. Cui J. Lin X. Li N. Fan Y. Zhang L. Liu J. Chong F. Wang C. Liang T. Liu X. Deng L. Yang M. Yu J. Wang X. Cong M. Li Z. Weng M. Yao Q. Jia P. Guo Z. Li W. Song C. Shi H. Xu H. Identifying cancer cachexia in patients without weight loss information: Machine learning approaches to address a real-world challenge. Am. J. Clin. Nutr. 2022 116 5 1229 1239 10.1093/ajcn/nqac251 36095136
    [Google Scholar]
  18. Brown L.R. Sousa M.S. Yule M.S. Baracos V.E. McMillan D.C. Arends J. Balstad T.R. Bye A. Dajani O. Dolan R.D. Fallon M.T. Greil C. Hjermstad M.J. Jakobsen G. Maddocks M. McDonald J. Ottestad I.O. Phillips I. Sayers J. Simpson M.R. Vagnildhaug O.M. Solheim T.S. Laird B.J.A. Skipworth R.J.E. Body weight and composition endpoints in cancer cachexia clinical trials: Systematic review 4 of the cachexia endpoints series. J. Cachexia Sarcopenia Muscle 2024 15 3 816 852 10.1002/jcsm.13478 38738581
    [Google Scholar]
  19. Berardi E. Madaro L. Lozanoska-Ochser B. Adamo S. Thorrez L. Bouche M. Coletti D. A pound of flesh: What cachexia is and what it is not. Diagnostics 2021 11 1 116 10.3390/diagnostics11010116 33445790
    [Google Scholar]
  20. Baba M.R. Buch S.A. Revisiting cancer cachexia: Pathogenesis, diagnosis, and current treatment approaches. Asia Pac. J. Oncol. Nurs. 2021 8 5 508 518 10.4103/apjon.apjon‑2126 34527780
    [Google Scholar]
  21. Schneider S.M. Correia M.I.T.D. Epidemiology of weight loss, malnutrition and sarcopenia: A transatlantic view. Nutrition 2020 69 110581 10.1016/j.nut.2019.110581 31622908
    [Google Scholar]
  22. Matsuo H. Sakuma K. Pathophysiology of cachexia and characteristics of dysphagia in chronic diseases. Asia Pac. J. Oncol. Nurs. 2022 9 10 100120 10.1016/j.apjon.2022.100120 36118624
    [Google Scholar]
  23. Mariean C.R. Tiucă O.M. Mariean A. Cotoi O.S. Cancer cachexia: New insights and future directions. Cancers 2023 15 23 5590 10.3390/cancers15235590 38067294
    [Google Scholar]
  24. Siff T. Parajuli P. Razzaque M.S. Atfi A. Cancer-mediated muscle cachexia: Etiology and clinical management. Trends Endocrinol. Metab. 2021 32 6 382 402 10.1016/j.tem.2021.03.007 33888422
    [Google Scholar]
  25. Balsano R. Kruize Z. Lunardi M. Comandatore A. Barone M. Cavazzoni A. Re Cecconi A.D. Morelli L. Wilmink H. Tiseo M. Garajovà I. van Zuylen L. Giovannetti E. Piccirillo R. Transforming growth factor-beta signaling in cancer-induced cachexia: From molecular pathways to the clinics. Cells 2022 11 17 2671 10.3390/cells11172671 36078078
    [Google Scholar]
  26. Lan X.Q. Deng C.J. Wang Q.Q. Zhao L.M. Jiao B.W. Xiang Y. The role of TGF-β signaling in muscle atrophy, sarcopenia and cancer cachexia. Gen. Comp. Endocrinol. 2024 353 114513 10.1016/j.ygcen.2024.114513 38604437
    [Google Scholar]
  27. Rao V.K. Das D. Taneja R. Cancer cachexia: Signaling and transcriptional regulation of muscle catabolic genes. Cancers 2022 14 17 4258 10.3390/cancers14174258 36077789
    [Google Scholar]
  28. Wyart E. Bindels L.B. Mina E. Menga A. Stanga S. Porporato P.E. Cachexia, a systemic disease beyond muscle atrophy. Int. J. Mol. Sci. 2020 21 22 8592 10.3390/ijms21228592 33202621
    [Google Scholar]
  29. Hweidi I.M. Al‐Omari A.K. Rababa M.J. Cardiac cachexia among patients with chronic heart failure: A systematic review. Nurs Forum 2021 56 4 916 924
    [Google Scholar]
  30. Rausch V. Sala V. Penna F. Porporato P.E. Ghigo A. Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis 2021 10 1 1 10.1038/s41389‑020‑00288‑6 33419963
    [Google Scholar]
  31. Soto M.E. Pérez-Torres I. Rubio-Ruiz M.E. Manzano-Pech L. Guarner-Lans V. Interconnection between cardiac cachexia and heart failure—Protective role of cardiac obesity. Cells 2022 11 6 1039 10.3390/cells11061039 35326490
    [Google Scholar]
  32. Peixoto da Silva S. Santos J.M.O. Costa e Silva M.P. Gil da Costa R.M. Medeiros R. Cancer cachexia and its pathophysiology: Links with sarcopenia, anorexia and asthenia. J. Cachexia Sarcopenia Muscle 2020 11 3 619 635 10.1002/jcsm.12528 32142217
    [Google Scholar]
  33. Malla J. Zahra A. Venugopal S. Selvamani T.Y. Shoukrie S.I. Selvaraj R. Dhanoa R.K. Hamouda R.K. Mostafa J. What role do inflammatory cytokines play in cancer cachexia? Cureus 2022 14 7 e26798 10.7759/cureus.26798 35971351
    [Google Scholar]
  34. Lu W. Xiao W. Xie W. Fu X. Pan L. Jin H. Yu Y. Zhang Y. Li Y. The role of osteokines in sarcopenia: Therapeutic directions and application prospects. Front. Cell Dev. Biol. 2021 9 735374 10.3389/fcell.2021.735374 34650980
    [Google Scholar]
  35. Yedigaryan L. Sampaolesi M. Therapeutic implications of miRNAs for muscle-wasting conditions. Cells 2021 10 11 3035 10.3390/cells10113035 34831256
    [Google Scholar]
  36. Aslam M.A. Ma E.B. Huh J.Y. Pathophysiology of sarcopenia: Genetic factors and their interplay with environmental factors. Metabolism 2023 149 155711 10.1016/j.metabol.2023.155711 37871831
    [Google Scholar]
  37. Qu Z. Zhou S. Li P. Liu C. Yuan B. Zhang S. Liu A. Natural products and skeletal muscle health. J. Nutr. Biochem. 2021 93 108619 10.1016/j.jnutbio.2021.108619 33705956
    [Google Scholar]
  38. Esposito P. Picciotto D. Battaglia Y. Costigliolo F. Viazzi F. Verzola D. Myostatin: Basic biology to clinical application. Adv. Clin. Chem. 2022 106 181 234 10.1016/bs.acc.2021.09.006 35152972
    [Google Scholar]
  39. Celichowska M. Miedziaszczyk M. Lacka K. Pharmacotherapy in cachexia: A review of endocrine abnormalities and steroid pharmacotherapy. J. Pain Palliat. Care Pharmacother. 2022 36 2 117 131 10.1080/15360288.2022.2063469 35758863
    [Google Scholar]
  40. Masi T. Patel B.M. Altered glucose metabolism and insulin resistance in cancer-induced cachexia: A sweet poison. Pharmacol. Rep. 2021 73 1 17 30 10.1007/s43440‑020‑00179‑y 33141425
    [Google Scholar]
  41. Ruan G.T. Deng L. Xie H.L. Shi J.Y. Liu X.Y. Zheng X. Chen Y. Lin S.Q. Zhang H.Y. Liu C.A. Ge Y.Z. Song M.M. Hu C.L. Zhang X.W. Yang M. Hu W. Cong M.H. Zhu L.C. Wang K.H. Shi H.P. Systemic inflammation and insulin resistance-related indicator predicts poor outcome in patients with cancer cachexia. Cancer Metab. 2024 12 1 3 10.1186/s40170‑024‑00332‑8 38273418
    [Google Scholar]
  42. Mangano G.D. Fouani M. D’Amico D. Di Felice V. Barone R. Cancer-related cachexia: The vicious circle between inflammatory cytokines, skeletal muscle, lipid metabolism and the possible role of physical training. Int. J. Mol. Sci. 2022 23 6 3004 10.3390/ijms23063004 35328423
    [Google Scholar]
  43. Siddiqui J.A. Pothuraju R. Jain M. Batra S.K. Nasser M.W. Advances in cancer cachexia: Intersection between affected organs, mediators, and pharmacological interventions. Biochim. Biophys. Acta Rev. Cancer 2020 1873 2 188359 10.1016/j.bbcan.2020.188359 32222610
    [Google Scholar]
  44. Taengthong P. Phoungpetchara I. Khongsombat O. Tunsophon S. Synergistic effects of curcumin and gamma-oryzanol solid dispersions ameliorate muscle atrophy by upregulating Nrf2 and IGF1/Insulin-Akt-mTOR activities in middle-aged rats. J. Funct. Foods 2022 99 105318 10.1016/j.jff.2022.105318
    [Google Scholar]
  45. Park M.J. Choi K.M. Interplay of skeletal muscle and adipose tissue: Sarcopenic obesity. Metabolism 2023 144 155577 10.1016/j.metabol.2023.155577 37127228
    [Google Scholar]
  46. Wang Y.F. An Z.Y. Lin D.H. Jin W.L. Targeting cancer cachexia: Molecular mechanisms and clinical study. MedComm 2022 3 4 e164 10.1002/mco2.164 36105371
    [Google Scholar]
  47. Marzetti E. Picca A. Tummolo A.M. Sinclair A.J. Morley J.E. Vellas B. Cesari M. Munshi M. Pathy’s principles and practice of geriatric medicine. Cachexia. Pathy’s Principles and Practice of Geriatric Medicine. Wiley 2022 2 1265 1271 10.1002/9781119484288.ch99
    [Google Scholar]
  48. Olson B. Marks D.L. Grossberg A.J. Diverging metabolic programmes and behaviours during states of starvation, protein malnutrition, and cachexia. J. Cachexia Sarcopenia Muscle 2020 11 6 1429 1446 10.1002/jcsm.12630 32985801
    [Google Scholar]
  49. Meza-Valderrama D. Marco E. Dávalos-Yerovi V. Muns M.D. Tejero-Sánchez M. Duarte E. Sánchez-Rodríguez D. Sarcopenia, malnutrition, and cachexia: Adapting definitions and terminology of nutritional disorders in older people with cancer. Nutrients 2021 13 3 761 10.3390/nu13030761 33652812
    [Google Scholar]
  50. Madeddu C. Busquets S. Donisi C. Lai E. Pretta A. López-Soriano F.J. Argilés J.M. Scartozzi M. Macciò A. Effect of cancer-related cachexia and associated changes in nutritional status, inflammatory status, and muscle mass on immunotherapy efficacy and survival in patients with advanced non-small cell lung cancer. Cancers 2023 15 4 1076 10.3390/cancers15041076 36831431
    [Google Scholar]
  51. Zhang X.W. Zhang Q. Song M.M. Zhang K.P. Zhang X. Ruan G.T. Yang M. Ge Y.Z. Tang M. Li X.R. Wang K.H. Shi H.P. The prognostic effect of hemoglobin on patients with cancer cachexia: A multicenter retrospective cohort study. Support. Care Cancer 2022 30 1 875 885 10.1007/s00520‑021‑06486‑1 34392426
    [Google Scholar]
  52. Shen X. Wang X. Zheng Z. Chen Y. Tan C. Liu X. Ke N. The differential effects of sarcopenia and cachexia on overall survival for pancreatic ductal adenocarcinoma patients following pancreatectomy: A retrospective study based on a large population. Cancer Med. 2023 12 9 10438 10448 10.1002/cam4.5779 36938648
    [Google Scholar]
  53. Roch B. Coffy A. Jean-Baptiste S. Palaysi E. Daures J.P. Pujol J.L. Bommart S. Cachexia - Sarcopenia as a determinant of disease control rate and survival in non-small lung cancer patients receiving immune-checkpoint inhibitors. Lung Cancer 2020 143 19 26 10.1016/j.lungcan.2020.03.003 32200137
    [Google Scholar]
  54. Xie H. Ruan G. Wei L. Zhang H. Ge Y. Zhang Q. Lin S. Song M. Zhang X. Liu X. Li X. Zhang K. Yang M. Tang M. Song C.H. Gan J. Shi H.P. Hand grip strength‐based cachexia index as a predictor of cancer cachexia and prognosis in patients with cancer. J. Cachexia Sarcopenia Muscle 2023 14 1 382 390 10.1002/jcsm.13139 36447437
    [Google Scholar]
  55. Hou Y.C. Chen C.Y. Huang C.J. Wang C.J. Chao Y.J. Chiang N.J. Wang H.C. Tung H.L. Liu H.C. Shan Y.S. The differential clinical impacts of cachexia and sarcopenia on the prognosis of advanced pancreatic cancer. Cancers 2022 14 13 3137 10.3390/cancers14133137 35804906
    [Google Scholar]
  56. Xie H.L. Ruan G.T. Wei L. Zhang Q. Ge Y.Z. Song M.M. Zhang X. Lin S. Liu X. Zhang X.W. Li X.R. Zhang K.P. Hu C.L. Yang M. Tang M. Song C.H. Cong M.H. Weng M. Li Z.N. Li W. Wang K.H. Shi H.P. The prognostic value of the combination of body composition and systemic inflammation in patients with cancer cachexia. J. Cachexia Sarcopenia Muscle 2023 14 2 879 890 10.1002/jcsm.13205 36872512
    [Google Scholar]
  57. Zhuang C.L. Dong Q.T. Shi H.P. Zhang F.M. Luo X. Wang W.B. Yu Z. Chen X.L. Wang S.L. Cachexia versus sarcopenia in clinical characteristics and prognostic value after radical gastrectomy for gastric cancer: A large-scale prospective study. Ann. Surg. Oncol. 2022 29 4 2348 2358 10.1245/s10434‑021‑11084‑w 34797480
    [Google Scholar]
  58. Shukuya T. Takahashi K. Shintani Y. Miura K. Sekine I. Takayama K. Inoue A. Okamoto I. Kiura K. Kawaguchi T. Yamamoto N. Miyaoka E. Yoshino I. Date H. Epidemiology, risk factors and impact of cachexia on patient outcome: Results from the Japanese lung cancer registry study. J. Cachexia Sarcopenia Muscle 2023 14 3 1274 1285 10.1002/jcsm.13216 36905129
    [Google Scholar]
  59. Stojan G. Li J. Wittmaack A. Petri M. Cachexia in systemic lupus erythematosus: Risk factors and relation to disease activity and damage. Arthritis Care Res. 2021 73 11 1577 1582 10.1002/acr.24395 32741060
    [Google Scholar]
  60. Roy I. Smilnak G. Burkart M. Hamilton E. Thorp K. Miyata S. Ma S. Pro B. Winter J. Gordon L. Karmali R. Cachexia is a risk factor for negative clinical and functional outcomes in patients receiving chimeric antigen receptor T‐cell therapy for B‐cell non‐Hodgkin lymphoma. Br. J. Haematol. 2022 197 1 71 75 10.1111/bjh.18054 35141891
    [Google Scholar]
  61. Wu Q. Liu Z. Li B. Liu Y. Wang P. Immunoregulation in cancer-associated cachexia. J. Adv. Res. 2024 58 45 62 10.1016/j.jare.2023.04.018 37150253
    [Google Scholar]
  62. Al-Sawaf O. Weiss J. Skrzypski M. Lam J.M. Karasaki T. Zambrana F. Kidd A.C. Frankell A.M. Watkins T.B.K. Martínez-Ruiz C. Puttick C. Black J.R.M. Huebner A. Bakir M.A. Sokač M. Collins S. Veeriah S. Magno N. Naceur-Lombardelli C. Prymas P. Toncheva A. Ward S. Jayanth N. Salgado R. Bridge C.P. Christiani D.C. Mak R.H. Bay C. Rosenthal M. Sattar N. Welsh P. Liu Y. Perrimon N. Popuri K. Beg M.F. McGranahan N. Hackshaw A. Breen D.M. O’Rahilly S. Birkbak N.J. Aerts H.J.W.L. Watkins T.B.K. Birkbak N.J. Aerts H.J. Lester J.F. Bajaj A. Nakas A. Sodha-Ramdeen A. Ang K. Tufail M. Chowdhry M.F. Scotland M. Boyles R. Rathinam S. Wilson C. Marrone D. Dulloo S. Fennell D.A. Matharu G. Shaw J.A. Riley J. Primrose L. Boleti E. Cheyne H. Khalil M. Richardson S. Cruickshank T. Price G. Kerr K.M. Benafif S. Gilbert K. Naidu B. Patel A.J. Osman A. Lacson C. Langman G. Shackleford H. Djearaman M. Kadiri S. Middleton G. Leek A. Hodgkinson J.D. Totten N. Montero A. Smith E. Fontaine E. Granato F. Doran H. Novasio J. Rammohan K. Joseph L. Bishop P. Shah R. Moss S. Joshi V. Crosbie P. Gomes F. Brown K. Carter M. Chaturvedi A. Priest L. Oliveira P. Lindsay C.R. Blackhall F.H. Krebs M.G. Summers Y. Clipson A. Tugwood J. Kerr A. Rothwell D.G. Kilgour E. Dive C. Schwarz R.F. Kaufmann T.L. Wilson G.A. Rosenthal R. Van Loo P. Szallasi Z. Kisistok J. Sokac M. Diossy M. Demeulemeester J. Bunkum A. Stewart A. Magness A. Rowan A. Karamani A. Chain B. Campbell B.B. Castignani C. Bailey C. Abbosh C. Weeden C.E. Lee C. Richard C. Hiley C.T. Moore D.A. Pearce D.R. Karagianni D. Biswas D. Levi D. Hoxha E. Cadieux E.L. Lim E.L. Colliver E. Nye E. Grönroos E. Gálvez-Cancino F. Athanasopoulou F. Gimeno-Valiente F. Kassiotis G. Stavrou G. Mastrokalos G. Zhai H. Lowe H.L. Matos I.G. Goldman J. Reading J.L. Herrero J. Rane J.K. Nicod J. Hartley J.A. Peggs K.S. Enfield K.S.S. Selvaraju K. Thol K. Litchfield K. Ng K.W. Chen K. Dijkstra K. Grigoriadis K. Thakkar K. Ensell L. Shah M. Duran M.V. Litovchenko M. Sunderland M.W. Hill M.S. Dietzen M. Leung M. Escudero M. Angelova M. Tanić M. Sivakumar M. Kanu N. Chervova O. Lucas O. Pich O. Hobson P. Pawlik P. Stone R.K. Bentham R. Hynds R.E. Vendramin R. Saghafinia S. López S. Gamble S. Ung S.K.A. Quezada S.A. Vanloo S. Zaccaria S. Hessey S. Boeing S. Beck S. Bola S.K. Denner T. Marafioti T. Mourikis T.P. Spanswick V. Barbè V. Lu W-T. Hill W. Liu W.K. Wu Y. Naito Y. Ramsden Z. Veiga C. Royle G. Collins-Fekete C-A. Fraioli F. Ashford P. Clark T. Forster M.D. Lee S.M. Borg E. Falzon M. Papadatos-Pastos D. Wilson J. Ahmad T. Procter A.J. Ahmed A. Taylor M.N. Nair A. Lawrence D. Patrini D. Navani N. Thakrar R.M. Janes S.M. Hoogenboom E.M. Monk F. Holding J.W. Choudhary J. Bhakhri K. Scarci M. Hayward M. Panagiotopoulos N. Gorman P. Khiroya R. Stephens R.C.M. Wong Y.N.S. Bandula S. Sharp A. Smith S. Gower N. Dhanda H.K. Chan K. Pilotti C. Leslie R. Grapa A. Zhang H. AbdulJabbar K. Pan X. Yuan Y. Chuter D. MacKenzie M. Chee S. Alzetani A. Cave J. Scarlett L. Richards J. Ingram P. Austin S. Lim E. De Sousa P. Jordan S. Rice A. Raubenheimer H. Bhayani H. Ambrose L. Devaraj A. Chavan H. Begum S. Buderi S.I. Kaniu D. Malima M. Booth S. Nicholson A.G. Fernandes N. Shah P. Proli C. Hewish M. Danson S. Shackcloth M.J. Robinson L. Russell P. Blyth K.G. Dick C. Le Quesne J. Kirk A. Asif M. Bilancia R. Kostoulas N. Thomas M. Jamal-Hanjani M. Swanton C. Body composition and lung cancer-associated cachexia in TRACERx. Nat. Med. 2023 29 4 846 858 10.1038/s41591‑023‑02232‑8 37045997
    [Google Scholar]
  63. Xie H. Heier C. Meng X. Bakiri L. Pototschnig I. Tang Z. Schauer S. Baumgartner V.J. Grabner G.F. Schabbauer G. Wolinski H. Robertson G.R. Hoefler G. Zeng W. Wagner E.F. Schweiger M. Zechner R. An immune-sympathetic neuron communication axis guides adipose tissue browning in cancer-associated cachexia. Proc. Natl. Acad. Sci. USA 2022 119 9 e2112840119 10.1073/pnas.2112840119 35210363
    [Google Scholar]
  64. Thanapholsart J. Khan E. Ismail T.F. Lee G.A. The complex pathophysiology of cardiac cachexia: A review of current pathophysiology and implications for clinical practice. Am. J. Med. Sci. 2023 365 1 9 18 10.1016/j.amjms.2022.08.016 36055378
    [Google Scholar]
  65. Fernández-Pombo A. Rodríguez-Carnero G. Castro A.I. Cantón-Blanco A. Seoane L.M. Casanueva F.F. Crujeiras A.B. Martínez-Olmos M.A. Relevance of nutritional assessment and treatment to counteract cardiac cachexia and sarcopenia in chronic heart failure. Clin. Nutr. 2021 40 9 5141 5155 10.1016/j.clnu.2021.07.027 34461588
    [Google Scholar]
  66. Vest A.R. Price L.L. Chanda A. Sweigart B.A. Chery J. Lawrence M. Parsly L. Gulati G. Kiernan M.S. Upshaw J.N. Kawabori M. Couper G.S. Saltzman E. Cardiac cachexia in left ventricular assist device recipients and the implications of weight gain early after implantation. J. Am. Heart Assoc. 2023 12 13 e029086 10.1161/JAHA.122.029086 37382139
    [Google Scholar]
  67. Tichy L. Parry T.L. The pathophysiology of cancer‐mediated cardiac cachexia and novel treatment strategies: A narrative review. Cancer Med. 2023 12 17 17706 17717 10.1002/cam4.6388 37654192
    [Google Scholar]
  68. Kelm N.Q. Straughn A.R. Kakar S.S. Withaferin A attenuates ovarian cancer-induced cardiac cachexia. PLoS One 2020 15 7 e0236680 10.1371/journal.pone.0236680 32722688
    [Google Scholar]
  69. Alahmad M.A.M. Gibson C.A. The impact of pulmonary cachexia on inpatient outcomes. Ann. Thorac. Med. 2023 18 3 156 161 10.4103/atm.atm_31_23 37663879
    [Google Scholar]
  70. Wilson A.C. Kumar P.L. Lee S. Parker M.M. Arora I. Morrow J.D. Wouters E.F.M. Casaburi R. Rennard S.I. Lomas D.A. Agusti A. Tal-Singer R. Dransfield M.T. Wells J.M. Bhatt S.P. Washko G. Thannickal V.J. Tiwari H.K. Hersh C.P. Castaldi P.J. Silverman E.K. McDonald M.L.N. Heme metabolism genes Downregulated in COPD Cachexia. Respir. Res. 2020 21 1 100 10.1186/s12931‑020‑01336‑w 32354332
    [Google Scholar]
  71. McKeaveney C. Maxwell P. Noble H. Reid J. A critical review of multimodal interventions for cachexia. Adv. Nutr. 2021 12 2 523 532 10.1093/advances/nmaa111 32970097
    [Google Scholar]
  72. Attaway A.H. Welch N. Hatipoğlu U. Zein J.G. Dasarathy S. Muscle loss contributes to higher morbidity and mortality in COPD : An analysis of national trends. Respirology 2021 26 1 62 71 10.1111/resp.13877 32542761
    [Google Scholar]
  73. Bruera E. Dev R. Yushak M. Assessment and management of anorexia and cachexia in palliative care. 2022 Available from: https://www.uptodate.com/contents/assessment-and-management-of-anorexia-and-cachexia-in-palliative-care
  74. Hanna R.M. Ghobry L. Wassef O. Rhee C.M. Kalantar-Zadeh K. A practical approach to nutrition, protein-energy wasting, sarcopenia, and cachexia in patients with chronic kidney disease. Blood Purif. 2020 49 1-2 202 211 10.1159/000504240 31851983
    [Google Scholar]
  75. Okamura M. Inoue T. Ogawa M. Shirado K. Shirai N. Yagi T. Momosaki R. Kokura Y. Rehabilitation nutrition in patients with chronic kidney disease and cachexia. Nutrients 2022 14 22 4722 10.3390/nu14224722 36432408
    [Google Scholar]
  76. Rich N.E. Phen S. Desai N. Mittal S. Yopp A.C. Yang J.D. Marrero J.A. Iyengar P. Infante R.E. Singal A.G. Cachexia is prevalent in patients with hepatocellular carcinoma and associated with worse prognosis. Clin. Gastroenterol. Hepatol. 2022 20 5 e1157 e1169 10.1016/j.cgh.2021.09.022 34555519
    [Google Scholar]
  77. Muscaritoli M. Imbimbo G. Jager-Wittenaar H. Cederholm T. Rothenberg E. di Girolamo F.G. Amabile M.I. Sealy M. Schneider S. Barazzoni R. Biolo G. Molfino A. Disease-related malnutrition with inflammation and cachexia. Clin. Nutr. 2023 42 8 1475 1479 10.1016/j.clnu.2023.05.013 37302879
    [Google Scholar]
  78. Ångström L. Hörnberg K. Sundström B. Södergren A. Rheumatoid cachexia in early rheumatoid arthritis: Prevalence and associated variables. Scand. J. Rheumatol. 2023 52 1 10 16 10.1080/03009742.2021.1973678 34643160
    [Google Scholar]
  79. Santo R.C.E. Silva J.M.S. Lora P.S. Moro A.L.D. Freitas E.C. Bartikoski B.J. Andrade N.P.B. Palominos P.E. Hax V. Fighera T.M. Spritzer P.M. Brenol C.V. Chakr R.M.S. Filippin L.I. Baker J.F. Xavier R.M. Cachexia in patients with rheumatoid arthritis: A cohort study. Clin. Rheumatol. 2020 39 12 3603 3613 10.1007/s10067‑020‑05119‑y 32447598
    [Google Scholar]
  80. Xu Y. Wang D. Chen P. Qi B. Li X. Xie C. Wu J. Li L. Gao G. Geng S. Yang D. Factors associated with skeletal muscle mass in middle‐aged men living with HIV. J. Cachexia Sarcopenia Muscle 2024 15 5 1965 1975 10.1002/jcsm.13545 39015948
    [Google Scholar]
  81. Giovanelli L. Quinton R. Therapeutic effects of androgens for cachexia. Best Pract. Res. Clin. Endocrinol. Metab. 2022 36 5 101598 10.1016/j.beem.2021.101598 34801415
    [Google Scholar]
  82. Burfeind K.G. Zhu X. Norgard M.A. Levasseur P.R. Huisman C. Buenafe A.C. Olson B. Michaelis K.A. Torres E.R.S. Jeng S. McWeeney S. Raber J. Marks D.L. Circulating myeloid cells invade the central nervous system to mediate cachexia during pancreatic cancer. eLife 2020 9 e54095 10.7554/eLife.54095 32391790
    [Google Scholar]
  83. Oakvik J. Ready D. Updates in cancer-related symptom management of anorexia and cachexia syndrome. Seminars in oncology nursing. Elsevier 2022
    [Google Scholar]
  84. Arends J. Strasser F. Gonella S. Solheim T.S. Madeddu C. Ravasco P. Buonaccorso L. de van der Schueren M.A.E. Baldwin C. Chasen M. Ripamonti C.I. Cancer cachexia in adult patients: ESMO clinical practice guidelines. ESMO Open 2021 6 3 100092 10.1016/j.esmoop.2021.100092 34144781
    [Google Scholar]
  85. Olson B. Diba P. Korzun T. Marks D.L. Neural mechanisms of cancer cachexia. Cancers 2021 13 16 3990 10.3390/cancers13163990 34439145
    [Google Scholar]
  86. van der Meij B.S. Teleni L. McCarthy A.L. Isenring E.A. Cancer cachexia: An overview of diagnostic criteria and therapeutic approaches for the accredited practicing dietitian. J. Hum. Nutr. Diet. 2021 34 1 243 254 10.1111/jhn.12811 33038282
    [Google Scholar]
  87. Law M.L. Cancer cachexia: Pathophysiology and association with cancer-related pain. Front. Pain Res. 2022 3 971295 10.3389/fpain.2022.971295 36072367
    [Google Scholar]
  88. Kadakia K.C. Hamilton-Reeves J.M. Baracos V.E. Current therapeutic targets in cancer cachexia: A pathophysiologic approach. Am. Soc. Clin. Oncol. Educ. Book 2023 43 43 e389942 10.1200/EDBK_389942 37290034
    [Google Scholar]
  89. Webster J.M. Kempen L.J.A.P. Hardy R.S. Langen R.C.J. Inflammation and skeletal muscle wasting during cachexia. Front. Physiol. 2020 11 597675 10.3389/fphys.2020.597675 33329046
    [Google Scholar]
  90. Chowdhury I.H. Rahman S. Afroze Y.J. Shovah S.T. IUPHAR ECR review: Cancer-related anorexia-cachexia in cancer patients: Pathophysiology and treatment. Pharmacol. Res. 2024 203 107129 10.1016/j.phrs.2024.107129 38461961
    [Google Scholar]
  91. Biswas A.K. Acharyya S. Understanding cachexia in the context of metastatic progression. Nat. Rev. Cancer 2020 20 5 274 284 10.1038/s41568‑020‑0251‑4 32235902
    [Google Scholar]
  92. Solís-Martínez O. Álvarez-Altamirano K. Cardenas D. Trujillo-Cabrera Y. Fuchs-Tarlovsky V. Cancer cachexia affects patients with head and neck cancer in all stages of disease: A prospective cross-sectional study. Nutr. Cancer 2022 74 1 82 89 10.1080/01635581.2020.1869792 33455464
    [Google Scholar]
  93. Martin A. Gallot Y.S. Freyssenet D. Molecular mechanisms of cancer cachexia‐related loss of skeletal muscle mass: Data analysis from preclinical and clinical studies. J. Cachexia Sarcopenia Muscle 2023 14 3 1150 1167 10.1002/jcsm.13073 36864755
    [Google Scholar]
  94. Habiboğlu R. Kayalı İ.F. Cachexia and pre-cachexia in cancer patients. Clinical Science of Nutrition 2023 5 1 8 15 10.5152/ClinSciNutr.2023.221138
    [Google Scholar]
  95. Aberle M.R. Vaes R.D.W. van de Worp W.R.P.H. Dubois L.J. Lieuwes N.G. Biemans R. Langen R.C.J. van Schooten F-J. van Dam R.M. Damink S.W.M.O. Rensen S.S. Patient‐derived pancreatic tumour organoid implantation establishes novel pre‐cachexia mouse models. JCSM Rapid Commun. 2023 6 1 4 17 10.1002/rco2.71
    [Google Scholar]
  96. Amano K. Okamura S. Baracos V.E. Mori N. Sakaguchi T. Uneno Y. Hiratsuka Y. Hamano J. Miura T. Ishiki H. Yokomichi N. Hatano Y. Morita T. Mori M. Impacts of fluid retention on prognostic abilities of cachexia diagnostic criteria in cancer patients with refractory cachexia. Clin. Nutr. ESPEN 2024 60 373 381 10.1016/j.clnesp.2024.02.026 38479937
    [Google Scholar]
  97. Nakajima N. Differential diagnosis of cachexia and refractory cachexia and the impact of appropriate nutritional intervention for cachexia on survival in terminal cancer patients. Nutrients 2021 13 3 915 10.3390/nu13030915 33808957
    [Google Scholar]
  98. Arai H. Maeda K. Wakabayashi H. Naito T. Konishi M. Assantachai P. Auyeung W.T. Chalermsri C. Chen W. Chew J. Chou M.Y. Hsu C.C. Hum A. Hwang I.G. Kaido T. Kang L. Kamaruzzaman S.B. Kim M. Lee J.S.W. Lee W.J. Liang C.K. Lim W.S. Lim J.Y. Lim Y.P. Lo R.S.K. Ong T. Pan W.H. Peng L.N. Pramyothin P. Razalli N.H. Saitoh M. Shahar S. Shi H.P. Tung H.H. Uezono Y. von Haehling S. Won C.W. Woo J. Chen L.K. Diagnosis and outcomes of cachexia in Asia: Working consensus report from the Asian working group for Cachexia. J. Cachexia Sarcopenia Muscle 2023 14 5 1949 1958 10.1002/jcsm.13323 37667992
    [Google Scholar]
  99. Duerksen D.R. Laporte M. Jeejeebhoy K. Evaluation of nutrition status using the subjective global assessment: Malnutrition, cachexia, and sarcopenia. Nutr. Clin. Pract. 2021 36 5 942 956 10.1002/ncp.10613 33373482
    [Google Scholar]
  100. Wiegert E.V.M. de Oliveira L.C. Calixto-Lima L. Mota e Silva Lopes M.S. Peres W.A.F. Cancer cachexia: Comparing diagnostic criteria in patients with incurable cancer. Nutrition 2020 79-80 110945 10.1016/j.nut.2020.110945 32927241
    [Google Scholar]
  101. Zhao Y. Pang D. Lu Y. The role of nurse in the multidisciplinary management of cancer cachexia. Asia Pac. J. Oncol. Nurs. 2021 8 5 487 497 10.4103/apjon.apjon‑2123 34527778
    [Google Scholar]
  102. Szefel J. Kruszewski W.J. Szajewski M. Ciesielski M. Danielak A. Bioelectrical impedance analysis to increase the sensitivity of screening methods for diagnosing cancer cachexia in patients with colorectal cancer. J. Nutr. Metab. 2020 2020 1 1 9 10.1155/2020/3874956 32908693
    [Google Scholar]
  103. Casirati A. Vandoni G. Della Valle S. Greco G. Platania M. Colatruglio S. Lalli L. Gavazzi C. Nutritional status and body composition assessment in patients with a new diagnosis of advanced solid tumour: Exploratory comparison of computed tomography and bioelectrical impedance analysis. Clin. Nutr. 2021 40 3 1268 1273 10.1016/j.clnu.2020.08.009 32873437
    [Google Scholar]
  104. Cheng K.Y.K. Chow S.K.H. Hung V.W.Y. Wong C.H.W. Wong R.M.Y. Tsang C.S.L. Kwok T. Cheung W.H. Diagnosis of sarcopenia by evaluating skeletal muscle mass by adjusted bioimpedance analysis validated with dual‐energy X‐ray absorptiometry. J. Cachexia Sarcopenia Muscle 2021 12 6 2163 2173 10.1002/jcsm.12825 34609065
    [Google Scholar]
  105. Neira Álvarez M. Vázquez Ronda M.A. Soler Rangel L. Thuissard-Vasallo I.J. Andreu-Vazquez C. Martinez Martin P. Rábago Lorite I. San Martín G.S. Muscle assessment by ultrasonography: Agreement with dual-energy X-ray absorptiometry (DXA) and relationship with physical performance. J. Nutr. Health Aging 2021 25 8 956 963 10.1007/s12603‑021‑1669‑4 34545914
    [Google Scholar]
  106. Han J. Harrison L. Patzelt L. Wu M. Junker D. Herzig S. Berriel Diaz M. Karampinos D.C. Imaging modalities for diagnosis and monitoring of cancer cachexia. EJNMMI Res. 2021 11 1 94 10.1186/s13550‑021‑00834‑2 34557972
    [Google Scholar]
  107. Ko H.S. Attenberger U. Medical imaging in cancer cachexia. Radiologie 2024 64 S1 Suppl. 1 10 15 10.1007/s00117‑024‑01346‑5 38995346
    [Google Scholar]
  108. Wang J.C. Wu W.T. Chang K.V. Chen L.R. Chi S.Y. Kara M. Özçakar L. Ultrasound imaging for the diagnosis and evaluation of sarcopenia: An umbrella review. Life 2021 12 1 9 10.3390/life12010009 35054402
    [Google Scholar]
  109. Fu H. Wang L. Zhang W. Lu J. Yang M. Diagnostic test accuracy of ultrasound for sarcopenia diagnosis: A systematic review and meta‐analysis. J. Cachexia Sarcopenia Muscle 2023 14 1 57 70 10.1002/jcsm.13149 36513380
    [Google Scholar]
  110. O’Connell T.M. Golzarri-Arroyo L. Pin F. Barreto R. Dickinson S.L. Couch M.E. Bonetto A. Metabolic biomarkers for the early detection of cancer cachexia. Front. Cell Dev. Biol. 2021 9 720096 10.3389/fcell.2021.720096 34621740
    [Google Scholar]
  111. Anderson L.J. Lee J. Mallen M.C. Migula D. Liu H. Wu P.C. Dash A. Garcia J.M. Evaluation of physical function and its association with body composition, quality of life and biomarkers in cancer cachexia patients. Clin. Nutr. 2021 40 3 978 986 10.1016/j.clnu.2020.07.001 32713720
    [Google Scholar]
  112. Song M. Zhang Q. Tang M. Zhang X. Ruan G. Zhang X. Zhang K. Ge Y. Yang M. Li Q. Li X. Liu X. Li W. Cong M. Wang K. Song C. Shi H. Associations of low hand grip strength with 1 year mortality of cancer cachexia: A multicentre observational study. J. Cachexia Sarcopenia Muscle 2021 12 6 1489 1500 10.1002/jcsm.12778 34545711
    [Google Scholar]
  113. Galvin A. Soubeyran P. Brain E. Cheung K.L. Hamaker M.E. Kanesvaran R. Mauer M. Mohile S. Montroni I. Puts M. Rostoft S. Wildiers H. Mathoulin-Pélissier S. Bellera C. Assessing patient-reported outcomes (PROs) and patient-related outcomes in randomized cancer clinical trials for older adults: Results of DATECAN-ELDERLY initiative. J. Geriatr. Oncol. 2024 15 1 101611 10.1016/j.jgo.2023.101611 37679204
    [Google Scholar]
  114. Erickson N. Schinkoethe T. Eckhardt C. Storck L. Joos A. Liu L. Ballmer P.E. Mumm F. Fey T. Heinemann V. Patient-reported outcome measures obtained via E-Health tools ease the assessment burden and encourage patient participation in cancer care (PaCC Study). Support. Care Cancer 2021 29 12 7715 7724 10.1007/s00520‑021‑06351‑1 34159428
    [Google Scholar]
  115. Fram J. Vail C. Roy I. Assessment of cancer-associated Cachexia — How to approach physical function evaluation. Curr. Oncol. Rep. 2022 24 6 751 761 10.1007/s11912‑022‑01258‑4 35305209
    [Google Scholar]
  116. Kim A.J. Hong D.S. George G.C. Diet-related interventions for cancer-associated cachexia. J. Cancer Res. Clin. Oncol. 2021 147 5 1443 1450 10.1007/s00432‑021‑03592‑9 33718995
    [Google Scholar]
  117. van de Worp W.R.P.H. Schols A.M.W.J. Theys J. van Helvoort A. Langen R.C.J. Nutritional interventions in cancer cachexia: Evidence and perspectives from experimental models. Front. Nutr. 2020 7 601329 10.3389/fnut.2020.601329 33415123
    [Google Scholar]
  118. Saeteaw M. Sanguanboonyaphong P. Yoodee J. Craft K. Sawangjit R. Ngamphaiboon N. Shantavasinkul P.C. Subongkot S. Chaiyakunapruk N. Efficacy and safety of pharmacological cachexia interventions: Systematic review and network meta-analysis. BMJ Support. Palliat. Care 2021 11 1 75 85 10.1136/bmjspcare‑2020‑002601 33246937
    [Google Scholar]
  119. Marceca G.P. Londhe P. Calore F. Management of cancer cachexia: Attempting to develop new pharmacological agents for new effective therapeutic options. Front. Oncol. 2020 10 298 10.3389/fonc.2020.00298 32195193
    [Google Scholar]
  120. Mavropalias G. Sim M. Taaffe D.R. Galvão D.A. Spry N. Kraemer W.J. Häkkinen K. Newton R.U. Exercise medicine for cancer cachexia: Targeted exercise to counteract mechanisms and treatment side effects. J. Cancer Res. Clin. Oncol. 2022 148 6 1389 1406 10.1007/s00432‑022‑03927‑0 35088134
    [Google Scholar]
  121. Wang Y. Zhuo W.L. Treatment of cancer cachexia with exercise. J. Nutr. Oncol. 2023 8 2 57 65 10.1097/JN9.0000000000000012
    [Google Scholar]
  122. Wakabayashi H. Arai H. Inui A. The regulatory approval of anamorelin for treatment of cachexia in patients with non‐small cell lung cancer, gastric cancer, pancreatic cancer, and colorectal cancer in Japan: Facts and numbers. Wiley Online Library 2021 14 16
    [Google Scholar]
  123. Dev R. Amano K. Naito T. Del Fabbro E. Anamorelin for the treatment of cancer anorexia-cachexia syndrome. Curr. Oncol. Rep. 2024 26 7 762 772 10.1007/s11912‑024‑01549‑y 38771469
    [Google Scholar]
  124. Liva S.G. Tseng Y.C. Dauki A.M. Sovic M.G. Vu T. Henderson S.E. Kuo Y.C. Benedict J.A. Zhang X. Remaily B.C. Kulp S.K. Campbell M. Bekaii-Saab T. Phelps M.A. Chen C.S. Coss C.C. Overcoming resistance to anabolic SARM therapy in experimental cancer cachexia with an HDAC inhibitor. EMBO Mol. Med. 2020 12 2 e9910 10.15252/emmm.201809910 31930715
    [Google Scholar]
  125. Fonseca G.W.P.D. Dworatzek E. Ebner N. Von Haehling S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert Opin. Investig. Drugs 2020 29 8 881 891 10.1080/13543784.2020.1777275 32476495
    [Google Scholar]
  126. Rooks D. Swan T. Goswami B. Filosa L.A. Bunte O. Panchaud N. Coleman L.A. Miller R.R. Garcia Garayoa E. Praestgaard J. Perry R.G. Recknor C. Fogarty C.M. Arai H. Chen L.K. Hashimoto J. Chung Y.S. Vissing J. Laurent D. Petricoul O. Hemsley S. Lach-Trifilieff E. Papanicolaou D.A. Roubenoff R. Bimagrumab vs optimized standard of care for treatment of sarcopenia in community-dwelling older adults: A randomized clinical trial. JAMA Netw. Open 2020 3 10 e2020836 e2020836 10.1001/jamanetworkopen.2020.20836 33074327
    [Google Scholar]
  127. Rooks D. Petricoul O. Praestgaard J. Bartlett M. Laurent D. Roubenoff R. Safety and pharmacokinetics of bimagrumab in healthy older and obese adults with body composition changes in the older cohort. J. Cachexia Sarcopenia Muscle 2020 11 6 1525 1534 10.1002/jcsm.12639 33264516
    [Google Scholar]
  128. Wu C. Zhu M. Lu Z. Zhang Y. Li L. Li N. Yin L. Wang H. Song W. Xu H. L-carnitine ameliorates the muscle wasting of cancer cachexia through the AKT/FOXO3a/MaFbx axis. Nutr. Metab. 2021 18 1 98 10.1186/s12986‑021‑00623‑7 34724970
    [Google Scholar]
  129. Li Q. Kong Z. Wang H. Gu H. Chen Z. Li S. Chen Y. Cai Y. Yang Z. Jianpi decoction combined with medroxyprogesterone acetate alleviates cancer cachexia and prevents muscle atrophy by directly inhibiting E3 Ubiquitin Ligase. Chin. J. Integr. Med. 2024 30 6 499 506 10.1007/s11655‑023‑3702‑4 37612478
    [Google Scholar]
  130. Xu B. Cheng Q. So W.K. Review of the effects and safety of traditional Chinese medicine in the treatment of cancer cachexia. Asia Pac. J. Oncol. Nurs. 2021 8 5 471 486 10.4103/apjon.apjon‑2130 34527777
    [Google Scholar]
  131. Talebi S. Zeraattalab-Motlagh S. Barkhordar M. Vaezi M. Ghoreishy S.M. Ghavami A. Hosseini Y. Travica N. Mohammadi H. Dose‐dependent effect of megestrol acetate supplementation in cancer patients with anorexia–cachexia syndrome: A meta‐analysis. J. Cachexia Sarcopenia Muscle 2024 15 4 1254 1263 10.1002/jcsm.13500 39031821
    [Google Scholar]
  132. Lim Y.L. Teoh S.E. Yaow C.Y.L. Lin D.J. Masuda Y. Han M.X. Yeo W.S. Ng Q.X. A systematic review and meta-analysis of the clinical use of megestrol acetate for cancer-related anorexia/cachexia. J. Clin. Med. 2022 11 13 3756 10.3390/jcm11133756 35807039
    [Google Scholar]
  133. Liu Y. Wang X.F. MA10.09 The study of thalidomide in the treatment of extensive-stage small cell lung cancer with cancer anorexia-cachexia syndrome (CACS). J. Thorac. Oncol. 2021 16 3 S171 S172 10.1016/j.jtho.2021.01.245
    [Google Scholar]
  134. Simon L. Baldwin C. Kalea A.Z. Slee A. Cannabinoid interventions for improving cachexia outcomes in cancer: A systematic review and meta‐analysis. J. Cachexia Sarcopenia Muscle 2022 13 1 23 41 10.1002/jcsm.12861 34881518
    [Google Scholar]
  135. Ceolin C. De Rui M. Ravelli A. Papa M.V. Devita M. Sergi G. Coin A. The potential of cannabinoids in managing cancer-related anorexia in older adults: A systematic review of the literature. J. Nutr. Health Aging 2024 28 8 100299 10.1016/j.jnha.2024.100299 38917597
    [Google Scholar]
  136. de Castro G.S. Andrade M.F. Pinto F.C.S. Faiad J.Z. Seelaender M. Omega-3 fatty acid supplementation and its impact on systemic inflammation and body weight in patients with Cancer Cachexia—A systematic review and meta-analysis. Front. Nutr. 2022 8 797513 10.3389/fnut.2021.797513 35174197
    [Google Scholar]
  137. Jin X. Xu X.T. Tian M.X. Dai Z. Omega-3 polyunsaterated fatty acids improve quality of life and survival, but not body weight in cancer cachexia: A systematic review and meta-analysis of controlled trials. Nutr. Res. 2022 107 165 178 10.1016/j.nutres.2022.09.009 36283229
    [Google Scholar]
  138. Nishie K. Nishie T. Sato S. Hanaoka M. Update on the treatment of cancer cachexia. Drug Discov. Today 2023 28 9 103689 10.1016/j.drudis.2023.103689 37385369
    [Google Scholar]
  139. Qiu X. Lu R. He Q. Chen S. Huang C. Lin D. Metabolic signatures and potential biomarkers for the diagnosis and treatment of colon cancer cachexia. Acta Biochim. Biophys. Sin. 2023 55 12 1913 1924 10.3724/abbs.2023151 37705348
    [Google Scholar]
  140. Cao Z. Burvenich I.J. Zhao K. Senko C. Glab J. Fogliaro R. Liu Z. Jose I. Puthalakath H. Hoogenraad N.J. Osellame L.D. Scott A.M. Identification of potential biomarkers for cancer cachexia and anti-Fn14 therapy. Cancers 2022 14 22 5533 10.3390/cancers14225533 36428623
    [Google Scholar]
  141. Miller J. Ramage M.I. Skipworth R.J. The Systemic Effects of Advanced Cancer: A Textbook on Cancer-Associated Cachexia. Springer 2022 171 192
    [Google Scholar]
  142. T de Barros C. Rios A.C. Alves T.F.R. Batain F. Crescencio K.M.M. Lopes L.J. Zielińska A. Severino P. G Mazzola P. Souto E.B. Chaud M.V. Cachexia: Pathophysiology and ghrelin liposomes for nose-to-brain delivery. Int. J. Mol. Sci. 2020 21 17 5974 10.3390/ijms21175974 32825177
    [Google Scholar]
  143. Blum D. de Wolf-Linder S. Oberholzer R. Brändle M. Hundsberger T. Strasser F. Natural ghrelin in advanced cancer patients with cachexia, a case series. J. Cachexia Sarcopenia Muscle 2021 12 2 506 516 10.1002/jcsm.12659 33452750
    [Google Scholar]
  144. Hanada K. Fukasawa K. Hinata H. Imai S. Takayama K. Hirai H. Ohfusa R. Hayashi Y. Itoh F. Combination therapy with anamorelin and a myostatin inhibitor is advantageous for cancer cachexia in a mouse model. Cancer Sci. 2022 113 10 3547 3557 10.1111/cas.15491 35849084
    [Google Scholar]
  145. Morimoto M. Yamaoka M. Hara T. A selective androgen receptor modulator SARM‐2f activates androgen receptor, increases lean body mass, and suppresses blood lipid levels in cynomolgus monkeys. Pharmacol. Res. Perspect. 2020 8 1 e00563 10.1002/prp2.563 32030892
    [Google Scholar]
  146. Daou H.N. Exercise as an anti-inflammatory therapy for cancer cachexia: A focus on interleukin-6 regulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020 318 2 R296 R310 10.1152/ajpregu.00147.2019 31823669
    [Google Scholar]
  147. Clamon G. Byrne M.M. Talbert E.E. Inflammation as a therapeutic target in cancer cachexia. Cancers 2022 14 21 5262 10.3390/cancers14215262 36358681
    [Google Scholar]
  148. Krstic J. Pieber T.R. Prokesch A. Stratifying nutritional restriction in cancer therapy: Next stop, personalized medicine. Int. Rev. Cell Mol. Biol. 2020 354 231 259 10.1016/bs.ircmb.2020.03.001 32475475
    [Google Scholar]
  149. Narasimhan A. Kumaran M. Gioulbasanis I. A genome wide association study to identify germline variants associated with cancer-associated cachexia-a preliminary analysis. medRxiv 2023 2023.07 10.1101/2023.07.24.23293083
    [Google Scholar]
  150. Jin H. Yoo H.J. Kim Y.A. Lee J.H. Lee Y. Kwon S. Seo Y.J. Lee S.H. Koh J.M. Ji Y. Do A.R. Won S. Seo J.H. Unveiling genetic variants for age-related sarcopenia by conducting a genome-wide association study on Korean cohorts. Sci. Rep. 2022 12 1 3501 10.1038/s41598‑022‑07567‑9 35241739
    [Google Scholar]
  151. Ahmad S.S. Ahmad K. Shaikh S. You H.J. Lee E.Y. Ali S. Lee E.J. Choi I. Molecular mechanisms and current treatment options for cancer cachexia. Cancers 2022 14 9 2107 10.3390/cancers14092107 35565236
    [Google Scholar]
  152. Li Y. Jin H. Chen Y. Huang T. Mi Y. Zou Z. Cancer cachexia: Molecular mechanism and pharmacological management. Biochem. J. 2021 478 9 1663 1688 10.1042/BCJ20201009 33970218
    [Google Scholar]
  153. Chow R. Drkulec H. Im J.H.B. Tsai J. Nafees A. Kumar S. Hou T. Fazelzad R. Leighl N.B. Krzyzanowska M. Wong P. Raman S. The use of wearable devices in oncology patients: A systematic review. Oncologist 2024 29 4 e419 e430 10.1093/oncolo/oyad305 37971410
    [Google Scholar]
  154. Aix S.P. Núñez-Benjumea F.J. Cervera-Torres S. Flores A. Arnáiz P. Fernández-Luque L. Data-driven personalized care in lung cancer: Scoping review and clinical recommendations on performance status and activity level of patients with lung cancer using wearable devices. JCO Clin. Cancer Inform. 2023 7 7 e2300016 10.1200/CCI.23.00016 37922433
    [Google Scholar]
  155. Sandic Spaho R. Uhrenfeldt L. Fotis T. Kymre I.G. Wearable devices in palliative care for people 65 years and older: A scoping review. Digit. Health 2023 9 20552076231181212 10.1177/20552076231181212 37426582
    [Google Scholar]
  156. Schoufour J.D. Tieland M. Barazzoni R. Ben Allouch S. Bie J. Boirie Y. Cruz-Jentoft A.J. Eglseer D. Topinková E. Visser B. Voortman T. Tsagari A. Weijs P.J.M. The relevance of diet, physical activity, exercise, and persuasive technology in the prevention and treatment of sarcopenic obesity in older adults. Front. Nutr. 2021 8 661449 10.3389/fnut.2021.661449 34109204
    [Google Scholar]
  157. Gautam P. Shankar A. Management of cancer cachexia towards optimizing care delivery and patient outcomes. Asia Pac. J. Oncol. Nurs. 2023 10 Suppl. 1 100322 10.1016/j.apjon.2023.100322 38197039
    [Google Scholar]
  158. Lipshitz M. Visser J. Anderson R. Nel D.G. Smit T. Steel H.C. Rapoport B. Emerging markers of cancer cachexia and their relationship to sarcopenia. J. Cancer Res. Clin. Oncol. 2023 149 19 17511 17527 10.1007/s00432‑023‑05465‑9 37906352
    [Google Scholar]
  159. Wang J. He Y. Wang B. Yin R. Chen B. Wang H. Muscle-targeted nanoparticles strengthen the effects of small-molecule inhibitors in ameliorating sarcopenia. Nanomedicine 2023 18 23 1635 1649 10.2217/nnm‑2023‑0201 37909281
    [Google Scholar]
  160. Peng B. Yang Y. Wu Z. Tan R. Pham T.T. Yeo E.Y.M. Pirisinu M. Jayasinghe M.K. Pham T.C. Liang K. Shyh-Chang N. Le M.T.N. Red blood cell extracellular vesicles deliver therapeutic siRNAs to skeletal muscles for treatment of cancer cachexia. Mol. Ther. 2023 31 5 1418 1436 10.1016/j.ymthe.2023.03.036 37016578
    [Google Scholar]
  161. Loyala J.V. Down B. Wong E. Tan B. Treatment of cachexia in gastric cancer: Exploring the use of anti-inflammatory natural products and their derivatives. Nutrients 2024 16 8 1246 10.3390/nu16081246 38674936
    [Google Scholar]
  162. Leal L.G. Lopes M.A. Peres S.B. Batista M.L. Jr Exercise training as therapeutic approach in cancer cachexia: A review of potential anti-inflammatory effect on muscle wasting. Front. Physiol. 2021 11 570170 10.3389/fphys.2020.570170 33613297
    [Google Scholar]
  163. Lambert C.P. Should the FDA’s criteria for the clinical efficacy of cachexia drugs be changed? Is Ostarine safe and effective? J. Cachexia Sarcopenia Muscle 2021 12 3 531 532 10.1002/jcsm.12695 33759397
    [Google Scholar]
  164. Lambert C.P. Anti‐cachexia therapy should target metabolism, inflammatory cytokines, and androgens in hormone‐independent cancers. J. Cachexia Sarcopenia Muscle 2021 12 5 1352 1353 10.1002/jcsm.12762 34319012
    [Google Scholar]
  165. Najm A. Niculescu A.G. Grumezescu A.M. Beuran M. Emerging therapeutic strategies in sarcopenia: An updated review on pathogenesis and treatment advances. Int. J. Mol. Sci. 2024 25 8 4300 10.3390/ijms25084300 38673885
    [Google Scholar]
  166. Vudatha V. Devarakonda T. Liu C. Freudenberger D.C. Riner A.N. Herremans K.M. Trevino J.G. Review of mechanisms and treatment of cancer-induced cardiac cachexia. Cells 2022 11 6 1040 10.3390/cells11061040 35326491
    [Google Scholar]
  167. Roma-Rodrigues C. Rivas-García L. Baptista P.V. Fernandes A.R. Gene therapy in cancer treatment: Why go nano? Pharmaceutics 2020 12 3 233 10.3390/pharmaceutics12030233 32151052
    [Google Scholar]
  168. Henschke A. Mielcarek A. Grześkowiak B. Perrigue P.M. Jaskot K. Coy E. Moya S. Cellular senescence and nanoparticle-based therapies: Current developments and perspectives. Nanotechnol. Rev. 2024 13 1 20230211 10.1515/ntrev‑2023‑0211
    [Google Scholar]
  169. Korzun T. Moses A.S. Kim J. Patel S. Schumann C. Levasseur P.R. Diba P. Olson B. Rebola K.G.D.O. Norgard M. Park Y. Demessie A.A. Eygeris Y. Grigoriev V. Sundaram S. Pejovic T. Brody J.R. Taratula O.R. Zhu X. Sahay G. Marks D.L. Taratula O. Nanoparticle‐based follistatin messenger RNA therapy for reprogramming metastatic ovarian cancer and ameliorating cancer‐associated cachexia. Small 2022 18 44 2204436 10.1002/smll.202204436 36098251
    [Google Scholar]
  170. Grami P Bourenane SS Milling D Emergency Nursing and Oncologic Emergencies. Oncologic Emergency Medicine: Principles and Practice Springer 2021
    [Google Scholar]
  171. Sucuoglu Isleyen Z. Besiroglu M. Yasin A.I. Simsek M. Topcu A. Smith L. Akagunduz B. Turk H.M. Soysal P. The risk of malnutrition and its clinical implications in older patients with cancer. Aging Clin. Exp. Res. 2023 35 11 2675 2683 10.1007/s40520‑023‑02538‑0 37644257
    [Google Scholar]
  172. Al-Bairmany Y.S.R. Long survival of a patient with leptomeningeal infiltration in breast cancer: A case report. Forum Clin Oncol. 2022
    [Google Scholar]
  173. Park M.A. Whelan C.J. Ahmed S. Boeringer T. Brown J. Crowder S.L. Gage K. Gregg C. Jeong D.K. Jim H.S.L. Judge A.R. Mason T.M. Parker N. Pillai S. Qayyum A. Rajasekhara S. Rasool G. Tinsley S.M. Schabath M.B. Stewart P. West J. McDonald P. Permuth J.B. Defining and addressing research priorities in cancer cachexia through transdisciplinary collaboration. Cancers 2024 16 13 2364 10.3390/cancers16132364 39001427
    [Google Scholar]
  174. Ligibel J.A. Bohlke K. May A.M. Clinton S.K. Demark-Wahnefried W. Gilchrist S.C. Irwin M.L. Late M. Mansfield S. Marshall T.F. Meyerhardt J.A. Thomson C.A. Wood W.A. Alfano C.M. Exercise, diet, and weight management during cancer treatment: ASCO guideline. J. Clin. Oncol. 2022 40 22 2491 2507 10.1200/JCO.22.00687 35576506
    [Google Scholar]
  175. Maani A. Alashkham A. Neuro-Oncology Explained Through Multiple Choice Questions. Springer 2023 223 238 10.1007/978‑3‑031‑13253‑7_24
    [Google Scholar]
  176. Mansour A. Mansour A. IMUTECH a nano natural immune therapy for treating cancer. Adv Res J Med Clin Sci. 2022 8 03 793 801
    [Google Scholar]
  177. Huang C.Y. Yang Y.C. Chen T.C. Chen J.R. Chen Y.J. Wu M.H. Jan Y.T. Chang C.L. Lee J. Muscle loss during primary debulking surgery and chemotherapy predicts poor survival in advanced‐stage ovarian cancer. J. Cachexia Sarcopenia Muscle 2020 11 2 534 546 10.1002/jcsm.12524 31999069
    [Google Scholar]
  178. Baleiras M.M. Maduro L. Vasques C. Paraneoplastic dermatomyositis and prostate cancer: Myopathy regression under cancer-directed therapy. Dermatol. Rep. 2021 13 3
    [Google Scholar]
  179. Deacu M. Bosoteanu M. Orășanu C.I. Ursica O.A. Voda R.I. A 65-year-old man presenting to the emergency department with gastric hemorrhage caused by a glomus tumor. Am. J. Case Rep. 2024 25 e942610 e942611 10.12659/AJCR.942610 38185900
    [Google Scholar]
  180. Osei E. Francis R. Sheraz L. A review of radiation induced abscopal effect: Combining radiotherapy and immunotherapy to treat the untreated distant metastatic tumours. J. Radiother. Pract. 2022 21 1 117 124 10.1017/S1460396920000680
    [Google Scholar]
  181. Zhang J. Zheng J. Chen H. Li X. Ye C. Zhang F. Zhang Z. Yao Q. Guo Y. Curcumin targeting NF‐κB/ubiquitin‐proteasome‐system axis ameliorates muscle atrophy in triple‐negative breast cancer cachexia mice. Mediators Inflamm. 2022 2022 1 1 18 10.1155/2022/2567150 35132306
    [Google Scholar]
  182. Shivnani P. Shekhawat S. Prajapati A. Cancer Cachexia and breast cancer stem cell signalling – A crosstalk of signalling molecules. Cell. Signal. 2023 110 110847 10.1016/j.cellsig.2023.110847 37557973
    [Google Scholar]
  183. Tahrani A.A. Morton J. Benefits of weight loss of 10% or more in patients with overweight or obesity: A review. Obesity 2022 30 4 802 840 10.1002/oby.23371 35333446
    [Google Scholar]
  184. Bonomi P.D. Walsh D. Currow D.C. Ballinari G. Skipworth R.J.E. Cancer cachexia impact on chemotherapy dose reduction, treatment discontinuation, and survival: A qualitative systematic review. J. Clin. Oncol. 2022 40 16_suppl e24103 e24103 10.1200/JCO.2022.40.16_suppl.e24103
    [Google Scholar]
/content/journals/cas/10.2174/0118746098355767250325074021
Loading
/content/journals/cas/10.2174/0118746098355767250325074021
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test