Skip to content
2000
image of Frontotemporal Dementia, Current Diagnosis and Treatment Emphasis on Natural Products: A Review

Abstract

Background

Frontotemporal dementia (FTD) refers to a spectrum of brain illnesses that mostly affects the frontal and temporal lobes. These regions are commonly related to personality, behaviour, and communication. It is brought on by aberrant protein aggregates, genetics and mutation. FTD most frequently affect people between the ages of 45 and 65 but can also affect young and elderly people. It is estimated that 1.0 to 15.4 per 100,000 members of the population can be affected by FTD in the near future. About 20,000 to 30,000 cases of FTD were reported in the USA alone in 2016. Presently, no specific pharmaceutical treatments for FTD have been authorized by the US Food and Drug Administration. Nowadays, various biomarkers are available for the correct diagnosis of the disease.

Methods

The present review demonstrates the risk factors, pathogenesis, pathophysiology, diagnostic criteria and treatment of FTD using a number of synthetic and natural drugs to treat the disease and focuses on natural products used to manage the disease. The literature search was done by online databases of SciFinder, Medline, Pubmed, GoogleScholar and Scopus.

Conclusion

Various pharmacological and non-pharmacological interventions have been recorded to treat the disease. Primary treatment is a temporary reduction in the symptoms and progression of the disease. Anticholinesterase, anti-inflammatory, antioxidant compounds are gaining interest in the management of FTD. Herbal remedies and Phytoconstituents, either alone or in combination, could serve as excellent therapies for dementia with fewer adverse effects.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098343389250131050235
2025-03-20
2025-09-14
Loading full text...

Full text loading...

References

  1. Bang J. Spina S. Miller B.L. Frontotemporal dementia. Lancet 2015 386 10004 1672 1682 10.1016/S0140‑6736(15)00461‑4 26595641
    [Google Scholar]
  2. Puppala G.K. Gorthi S.P. Chandran V. Gundabolu G. Fronto-temporal dementia: Current concepts. Neurol. India 2021 69 5 1144 1152 10.4103/0028‑3886.329593 34747778
    [Google Scholar]
  3. Khan I. De Jesus O. Frontotemporal Lobe Dementia. StatPearls 2023
    [Google Scholar]
  4. Jankowicz E. Drozdowski W. Halicka D. Demencje czołowo-skroniowe. Neurol. Neurochir. Pol. 2000 34 3 553 564 10979548
    [Google Scholar]
  5. Bott N.T. Radke A. Stephens M.L. Kramer J.H. Frontotemporal dementia: Diagnosis, deficits and management. Neurodegener. Dis. Manag. 2014 4 6 439 454 10.2217/nmt.14.34 25531687
    [Google Scholar]
  6. Boeve B.F. Links between frontotemporal lobar degeneration, corticobasal degeneration, progressive supranuclear palsy, and amyotrophic lateral sclerosis. Alzheimer Dis. Assoc. Disord. 2007 21 4 S31 S38 10.1097/WAD.0b013e31815bf454 18090421
    [Google Scholar]
  7. Ratnavalli E. Brayne C. Dawson K. Hodges J.R. The preva-lence of frontotemporal dementia. Neurology 2002 58 11 1615 1621 10.1212/WNL.58.11.1615 12058088
    [Google Scholar]
  8. Ministry of Statistics and Programme Implementation, Central Statistics Office 2018 https://www.mospi.gov.in/statistical-year-book-india/2018
  9. Levy M.L. Cummings J.L. Fairbanks L.A. Bravi D. Calvani M. Carta A. Longitudinal assessment of symptoms of depres-sion, agitation, and psychosis in 181 patients with Alz-heimer’s disease. Am. J. Psychiatry 1996 153 11 1438 1443 10.1176/ajp.153.11.1438 8890677
    [Google Scholar]
  10. Bathgate D. Snowden J.S. Varma A. Blackshaw A. Neary D. Behaviour in frontotemporal dementia, Alzheimer’s disease and vascular dementia. Acta Neurol. Scand. 2001 103 6 367 378 10.1034/j.1600‑0404.2001.2000236.x 11421849
    [Google Scholar]
  11. Orfei M.D. Robinson R.G. Bria P. Caltagirone C. Spalletta G. Unawareness of illness in neuropsychiatric disorders: Phe-nomenological certainty versus etiopathogenic vagueness. Neuroscientist 2008 14 2 203 222 10.1177/1073858407309995 18057389
    [Google Scholar]
  12. Gorno-Tempini M.L. Hillis A.E. Weintraub S. Classifica-tion of primary progressive aphasia and its variants. Neurology 2011 76 11 1006 1014 10.1212/WNL.0b013e31821103e6 21325651
    [Google Scholar]
  13. Teichmann M. Kas A. Boutet C. Deciphering logopenic primary progressive aphasia: A clinical, imaging and bi-omarker investigation. Brain 2013 136 11 3474 3488 10.1093/brain/awt266 24108322
    [Google Scholar]
  14. 2019 World Health Organization dementia factsheet. https://www.who.int/health-topics/dementia#tab=tab_1
    [Google Scholar]
  15. Nandi S.P. Biswas A. Pal S. Basu S. Senapati A.K. Das S.K. Clinical profile of young-onset dementia: A study from East-ern India. Neurol. Asia 2008 13 103 108
    [Google Scholar]
  16. Knopman D.S. Roberts R.O. Estimating the number of persons with frontotemporal lobar degeneration in the US population. J. Mol. Neurosci. 2011 45 3 330 335 10.1007/s12031‑011‑9538‑y 21584654
    [Google Scholar]
  17. Borroni B. Alberici A. Grassi M. Is frontotemporal lobar degeneration a rare disorder? Evidence from a preliminary study in Brescia county, Italy. J. Alzheimers Dis. 2010 19 1 111 116 10.3233/JAD‑2010‑1208 20061630
    [Google Scholar]
  18. Ravindranath V. Sundarakumar J.S. Changing demography and the challenge of dementia in India. Nat. Rev. Neurol. 2021 17 12 747 758 10.1038/s41582‑021‑00565‑x 34663985
    [Google Scholar]
  19. Logroscino G. Piccininni M. Graff C. Incidence of syn-dromes associated with frontotemporal lobar degeneration in 9 European countries. JAMA Neurol. 2023 80 3 279 286 10.1001/jamaneurol.2022.5128 36716024
    [Google Scholar]
  20. Boxer A.L. Gold M. Huey E. Frontotemporal degenera-tion, the next therapeutic frontier: Molecules and animal mod-els for frontotemporal degeneration drug development. Alzheimers Dement. 2013 9 2 176 188 10.1016/j.jalz.2012.03.002 23043900
    [Google Scholar]
  21. Miller Z.A. Rankin K.P. Graff-Radford N.R. TDP-43 fron-totemporal lobar degeneration and autoimmune disease. J. Neurol. Neurosurg. Psychiatry 2013 84 9 956 962 10.1136/jnnp‑2012‑304644 23543794
    [Google Scholar]
  22. Rohrer J.D. Guerreiro R. Vandrovcova J. The heritability and genetics of frontotemporal lobar degeneration. Neurology 2009 73 18 1451 1456 10.1212/WNL.0b013e3181bf997a 19884572
    [Google Scholar]
  23. Rosso S.M. Landweer E.J. Houterman M. Donker Kaat L. van Duijn C.M. van Swieten J.C. Medical and environmental risk factors for sporadic frontotemporal dementia: A retrospective case-control study. J. Neurol. Neurosurg. Psychiatry 2003 74 11 1574 1576 10.1136/jnnp.74.11.1574 14617722
    [Google Scholar]
  24. Soppela H. Katisko K. Gadola Y. Modifiable potential risk factors in familial and sporadic frontotemporal dementia. Ann. Clin. Transl. Neurol. 2022 9 8 1195 1205 10.1002/acn3.51619 35767471
    [Google Scholar]
  25. Sha S. Hou C. Viskontas I.V. Miller B.L. Are frontotemporal lobar degeneration, progressive supranuclear palsy and corti-cobasal degeneration distinct diseases? Nat. Clin. Pract. Neurol. 2006 2 12 658 665 10.1038/ncpneuro0357 17117169
    [Google Scholar]
  26. Ghetti B. Wszolek Z.K. Boeve B.F. Spina S. Goedert M. Fron-totemporal dementia and Parkinsonism linked to chromosome 17: A new group of tauopathies. Brain Pathol. 2011 8 2 387 10.1111/j.1750‑3639.1998.tb00162.x
    [Google Scholar]
  27. Baker M. Mackenzie I.R. Pickering-Brown S.M. Muta-tions in progranulin cause tau-negative frontotemporal de-mentia linked to chromosome 17. Nature 2006 442 7105 916 919 10.1038/nature05016 16862116
    [Google Scholar]
  28. Kabashi E. Valdmanis P.N. Dion P. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat. Genet. 2008 40 5 572 574 10.1038/ng.132 18372902
    [Google Scholar]
  29. DeJesus-Hernandez M. Mackenzie I.R. Boeve B.F. Ex-panded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 2011 72 2 245 256 10.1016/j.neuron.2011.09.011 21944778
    [Google Scholar]
  30. Kwiatkowski T.J. Jr Bosco D.A. LeClerc A.L. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyo-trophic lateral sclerosis. Science 2009 323 5918 1205 1208 10.1126/science.1166066 19251627
    [Google Scholar]
  31. Rohlfing F.W. Tu R.K. Genetics of frontotemporal dementia. AJNR Am. J. Neuroradiol. 2017 38 1 10 11 10.3174/ajnr.A4972 27686486
    [Google Scholar]
  32. Gossye H. Van Broeckhoven C. Engelborghs S. The use of biomarkers and genetic screening to diagnose frontotemporal dementia: Evidence and clinical implications. Front. Neurosci. 2019 13 757 10.3389/fnins.2019.00757 31447625
    [Google Scholar]
  33. Rascovsky K. Hodges J.R. Knopman D. Sensitivity of revised diagnostic criteria for the behavioural variant of fron-totemporal dementia. Brain 2011 134 9 2456 2477 10.1093/brain/awr179 21810890
    [Google Scholar]
  34. Sobue G. Ishigaki S. Watanabe H. Pathogenesis of frontotem-poral lobar degeneration: Insights from loss of function theo-ry and early involvement of the caudate nucleus. Front. Neurosci. 2018 12 473 10.3389/fnins.2018.00473 30050404
    [Google Scholar]
  35. Neumann M. Sampathu D.M. Kwong L.K. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyo-trophic lateral sclerosis. Science 2006 314 5796 130 133 10.1126/science.1134108 17023659
    [Google Scholar]
  36. Orozco D. Edbauer D. FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J. Mol. Med. (Berl.) 2013 91 12 1343 1354 10.1007/s00109‑013‑1077‑2 23974990
    [Google Scholar]
  37. Vanden Broeck L. Naval-Sánchez M. Adachi Y. TDP-43 loss-of-function causes neuronal loss due to defective steroid receptor-mediated gene program switching in Drosophila. Cell Rep. 2013 3 1 160 172 10.1016/j.celrep.2012.12.014 23333275
    [Google Scholar]
  38. Zhou Y. Liu S. Liu G. Öztürk A. Hicks G.G. ALS-associated FUS mutations result in compromised FUS alternative splicing and autoregulation. PLoS Genet. 2013 9 10 e1003895 10.1371/journal.pgen.1003895 24204307
    [Google Scholar]
  39. Hong M. Zhukareva V. Vogelsberg-Ragaglia V. Muta-tion-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 1998 282 5395 1914 1917 10.1126/science.282.5395.1914 9836646
    [Google Scholar]
  40. Yoshida M. Cellular tau pathology and immunohistochemical study of tau isoforms in sporadic tauopathies. Neuropathology 2006 26 5 457 470 10.1111/j.1440‑1789.2006.00743.x 17080726
    [Google Scholar]
  41. Kovacs G.G. Rozemuller A.J.M. van Swieten J.C. Neuropa-thology of the hippocampus in FTLD‐Tau with Pick bodies: A study of the BrainNet Europe Consortium. Neuropathol. Appl. Neurobiol. 2013 39 2 166 178 10.1111/j.1365‑2990.2012.01272.x 22471883
    [Google Scholar]
  42. Brandmeir N.J. Geser F. Kwong L.K. Severe subcortical TDP-43 pathology in sporadic frontotemporal lobar degenera-tion with motor neuron disease. Acta Neuropathol. 2007 115 1 123 131 10.1007/s00401‑007‑0315‑5 18004574
    [Google Scholar]
  43. Mackenzie I.R.A. Neumann M. Molecular neuropathology of frontotemporal dementia: Insights into disease mechanisms from postmortem studies. J. Neurochem. 2016 138 S1 Suppl. 1 54 70 10.1111/jnc.13588 27306735
    [Google Scholar]
  44. Braak H. Braak E. Cortical and subcortical argyrophilic grains characterize a disease associated with adult onset dementia. Neuropathol. Appl. Neurobiol. 1989 15 1 13 26 10.1111/j.1365‑2990.1989.tb01146.x 2471109
    [Google Scholar]
  45. Bigio E.H. Brown D.F. White C.L. III Progressive supranuclear palsy with dementia: Cortical pathology. J. Neuropathol. Exp. Neurol. 1999 58 4 359 364 10.1097/00005072‑199904000‑00006 10218631
    [Google Scholar]
  46. Abramzon Y.A. Fratta P. Traynor B.J. Chia R. The overlapping genetics of amyotrophic lateral sclerosis and frontotemporal dementia. Front. Neurosci. 2020 14 42 10.3389/fnins.2020.00042 32116499
    [Google Scholar]
  47. Lee V.M.Y. Goedert M. Trojanowski J.Q. Neurodegenerative Tauopathies. Annu. Rev. Neurosci. 2001 24 1 1121 1159 10.1146/annurev.neuro.24.1.1121 11520930
    [Google Scholar]
  48. Hutton M. Lendon C.L. Rizzu P. Association of mis-sense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998 393 6686 702 705 10.1038/31508 9641683
    [Google Scholar]
  49. Snowden J.S. Bathgate D. Varma A. Blackshaw A. Gibbons Z.C. Neary D. Distinct behavioural profiles in frontotemporal dementia and semantic dementia. J. Neurol. Neurosurg. Psychiatry 2001 70 3 323 332 10.1136/jnnp.70.3.323 11181853
    [Google Scholar]
  50. Gorno-Tempini M.L. Dronkers N.F. Rankin K.P. Cogni-tion and anatomy in three variants of primary progressive aphasia. Ann. Neurol. 2004 55 3 335 346 10.1002/ana.10825 14991811
    [Google Scholar]
  51. Henry M.L. Wilson S.M. Ogar J.M. Neuropsychological, behavioral, and anatomical evolution in right temporal variant frontotemporal dementia: A longitudinal and post-mortem single case analysis. Neurocase 2014 20 1 100 109 10.1080/13554794.2012.732089 23171151
    [Google Scholar]
  52. Rohrer J.D. Sauter D. Scott S. Rossor M.N. Warren J.D. Recep-tive prosody in nonfluent primary progressive aphasias. Cortex 2012 48 3 308 316 10.1016/j.cortex.2010.09.004 21047627
    [Google Scholar]
  53. de Souza L.C. Hosogi M.L. Machado T.H. Diagnosis of frontotemporal dementia: Recommendations of the scientific department of cognitive neurology and aging of the Brazilian Academy of neurology. Dement. Neuropsychol. 2022 16 3 Suppl. 1 40 52 10.1590/1980‑5764‑dn‑2022‑s103pt 36533158
    [Google Scholar]
  54. Rosso S.M. Donker Kaat L. Baks T. Frontotemporal dementia in The Netherlands: Patient characteristics and prev-alence estimates from a population-based study. Brain 2003 126 9 2016 2022 10.1093/brain/awg204 12876142
    [Google Scholar]
  55. Brucki S.M.D. Nitrini R. Caramelli P. Bertolucci P.H.F. Okamoto I.H. Suggestions for utilization of the mini-mental state exami-nation in Brazil. Arq. Neuropsiquiatr. 2003 61 3B 777 781 10.1590/S0004‑282X2003000500014 14595482
    [Google Scholar]
  56. Seeley W.W. Crawford R. Rascovsky K. Frontal paralim-bic network atrophy in very mild behavioral variant fronto-temporal dementia. Arch. Neurol. 2008 65 2 249 255 10.1001/archneurol.2007.38 18268196
    [Google Scholar]
  57. Carvalho V.A. Caramelli P. Brazilian adaptation of the Ad-denbrooke’s cognitive examination-revised (ACE-R). Dement. Neuropsychol. 2007 1 2 212 216 10.1590/s1980‑57642008dn10200015 29213390
    [Google Scholar]
  58. Beato R. Amaral-Carvalho V. Guimarães H.C. Frontal assessment battery in a Brazilian sample of healthy controls: Normative data. Arq. Neuropsiquiatr. 2012 70 4 278 280 10.1590/S0004‑282X2012005000009 22358310
    [Google Scholar]
  59. Torralva T. Roca M. Gleichgerrcht E. López P. Manes F. INECO Frontal Screening (IFS): A brief, sensitive, and specif-ic tool to assess executive functions in dementia–Corrected version. J. Int. Neuropsychol. Soc. 2009 15 5 777 786 10.1017/S1355617709990415 19635178
    [Google Scholar]
  60. Camozzato A.L. Godinho C. Kochhann R. Massochini G. Chaves M.L. Validity of the Brazilian version of the neuro-psychiatric inventory questionnaire (NPI-Q). Arq. Neuropsiquiatr. 2015 73 1 41 45 10.1590/0004‑282X20140177 25608126
    [Google Scholar]
  61. Bertoux M. Delavest M. de Souza L.C. Social cognition and emotional assessment differentiates frontotemporal de-mentia from depression. J. Neurol. Neurosurg. Psychiatry 2012 83 4 411 416 10.1136/jnnp‑2011‑301849 22291219
    [Google Scholar]
  62. Kertesz A. Nadkarni N. Davidson W. Thomas A.W. The frontal behavioral inventory in the differential diagnosis of frontotemporal dementia. J. Int. Neuropsychol. Soc. 2000 6 4 460 468 10.1017/S1355617700644041 10902415
    [Google Scholar]
  63. Caramelli P. Teixeira A.L. Buchpiguel C.A. Diagnosis of Alzheimer’s disease in Brazil: Supplementary exams. Dement. Neuropsychol. 2011 5 3 167 177 10.1590/S1980‑57642011DN05030004 29213741
    [Google Scholar]
  64. Swift I.J. Sogorb-Esteve A. Heller C. Fluid biomarkers in frontotemporal dementia: Past, present and future. J. Neurol. Neurosurg. Psychiatry 2021 92 2 204 215 10.1136/jnnp‑2020‑323520 33188134
    [Google Scholar]
  65. de Souza L.C. Lehéricy S. Dubois B. Stella F. Sarazin M. Neu-roimaging in dementias. Curr. Opin. Psychiatry 2012 25 6 473 479 10.1097/YCO.0b013e328357b9ab 23037962
    [Google Scholar]
  66. Ameur F. Colliot O. Caroppo P. White matter lesions in FTLD: Distinct phenotypes characterize GRN and C9ORF72 mutations. Neurol. Genet. 2016 2 1 e47 10.1212/NXG.0000000000000047 27066584
    [Google Scholar]
  67. Ossenkoppele R. Pijnenburg Y.A.L. Perry D.C. The be-havioural/dysexecutive variant of Alzheimer’s disease: Clini-cal, neuroimaging and pathological features. Brain 2015 138 9 2732 2749 10.1093/brain/awv191 26141491
    [Google Scholar]
  68. Ulugut H. Pijnenburg Y.A.L. Frontotemporal dementia: Past, present, and future. Alzheimers Dement. 2023 19 11 5253 5263 10.1002/alz.13363 37379561
    [Google Scholar]
  69. Kaye E.D. Petrovic-Poljak A. Verhoeff N.P.L.G. Freedman M. Frontotemporal dementia and pharmacologic interventions. J. Neuropsychiatry Clin. Neurosci. 2010 22 1 19 29 10.1176/jnp.2010.22.1.19 20160206
    [Google Scholar]
  70. Pasquier F. Telling the difference between frontotemporal dementia and Alzheimer’s disease. Curr. Opin. Psychiatry 2005 18 6 628 632 10.1097/01.yco.0000185988.05741.2a 16639086
    [Google Scholar]
  71. Tsai R.M. Boxer A.L. Treatment of frontotemporal dementia. Curr. Treat. Options Neurol. 2014 16 11 319 10.1007/s11940‑014‑0319‑0 25238733
    [Google Scholar]
  72. Langmore S.E. Olney R.K. Lomen-Hoerth C. Miller B.L. Dys-phagia in patients with frontotemporal lobar dementia. Arch. Neurol. 2007 64 1 58 62 10.1001/archneur.64.1.58 17210809
    [Google Scholar]
  73. Marin S.M.C. Mansur L.L. Oliveira F.F. Swallowing in behavioral variant frontotemporal dementia. Arq. Neuropsiquiatr. 2021 79 1 8 14 10.1590/0004‑282x20200060 33656114
    [Google Scholar]
  74. Srivastava P. Tripathi P.N. Sharma P. Design and devel-opment of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to en-hance learning and memory. Eur. J. Med. Chem. 2019 163 116 135 10.1016/j.ejmech.2018.11.049 30503937
    [Google Scholar]
  75. Moretti R. Torre P. Antonello R.M. Cattaruzza T. Cazzato G. Bava A. Rivastigmine in frontotemporal dementia: An open-label study. Drugs Aging 2004 21 14 931 937 10.2165/00002512‑200421140‑00003 15554751
    [Google Scholar]
  76. Mendez M.F. Shapira J.S. McMurtray A. Licht E. Preliminary findings: Behavioral worsening on donepezil in patients with frontotemporal dementia. Am. J. Geriatr. Psychiatry 2007 15 1 84 87 10.1097/01.JGP.0000231744.69631.33 17194818
    [Google Scholar]
  77. Litvan I. Med C.G. Atack J.R. Physostigmine treatment of progressive supranuclear palsy. Ann. Neurol. 1989 26 3 404 407 10.1002/ana.410260318 2802540
    [Google Scholar]
  78. Liepelt I. Gaenslen A. Godau J. Rivastigmine for the treatment of dementia in patients with progressive supranu-clear palsy: Clinical observations as a basis for power calcula-tions and safety analysis. Alzheimers Dement. 2010 6 1 70 74 10.1016/j.jalz.2009.04.1231 20129321
    [Google Scholar]
  79. Tripathi P.N. Srivastava P. Sharma P. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cho-linesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg. Chem. 2019 85 82 96 10.1016/j.bioorg.2018.12.017 30605887
    [Google Scholar]
  80. Herrmann N. Black S.E. Chow T. Cappell J. Tang-Wai D.F. Lanctôt K.L. Serotonergic function and treatment of behavioral and psychological symptoms of frontotemporal dementia. Am. J. Geriatr. Psychiatry 2012 20 9 789 797 10.1097/JGP.0b013e31823033f3 21878805
    [Google Scholar]
  81. Prodan C.I. Monnot M. Ross E.D. Behavioural abnormalities associated with rapid deterioration of language functions in semantic dementia respond to sertraline. J. Neurol. Neurosurg. Psychiatry 2009 80 12 1416 1417 10.1136/jnnp.2009.173260 19917830
    [Google Scholar]
  82. Swartz J.R. Miller B.L. Lesser I.M. Darby A.L. Frontotemporal Dementia. J. Clin. Psychiatry 1997 58 5 212 217 10.4088/JCP.v58n0506 9184615
    [Google Scholar]
  83. Reeves R.R. Perry C.L. Aripiprazole for sexually inappropriate vocalizations in frontotemporal dementia. J. Clin. Psychopharmacol. 2013 33 1 145 146 10.1097/01.jcp.0000426190.64916.3b 23288244
    [Google Scholar]
  84. Rahman S. Robbins T.W. Hodges J.R. Methylphenidate (‘Ritalin’) can ameliorate abnormal risk-taking behavior in the frontal variant of frontotemporal dementia. Neuropsychopharmacology 2006 31 3 651 658 10.1038/sj.npp.1300886 16160709
    [Google Scholar]
  85. Rai S.N. Yadav S.K. Singh D. Singh S.P. Ursolic acid attenuates oxidative stress in nigrostriatal tissue and improves neurobe-havioral activity in MPTP-induced Parkinsonian mouse mod-el. J. Chem. Neuroanat. 2016 71 41 49 10.1016/j.jchemneu.2015.12.002 26686287
    [Google Scholar]
  86. Poetter C.E. Stewart J.T. Treatment of indiscriminate, inappro-priate sexual behavior in frontotemporal dementia with car-bamazepine. J. Clin. Psychopharmacol. 2012 32 1 137 138 10.1097/JCP.0b013e31823f91b9 22217950
    [Google Scholar]
  87. Shinagawa S. Tsuno N. Nakayama K. Managing abnormal eating behaviours in frontotemporal lobar degeneration pa-tients with topiramate. Psychogeriatrics 2013 13 1 58 61 10.1111/j.1479‑8301.2012.00429.x 23551414
    [Google Scholar]
  88. Renton A.E. Majounie E. Waite A. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 2011 72 2 257 268 10.1016/j.neuron.2011.09.010 21944779
    [Google Scholar]
  89. Chow T.W. Mendez M.F. Goals in symptomatic pharmacologic management of frontotemporal lobar degeneration. Am. J. Alzheimers Dis. Other Demen. 2002 17 5 267 272 10.1177/153331750201700504 12392261
    [Google Scholar]
  90. Assogna M. Casula E.P. Borghi I. Effects of pal-mitoylethanolamide combined with luteoline on frontal lobe functions, high frequency oscillations, and GABAergic trans-mission in patients with frontotemporal dementia. J. Alzheimers Dis. 2020 76 4 1297 1308 10.3233/JAD‑200426 32623398
    [Google Scholar]
  91. Kanamori T. Kaneko Y. Yamada K. Suzuki M. Successful combination therapy of trazodone and fluvoxamine for pica in alzheimer’s disease: A case report. Front. Psychiatry 2021 12 704847 10.3389/fpsyt.2021.704847 34276453
    [Google Scholar]
  92. Kapoor V.K. Dureja J. Chadha R. Herbals in the control of ageing. Drug Discov. Today 2009 14 19-20 992 998 10.1016/j.drudis.2009.06.014 19596462
    [Google Scholar]
  93. Ju HS Li XJ Zhao BL Han ZW Xin WJ Effects of glycyr-rhiza flavonoid on lipid peroxidation and active oxygen radi-cals. 1989
    [Google Scholar]
  94. Ikarashi Y. Mizoguchi K. Neuropharmacological efficacy of the traditional Japanese Kampo medicine yokukansan and its active ingredients. Pharmacol. Ther. 2016 166 84 95 10.1016/j.pharmthera.2016.06.018 27373856
    [Google Scholar]
  95. Kanno H. Kawakami Z. Tabuchi M. Mizoguchi K. Ikarashi Y. Kase Y. Protective effects of glycycoumarin and procyanidin B1, active components of traditional Japanese medicine yokukansan, on amyloid β oligomer-induced neuronal death. J. Ethnopharmacol. 2015 159 122 128 10.1016/j.jep.2014.10.058 25446602
    [Google Scholar]
  96. Parle M. Dhingra D. Kulkarni S.K. Memory-strengthening activity of Glycyrrhiza glabra in exteroceptive and interocep-tive behavioral models. J. Med. Food 2004 7 4 462 466 10.1089/jmf.2004.7.462 15671690
    [Google Scholar]
  97. Zhou S. Lim L.Y. Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab. Rev. 2004 36 1 57 104 10.1081/DMR‑120028427 15072439
    [Google Scholar]
  98. Chin D. Huebbe P. Pallauf K. Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease--merits and limitations. Curr. Med. Chem. 2013 20 32 3955 3985 10.2174/09298673113209990210 23931272
    [Google Scholar]
  99. Belkacemi A. Doggui S. Dao L. Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Expert Rev. Mol. Med. 2011 13 e34 10.1017/S1462399411002055 22051121
    [Google Scholar]
  100. Mishra S. Palanivelu K. The effect of curcumin (turmeric) on Alzheimer′s disease: An overview. Ann. Indian Acad. Neurol. 2008 11 1 13 19 10.4103/0972‑2327.40220 19966973
    [Google Scholar]
  101. Ye J. Zhang Y. Curcumin protects against intracellular amy-loid toxicity in rat primary neurons. Int. J. Clin. Exp. Med. 2012 5 1 44 49 22328947
    [Google Scholar]
  102. Zaplatic E. Bule M. Shah S.Z.A. Uddin M.S. Niaz K. Molecular mechanisms underlying protective role of quercetin in attenu-ating Alzheimer’s disease. Life Sci. 2019 224 109 119 10.1016/j.lfs.2019.03.055 30914316
    [Google Scholar]
  103. Pham H.T.N. Phan S.V. Tran H.N. Bacopa monnieri (L.) Ameliorates cognitive deficits caused in a trimethyltin-induced neurotoxicity model mice. Biol. Pharm. Bull. 2019 42 8 1384 1393 10.1248/bpb.b19‑00288 31366873
    [Google Scholar]
  104. Saha S. Mahapatra K.K. Mishra S.R. Bacopa monnieri inhibits apoptosis and senescence through mitophagy in hu-man astrocytes. Food Chem. Toxicol. 2020 141 111367 10.1016/j.fct.2020.111367 32335210
    [Google Scholar]
  105. Malishev R. Shaham-Niv S. Nandi S. Kolusheva S. Gazit E. Jelinek R. Bacoside-A, an Indian traditional-medicine sub-stance, inhibits β-amyloid cytotoxicity, fibrillation, and mem-brane interactions. ACS Chem. Neurosci. 2017 8 4 884 891 10.1021/acschemneuro.6b00438 28094495
    [Google Scholar]
  106. Bartus R.T. Dean R.L. III Beer B. Lippa A.S. The cholinergic hypothesis of geriatric memory dysfunction. Science 1982 217 4558 408 414 10.1126/science.7046051 7046051
    [Google Scholar]
  107. Tewari D. Stankiewicz A.M. Mocan A. Ethnopharmaco-logical approaches for dementia therapy and significance of natural products and herbal drugs. Front. Aging Neurosci. 2018 10 3 10.3389/fnagi.2018.00003 29483867
    [Google Scholar]
  108. Tripathi P. Lodhi A. Rai S. Review of pharmacothera-peutic targets in alzheimer’s disease and its management using traditional medicinal plants. Degener. Neurol. Neuromuscul. Dis. 2024 14 47 74 10.2147/DNND.S452009 38784601
    [Google Scholar]
  109. Rezai-Zadeh K. Arendash G.W. Hou H. Green tea epigal-locatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alz-heimer transgenic mice. Brain Res. 2008 1214 177 187 10.1016/j.brainres.2008.02.107 18457818
    [Google Scholar]
  110. Yamada T. Terashima T. Honma H. Effects of theanine, a unique amino acid in tea leaves, on memory in a rat behav-ioral test. Biosci. Biotechnol. Biochem. 2008 72 5 1356 1359 10.1271/bbb.70669 18460792
    [Google Scholar]
  111. Ayoub S. Melzig M.F. Induction of neutral endopeptidase (NEP) activity of SK-N-SH cells by natural compounds from green tea. J. Pharm. Pharmacol. 2006 58 4 495 501 10.1211/jpp.58.4.0009 16597367
    [Google Scholar]
  112. Zhou X. Cui G. Tseng H.H.L. Vascular contributions to cognitive impairment and treatments with traditional Chinese medicine. Evid. Based Complement. Alternat. Med. 2016 2016 1 9627258 10.1155/2016/9627258 28042305
    [Google Scholar]
  113. Solfrizzi V. Panza F. Plant-based nutraceutical interventions against cognitive impairment and dementia: Meta-analytic evi-dence of efficacy of a standardized Gingko biloba extract. J. Alzheimers Dis. 2014 43 2 605 611 10.3233/JAD‑141887 25352453
    [Google Scholar]
  114. Abdou H.M. Yousef M.I. El Mekkawy D.A. Al-Shami A.S. Prophylactic neuroprotective efficiency of co-administration of Ginkgo biloba and Trifolium pretense against sodium arse-nite-induced neurotoxicity and dementia in different regions of brain and spinal cord of rats. Food Chem. Toxicol. 2016 94 112 127 10.1016/j.fct.2016.05.015 27234133
    [Google Scholar]
  115. Izzo A.A. Interactions between herbs and conventional drugs: Overview of the clinical data. Med. Princ. Pract. 2012 21 5 404 428 10.1159/000334488 22236736
    [Google Scholar]
  116. Pereira E.F.R. Hilmas C. Santos M.D. Alkondon M. Maelicke A. Albuquerque E.X. Unconventional ligands and modulators of nicotinic receptors. J. Neurobiol. 2002 53 4 479 500 10.1002/neu.10146 12436414
    [Google Scholar]
  117. Monsch A.U. Giannakopoulos P. Effects of galantamine on behavioural and psychological disturbances and caregiver burden in patients with Alzheimer’s disease. Curr. Med. Res. Opin. 2004 20 6 931 938 10.1185/030079904125003890 15200752
    [Google Scholar]
  118. Doody R.S. Stevens J.C. Beck C. Practice parameter: Management of dementia (an evidence-based review). Report of the quality standards subcommittee of the American Acad-emy of neurology. Neurology 2001 56 9 1154 1166 10.1212/WNL.56.9.1154 11342679
    [Google Scholar]
  119. 2020 https://www.who.int/news-room/fact-sheets/detail/the-top-10-caus-es-of-death
  120. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomedicine 2012 7 5577 5591 10.2147/IJN.S36111 23144561
    [Google Scholar]
  121. Kang Y.S. Jung H.J. Oh J.S. Song D.Y. Use of PEGylated immu-noliposomes to deliver dopamine across the blood–brain bar-rier in a rat model of parkinson’s disease. CNS Neurosci. Ther. 2016 22 10 817 823 10.1111/cns.12580 27350533
    [Google Scholar]
  122. Sachdeva A.K. Misra S. Pal Kaur I. Chopra K. Neuroprotective potential of sesamol and its loaded solid lipid nanoparticles in ICV-STZ-induced cognitive deficits: Behavioral and biochem-ical evidence. Eur. J. Pharmacol. 2015 747 132 140 10.1016/j.ejphar.2014.11.014 25449035
    [Google Scholar]
  123. Ouyang Q.Q. Zhao S. Li S.D. Song C. Application of chitosan, chitooligosaccharide, and their derivatives in the treatment of alzheimer’s disease. Mar. Drugs 2017 15 11 322 10.3390/md15110322 29112116
    [Google Scholar]
  124. Li J. Darabi M. Gu J. A drug delivery hydrogel system based on activin B for Parkinson’s disease. Biomaterials 2016 102 72 86 10.1016/j.biomaterials.2016.06.016 27322960
    [Google Scholar]
  125. Nguyen T.T. Dung Nguyen T.T. Vo T.K. Nanotechnology-based drug delivery for central nervous system disorders. Biomed. Pharmacother. 2021 143 112117 10.1016/j.biopha.2021.112117 34479020
    [Google Scholar]
  126. Novak V. Rogelj B. Župunski V. Therapeutic potential of polyphenols in amyotrophic lateral sclerosis and frontotem-poral dementia. Antioxidants 2021 10 8 1328 10.3390/antiox10081328 34439576
    [Google Scholar]
  127. Tripodo G. Chlapanidas T. Perteghella S. Mesenchymal stromal cells loading curcumin-INVITE-micelles: A drug de-livery system for neurodegenerative diseases. Colloids Surf. B Biointerfaces 2015 125 300 308 10.1016/j.colsurfb.2014.11.034 25524221
    [Google Scholar]
  128. Kimura T. Hayashida H. Furukawa H. Takamatsu J. Pilot study of pharmacological treatment for frontotemporal de-mentia: Effect of Yokukansan on behavioral symptoms. Psychiatry Clin. Neurosci. 2010 64 2 207 210 10.1111/j.1440‑1819.2010.02072.x 20447015
    [Google Scholar]
  129. Pardini M. Serrati C. Guida S. Souvenaid reduces behav-ioral deficits and improves social cognition skills in fronto-temporal dementia: A proof-of-concept study. Neurodegener. Dis. 2015 15 1 58 62 10.1159/000369811 25592742
    [Google Scholar]
  130. Kamminga J. Kumfor F. Burrell J.R. Piguet O. Hodges J.R. Irish M. Differentiating between right-lateralised semantic dementia and behavioural-variant frontotemporal dementia: An exami-nation of clinical characteristics and emotion processing. J. Neurol. Neurosurg. Psychiatry 2015 86 10 1082 1088 10.1136/jnnp‑2014‑309120 25511791
    [Google Scholar]
  131. Shigenobu K. Ikeda M. Fukuhara R. The stereotypy rating inventory for frontotemporal lobar degeneration. Psychiatry Res. 2002 110 2 175 187 10.1016/S0165‑1781(02)00094‑X 12057829
    [Google Scholar]
  132. Oliver L.D. Stewart C. Coleman K. Neural effects of oxytocin and mimicry in frontotemporal dementia. Neurology 2020 95 19 e2635 e2647 10.1212/WNL.0000000000010933 32963103
    [Google Scholar]
  133. Finger E. Berry S. Cummings J. Adaptive crossover designs for assessment of symptomatic treatments targeting behaviour in neurodegenerative disease: A phase 2 clinical trial of intranasal oxytocin for frontotemporal dementia (FOXY). Alzheimers Res. Ther. 2018 10 1 102 10.1186/s13195‑018‑0427‑2 30261917
    [Google Scholar]
  134. Freitas S. Simões M.R. Alves L. Duro D. Santana I. Montreal Cognitive Assessment (MoCA): Validation study for fronto-temporal dementia. J. Geriatr. Psychiatry Neurol. 2012 25 3 146 154 10.1177/0891988712455235 22859702
    [Google Scholar]
  135. Afrashteh F. Almasi-Dooghaee M. Kamyari N. Rajabi R. Baradaran H.R. Is montreal cognitive assessment a valuable test for the differentiation of Alzheimer’s disease, frontotem-poral dementia, dementia with Lewy body, and vascular de-mentia? Dement. Neuropsychol. 2024 18 e20230124 10.1590/1980‑5764‑dn‑2023‑0124 39193467
    [Google Scholar]
  136. Ramakrishna K. Nalla L.V. Naresh D. WNT-β catenin signaling as a potential therapeutic target for neurodegenera-tive diseases: Current status and future perspective. Diseases 2023 11 3 89 10.3390/diseases11030089 37489441
    [Google Scholar]
/content/journals/cas/10.2174/0118746098343389250131050235
Loading
/content/journals/cas/10.2174/0118746098343389250131050235
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test