Skip to content
2000
Volume 18, Issue 2
  • ISSN: 1874-6098
  • E-ISSN: 1874-6128

Abstract

Aims

To study the role of hypoxia-reoxygenation and anoxia-starvation on the lifespan of and elucidate the mechanism at molecular levels.

Background

Increasing evidence indicates that reactive oxygen species (ROS) act as signaling molecules that promote health. Hormesis occurs when a moderate stress level induces a beneficial adaptive response, protecting organisms against subsequent exposure to severe stress. is a widely used model organism to study aging and displays a broad hormetic ability to couple with stress. To date, only few methods are available to induce stress hormesis in

Objectives

The objectives of this study were to explore the effects of hypoxia-reoxygenation and anoxia-starvation on the lifespan of , exploring the involvement of ROS and oxidative stress-related pathways, and examining the hormetic property of H/R.

Methods

The were cultured in hypoxic conditions (1% O) with OP50 bacteria for 24 h followed by reoxygenation (20% O) (H/R) or in anoxic conditions (0% O; 100% N) without OP50 bacteria for 24 h followed by reoxygenation (20% O) and food supplementation (A/S). Survivals were plotted and estimated for probability with Kaplan-Meier analysis.

Results

The H/R extended the lifespan of , and H/R-pretreated worms showed improved resistance toward A/S compared to naïve worms. The SKN-1 and DAF-16 are important oxidative stress response factors homologous to mammalian Nrf2 and FOXO3, respectively. Mutations in SKN-1 and DAF-16 blocked H/R-induced life extension. Next, H/R treatment in activated both SKN-1 and DAF-16, as indicated by the upregulation of putative target genes of SKN-1 ( and ) and DAF-16 (). Moreover, pre-treatment with antioxidants (N-acetylcysteine, chlorogenic acid, and sulforaphane) reduced ROS levels and diminished the lifespan extension effect of H/R, indicating their dependency on ROS.

Conclusion

These results provide evidence that H/R is beneficial for lifespan and stress resistance by activating the adaptive cellular response pathway (SKN-1 and DAF-16A) toward oxidative stress.

Loading

Article metrics loading...

/content/journals/cas/10.2174/0118746098292667240914024812
2024-10-01
2025-09-15
Loading full text...

Full text loading...

References

  1. SiswantoF.M. OkukawaK. TamuraA. OguroA. ImaokaS. Hydrogen peroxide activates APE1/Ref-1 via NF-κB and Parkin: A role in liver cancer resistance to oxidative stress.Free Radic. Res.202357322323810.1080/10715762.2023.222950937364176
    [Google Scholar]
  2. AnikM.I. MahmudN. MasudA.A. KhanM.I. IslamM.N. UddinS. HossainM.K. Role of reactive oxygen species in aging and age-related diseases: A review.ACS Appl. Bio Mater.2022594028405410.1021/acsabm.2c0041136043942
    [Google Scholar]
  3. SrisetY. ChatuphonprasertW. JarukamjornK. Hepatoprotective activity of bergenin against xenobiotics-induced oxidative stress in human hepatoma (HEPG2) cells.Chiang Mai Univ. J. Nat. Sci.202020110.12982/CMUJNS.2021.011
    [Google Scholar]
  4. ChecaJ. AranJ.M. Reactive oxygen species: Drivers of physiological and pathological processes.J. Inflamm. Res.2020131057107310.2147/JIR.S27559533293849
    [Google Scholar]
  5. LeeS.J. HwangA.B. KenyonC. Inhibition of respiration extends C. elegans life span via reactive oxygen species that increase HIF-1 activity.Curr. Biol.201020232131213610.1016/j.cub.2010.10.05721093262
    [Google Scholar]
  6. SchieberM. ChandelN.S. TOR signaling couples oxygen sensing to lifespan in C. elegans.Cell Rep.20149191510.1016/j.celrep.2014.08.07525284791
    [Google Scholar]
  7. HwangA.B. RyuE.A. ArtanM. ChangH.W. KabirM.H. NamH.J. LeeD. YangJ.S. KimS. MairW.B. LeeC. LeeS.S. LeeS.J. Feedback regulation via AMPK and HIF-1 mediates ROS-dependent longevity in Caenorhabditis elegans.Proc. Natl. Acad. Sci.201411142E4458E446710.1073/pnas.141119911125288734
    [Google Scholar]
  8. CypserJ.R. JohnsonT.E. Multiple stressors in Caenorhabditis elegans induce stress hormesis and extended longevity.J. Gerontol. A Biol. Sci. Med. Sci.2002573B109B11410.1093/gerona/57.3.B10911867647
    [Google Scholar]
  9. RistowM. ZarseK. How increased oxidative stress promotes longevity and metabolic health: The concept of mitochondrial hormesis (mitohormesis).Exp. Gerontol.201045641041810.1016/j.exger.2010.03.01420350594
    [Google Scholar]
  10. HeidlerT. HartwigK. DanielH. WenzelU. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1.Biogerontology201011218319510.1007/s10522‑009‑9239‑x19597959
    [Google Scholar]
  11. SchulzT.J. ZarseK. VoigtA. UrbanN. BirringerM. RistowM. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress.Cell Metab.20076428029310.1016/j.cmet.2007.08.01117908557
    [Google Scholar]
  12. LapointeJ. HekimiS. When a theory of aging ages badly.Cell. Mol. Life Sci.20106711810.1007/s00018‑009‑0138‑819730800
    [Google Scholar]
  13. RistowM. SchmeisserK. Promoting health and lifespan by increased levels of reactive oxygen species (ROS).Dose Response201412228834110.2203/dose‑response.13‑035.Ristow
    [Google Scholar]
  14. MoranoK.A. GrantC.M. Moye-RowleyW.S. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics201219041157119510.1534/genetics.111.12803322209905
    [Google Scholar]
  15. HuntP.R. SonT.G. WilsonM.A. YuQ.S. WoodW.H. ZhangY. BeckerK.G. GreigN.H. MattsonM.P. CamandolaS. WolkowC.A. Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms.PLoS One201167e2192210.1371/journal.pone.002192221765926
    [Google Scholar]
  16. HercusM.J. LoeschckeV. RattanS.I. Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress.Biogerontology20034314915610.1023/A:102419780685512815314
    [Google Scholar]
  17. CarateroA. CourtadeM. BonnetL. PlanelH. CarateroC. Effect of a continuous gamma irradiation at a very low dose on the life span of mice.Gerontology199844527227610.1159/0000220249693258
    [Google Scholar]
  18. MichalskiA.I. JohnsonT.E. CypserJ.R. YashinA.I. Heating stress patterns in Caenorhabditis elegans longevity and survivorship.Biogerontology200121354410.1023/A:101009131536811708615
    [Google Scholar]
  19. CardenD.L. GrangerD.N. Pathophysiology of ischaemia-reperfusion injury.J. Pathol.2000190325526610.1002/(SICI)1096‑9896(200002)190:3<255::AID‑PATH526>3.0.CO;2‑610685060
    [Google Scholar]
  20. JurcauA. ArdeleanA.I. Oxidative stress in ischemia/reperfusion injuries following acute ischemic stroke.Biomedicines202210357410.3390/biomedicines1003057435327376
    [Google Scholar]
  21. SiswantoF.M. ImaokaS. Study on the mechanism underlying activation of Nrf2/SKN-1 and lifespan elongation in Caenorhabditis elegans by chlorogenic acid.The 48th Annual Meeting of the Japanese Society of ToxicologyKobe International Conference Center, July 2021, pp.: 0-310.14869/toxpt.48.1.0_O‑3
    [Google Scholar]
  22. SiswantoF.M. OguroA. ImaokaS. Sp1 is a substrate of Keap1 and regulates the activity of CRL4AWDR23 ubiquitin ligase toward Nrf2.J. Biol. Chem.202129610070410.1016/j.jbc.2021.10070433895141
    [Google Scholar]
  23. MalhotraD. Portales-CasamarE. SinghA. SrivastavaS. ArenillasD. HappelC. ShyrC. WakabayashiN. KenslerT.W. WassermanW.W. BiswalS. Global mapping of binding sites for Nrf2 identifies novel targets in cell survival response through ChIP-Seq profiling and network analysis.Nucleic Acids Res.201038175718573410.1093/nar/gkq21220460467
    [Google Scholar]
  24. ChorleyB.N. CampbellM.R. WangX. KaracaM. SambandanD. BanguraF. XueP. PiJ. KleebergerS.R. BellD.A. Identification of novel NRF2-regulated genes by ChIP-Seq: Influence on retinoid X receptor alpha.Nucleic Acids Res.201240157416742910.1093/nar/gks40922581777
    [Google Scholar]
  25. ObsilT. ObsilovaV. Structural basis for DNA recognition by FOXO proteins.Biochim. Biophys. Acta Mol. Cell Res.20111813111946195310.1016/j.bbamcr.2010.11.02521146564
    [Google Scholar]
  26. SykiotisG.P. BohmannD. Stress-activated cap’n’collar transcription factors in aging and human disease.Sci. Signal.20103112re3re310.1126/scisignal.3112re320215646
    [Google Scholar]
  27. SiswantoF.M. SakumaR. OguroA. ImaokaS. Chlorogenic acid activates nrf2/skn-1 and prolongs the lifespan of caenorhabditis elegans via the Akt-FOXO3/DAF16a-DDB1 pathway and activation of DAF16f.J. Gerontol. A Biol. Sci. Med. Sci.20227781503151610.1093/gerona/glac06235279029
    [Google Scholar]
  28. StiernagleT. The online review of c. elegans biology WormBook.Pasadena (CA).10.1895/wormbook.1.101.118050451
    [Google Scholar]
  29. WidhiantaraI.G. PermatasariA.A. RosianaI.W. SutirtayasaI.W. SiswantoF.M. Role of HIF-1, siah-1 and skn-1 in inducing adiposity for caenorhabditis elegans under hypoxic conditions.indones. biomed. j.2020121515610.18585/inabj.v12i1.1007
    [Google Scholar]
  30. QueliconiB.B. KowaltowskiA.J. NehrkeK. An anoxia-starvation model for ischemia/reperfusion in C. elegans. J. Vis. Exp.2014855123110.3791/5123124637332
    [Google Scholar]
  31. SutphinG.L. KaeberleinM. Measuring Caenorhabditis elegans life span on solid media.J. Vis. Exp.2009200927e115210.3791/115219488025
    [Google Scholar]
  32. AmritF.R. RatnappanR. KeithS.A. GhaziA. The C. elegans lifespan assay toolkit.Methods201468346547510.1016/j.ymeth.2014.04.00224727064
    [Google Scholar]
  33. ParkH.E. JungY. LeeS.J.V. Survival assays using Caenorhabditis elegans. Mol. Cells2017402909910.14348/molcells.2017.001728241407
    [Google Scholar]
  34. YoonD. LeeM.H. ChaD. Measurement of intracellular ros in caenorhabditis elegans using 2′,7′-dichlorodihydrofluorescein diacetate.Bio Protoc.201886e277410.21769/BioProtoc.277429744374
    [Google Scholar]
  35. CasanovaA. WeversA. Navarro-LedesmaS. PruimboomL. Mitochondria: It is all about energy.Front. Physiol.202314111423110.3389/fphys.2023.111423137179826
    [Google Scholar]
  36. SinghR. LakhanpalD. KumarS. SharmaS. KatariaH. KaurM. KaurG. Late-onset intermittent fasting dietary restriction as a potential intervention to retard age-associated brain function impairments in male rats.Age201234491793310.1007/s11357‑011‑9289‑221861096
    [Google Scholar]
  37. ChattopadhyayD. ChitnisA. TalekarA. MulayP. MakkarM. JamesJ. ThirumuruganK. Hormetic efficacy of rutin to promote longevity in Drosophila melanogaster. Biogerontology201718339741110.1007/s10522‑017‑9700‑128389882
    [Google Scholar]
  38. HashmiM.Z. NaveedullahC. ShenC. YuC. Hormetic responses of food-supplied pcb 31 to zebrafish (danio rerio) growth.Dose Response20141111410.2203/dose‑response.xx‑xxx.name26673801
    [Google Scholar]
  39. SemchyshynH.M. ValishkevychB.V. Hormetic Effect of H2O2 in Saccharomyces cerevisiae.Dose Response201614210.1177/155932581663613027099601
    [Google Scholar]
  40. LuptakI. CroteauD. ValentineC. QinF. SiwikD.A. RemickD.G. ColucciW.S. HobaiI.A. Myocardial redox hormesis protects the heart of female mice in sepsis.Shock2019521526010.1097/SHK.000000000000124530102640
    [Google Scholar]
  41. KogaM. ZwaalR. GuanK.L. AveryL. OhshimaY. A Caenorhabditis elegans MAP kinase kinase, MEK-1, is involved in stress responses.EMBO J.200019195148515610.1093/emboj/19.19.514811013217
    [Google Scholar]
  42. KumstaC. ChangJ.T. SchmalzJ. HansenM. Hormetic heat stress and HSF-1 induce autophagy to improve survival and proteostasis in C. elegans. Nat. Commun.2017811433710.1038/ncomms1433728198373
    [Google Scholar]
  43. KwonE.S. NarasimhanS.D. YenK. TissenbaumH.A. A new DAF-16 isoform regulates longevity.Nature2010466730549850210.1038/nature0918420613724
    [Google Scholar]
  44. ChenA.T. GuoC. ItaniO.A. BudaitisB.G. WilliamsT.W. HopkinsC.E. McEachinR.C. PandeM. GrantA.R. YoshinaS. MitaniS. HuP.J. Longevity genes revealed by integrative analysis of isoform-specific daf-16/FoxO mutants of Caenorhabditis elegans.Genetics2015201261362910.1534/genetics.115.17799826219299
    [Google Scholar]
  45. AnJ.H. BlackwellT.K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response.Genes Dev.200317151882189310.1101/gad.110780312869585
    [Google Scholar]
  46. FergusonG.D. BridgeW.J. The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biol.20192410117110.1016/j.redox.2019.10117130901603
    [Google Scholar]
  47. YuC.W. WeiC.C. LiaoV.H. Curcumin-mediated oxidative stress resistance in Caenorhabditis elegans is modulated by age-1, akt-1, pdk-1, osr-1, unc-43, sek-1, skn-1, sir-2.1, and mev-1.Free Radic. Res.201448337137910.3109/10715762.2013.87277924313805
    [Google Scholar]
  48. FangE.F. WaltzT.B. KassahunH. LuQ. KerrJ.S. MorevatiM. FivensonE.M. WollmanB.N. MarosiK. WilsonM.A. IserW.B. EckleyD.M. ZhangY. LehrmannE. GoldbergI.G. Scheibye-KnudsenM. MattsonM.P. NilsenH. BohrV.A. BeckerK.G. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway.Sci. Rep.2017714620810.1038/srep4620828397803
    [Google Scholar]
  49. PowolnyA.A. SinghS.V. MelovS. HubbardA. FisherA.L. The garlic constituent diallyl trisulfide increases the lifespan of C. elegans via skn-1 activation.Exp. Gerontol.201146644145210.1016/j.exger.2011.01.00521296648
    [Google Scholar]
  50. GovindanS. AmirthalingamM. DuraisamyK. GovindhanT. SundararajN. PalanisamyS. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways.Biomed. Pharmacother.201810281282210.1016/j.biopha.2018.03.12829605769
    [Google Scholar]
  51. InoueH. HisamotoN. AnJ.H. OliveiraR.P. NishidaE. BlackwellT.K. MatsumotoK. The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response.Genes Dev.200519192278228310.1101/gad.132480516166371
    [Google Scholar]
  52. ChoeK.P. PrzybyszA.J. StrangeK. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol. Cell. Biol.200929102704271510.1128/MCB.01811‑0819273594
    [Google Scholar]
  53. XuZ. HuY. DengY. ChenY. HuaH. HuangS. NieQ. PanQ. MaD.K. MaL. WDR-23 and SKN-1/Nrf2 coordinate with the bli-3 dual oxidase in response to iodide-triggered oxidative stress.G3 Genes Genomes Genetics20188113515352710.1534/g3.118.200586
    [Google Scholar]
  54. SuzukiM. OtsukiA. Keleku-LukweteN. YamamotoM. Overview of redox regulation by Keap1? Nrf2 system in toxicology and cancer.Curr. Opin. Toxicol.20161293610.1016/j.cotox.2016.10.001
    [Google Scholar]
  55. HuberW.W. ParzefallW. Thiols and the chemoprevention of cancer.Curr. Opin. Pharmacol.20077440440910.1016/j.coph.2007.05.00517644484
    [Google Scholar]
  56. HoltzclawW.D. Dinkova-KostovaA.T. TalalayP. Protection against electrophile and oxidative stress by induction of phase 2 genes: The quest for the elusive sensor that responds to inducers.Adv. Enzyme Regul.200444133536710.1016/j.advenzreg.2003.11.01315581500
    [Google Scholar]
  57. BlackwellT.K. SteinbaughM.J. HourihanJ.M. EwaldC.Y. IsikM. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radic. Biol. Med.201588Pt B29030110.1016/j.freeradbiomed.2015.06.00826232625
    [Google Scholar]
  58. RamosC.M. CurranS.P. Comparative analysis of the molecular and physiological consequences of constitutive SKN-1 activation.Geroscience20234563359337010.1007/s11357‑023‑00937‑937751046
    [Google Scholar]
  59. Crook-McMahonH.M. OláhováM. ButtonE.L. WinterJ.J. VealE.A. Genome-wide screening identifies new genes required for stress-induced phase 2 detoxification gene expression in animals.BMC Biol.20141216410.1186/s12915‑014‑0064‑625204677
    [Google Scholar]
  60. TurnerC.D. RamosC.M. CurranS.P. Disrupting the SKN-1 homeostat: Mechanistic insights and phenotypic outcomes.Front. Aging20245136974010.3389/fragi.2024.136974038501033
    [Google Scholar]
  61. PangS. LynnD.A. LoJ.Y. PaekJ. CurranS.P. SKN-1 and Nrf2 couples proline catabolism with lipid metabolism during nutrient deprivation.Nat. Commun.201451504810.1038/ncomms604825284427
    [Google Scholar]
  62. PappD. CsermelyP. SőtiC. A role for SKN-1/Nrf in pathogen resistance and immunosenescence in Caenorhabditis elegans.PLoS Pathog.201284e100267310.1371/journal.ppat.100267322577361
    [Google Scholar]
  63. QuM. MiaoL. ChenH. ZhangX. WangY. SKN-1/Nrf2-dependent regulation of mitochondrial homeostasis modulates transgenerational toxicity induced by nanoplastics with different surface charges in Caenorhabditis elegans. J. Hazard. Mater.202345713184010.1016/j.jhazmat.2023.13184037327611
    [Google Scholar]
  64. GrushkoD. BoocholezH. LevineA. CohenE. Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS One2021167e024352210.1371/journal.pone.024352234197476
    [Google Scholar]
  65. TulletJ.M. HertweckM. AnJ.H. BakerJ. HwangJ.Y. LiuS. OliveiraR.P. BaumeisterR. BlackwellT.K. Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans. Cell200813261025103810.1016/j.cell.2008.01.03018358814
    [Google Scholar]
  66. KondoM. Senoo-MatsudaN. YanaseS. IshiiT. HartmanP.S. IshiiN. Effect of oxidative stress on translocation of DAF-16 in oxygen-sensitive mutants, mev-1 and gas-1 of Caenorhabditis elegans. Mech. Ageing Dev.20051266-763764110.1016/j.mad.2004.11.01115888316
    [Google Scholar]
  67. SenchukM.M. DuesD.J. SchaarC.E. JohnsonB.K. MadajZ.B. BowmanM.J. WinnM.E. Van RaamsdonkJ.M. Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genet.2018143e100726810.1371/journal.pgen.100726829522556
    [Google Scholar]
  68. PedreB. BarayeuU. EzeriņaD. DickT.P. The mechanism of action of N-acetylcysteine (NAC): The emerging role of H2S and sulfane sulfur species.Pharmacol. Ther.202122810791610.1016/j.pharmthera.2021.10791634171332
    [Google Scholar]
  69. ZhangL-Y. CosmaG. GardnerH. CastranovaV. VallyathanV. Effect of chlorogenic acid on hydroxyl radical.Mol. Cell. Biochem.20032471/220521010.1023/A:102410342834812841649
    [Google Scholar]
  70. MahalH.S. MukherjeeT. Radical scavenging reactions of chlorogenic acid: A pulse radiolysis study.Res. Chem. Intermed.200632767168210.1163/156856706778400343
    [Google Scholar]
  71. AkbariE. NamazianM. Sulforaphane: A natural product against reactive oxygen species.Comput. Theor. Chem.2020118311285010.1016/j.comptc.2020.112850
    [Google Scholar]
  72. BouhamidaE. MorcianoG. PerroneM. KahsayA.E. Della SalaM. WieckowskiM.R. FioricaF. PintonP. GiorgiC. PatergnaniS. The interplay of hypoxia signaling on mitochondrial dysfunction and inflammation in cardiovascular diseases and cancer: From molecular mechanisms to therapeutic approaches.Biology202211230010.3390/biology1102030035205167
    [Google Scholar]
  73. ShuttT.E. McBrideH.M. Staying cool in difficult times: Mitochondrial dynamics, quality control and the stress response.Biochim. Biophys. Acta Mol. Cell Res.20131833241742410.1016/j.bbamcr.2012.05.02422683990
    [Google Scholar]
  74. López-LluchG. IrustaP.M. NavasP. de CaboR. Mitochondrial biogenesis and healthy aging.Exp. Gerontol.200843981381910.1016/j.exger.2008.06.01418662766
    [Google Scholar]
  75. GutsaevaD.R. CarrawayM.S. SulimanH.B. DemchenkoI.T. ShitaraH. YonekawaH. PiantadosiC.A. Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism.J. Neurosci.20082892015202410.1523/JNEUROSCI.5654‑07.200818305236
    [Google Scholar]
  76. TepperR.G. AshrafJ. KaletskyR. KleemannG. MurphyC.T. BussemakerH.J. PQM-1 complements daf-16 as a key transcriptional regulator of daf-2-mediated development and longevity.Cell2013154367669010.1016/j.cell.2013.07.006
    [Google Scholar]
  77. WebbA.E. KundajeA. BrunetA. Characterization of the direct targets of FOXO transcription factors throughout evolution.Aging Cell201615467368510.1111/acel.1247927061590
    [Google Scholar]
  78. GitschlagB.L. TateA.T. PatelM.R. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection.ELife20209e5668610.7554/eLife.5668632959778
    [Google Scholar]
  79. PalikarasK. LionakiE. TavernarakisN. Coordination of mitophagy and mitochondrial biogenesis during ageing in C. elegans. Nature2015521755352552810.1038/nature1430025896323
    [Google Scholar]
  80. PaekJ. LoJ.Y. NarasimhanS.D. NguyenT.N. Glover-CutterK. Robida-StubbsS. SuzukiT. YamamotoM. BlackwellT.K. CurranS.P. Mitochondrial SKN-1/Nrf mediates a conserved starvation response.Cell Metab.201216452653710.1016/j.cmet.2012.09.00723040073
    [Google Scholar]
/content/journals/cas/10.2174/0118746098292667240914024812
Loading
/content/journals/cas/10.2174/0118746098292667240914024812
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keyword(s): aging; DAF-16; hormesis; hypoxia-reoxygenation; lifespan; oxidative stress; redox signalling; SKN-1
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test