Skip to content
2000
Volume 19, Issue 7
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Aging is an inevitable process characterized by progressive loss of physiological integrity and increased susceptibility to cancer, diabetes, cardiovascular, and neurodegenerative diseases; aging is the primary risk factor for Alzheimer’s disease (AD), the most common cause of dementia. AD is characterized by brain pathology, including extracellular deposition of amyloid aggregation and intracellular accumulation of neurofibrillary tangles composed of hyperphosphorylated tau protein. In addition, losses of synapses and a wide range of neurons are pivotal pathologies in the AD brain. Accumulating evidence demonstrates hypoactivation of hippocampal neural networks in the aging brain, whereas AD-related mild cognitive impairment (AD-MCI) begins with hyperactivation, followed by a diminution of hippocampal activity as AD develops. The biphasic trends of the activity of the hippocampal neural network are consistent with the alteration of N-methyl-D-aspartate receptor (NMDA-R) activity from aging to prodromal (AD-MCI) to mid-/late stage AD. D-serine, a product of racemization catalyzed by serine racemase (SR), is an important co-agonist of the NMDA-R which is involved in synaptic events including neurotransmission, synaptogenesis, long-term potentiation (LTP), development, and excitotoxicity. SR and D-serine are decreased in the hippocampus of the aging brain, correlating with impairment of cognitive function. By contrast, SR is increased in AD brain, which is associated with a greater degree of cognitive dysfunction. Emerging studies suggest that D-serine levels in the brain or in cerebral spinal fluid from AD patients are higher than in age-matched controls, but the results are inconsistent. Very recently, serum D-serine levels in AD were reported to correlate with sex and clinical dementia rating (CDR) stage. This review will discuss alterations of NMDA-R and SR in aging and AD brain, and the mechanisms underlying the differential regulation of SR will be probed. Collectively, we propose that SR may be a molecular switch that distinguishes the effects of aging from those of AD on the brain.

Loading

Article metrics loading...

/content/journals/car/10.2174/1567205019666220805105106
2022-06-01
2024-12-12
Loading full text...

Full text loading...

/content/journals/car/10.2174/1567205019666220805105106
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test