Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Alzheimer’s Disease (AD) is the most prevalent progressive neurodegenerative disorder, leading to significant cognitive decline and dementia. Oxytocin (OXT), a peptide hormone synthesized in the hypothalamus, has emerged as a critical player in cognitive functioning. Notably, alterations in OXT levels have been reported in individuals with Alzheimer’s disease.

Methods

This systematic review aims to synthesize existing literature from databases such as PubMed, Scopus, and Web of Science, focusing on the therapeutic potential of OXT in AD treatment. Two independent individuals conducted the screening procedure for all articles.

Results

Our screening revealed that studies investigating OXT therapy primarily involve animal models. These studies consistently demonstrate that, OXT administration mitigates various memory deficits in animal models of AD. These improvements are linked to mechanisms such as reduced microglial-driven inflammation and decreased amyloid-beta (Aβ) deposition, but changes in plaque load do not always correspond directly to cognitive improvement.

Discussion

While these findings are promising and oxytocin could be a potential therapeutic candidate for AD, the evidence is limited to animal studies. There is a lack of robust human data, making it difficult to draw firm conclusions about oxytocin’s efficacy in people with AD. Ongoing and future clinical trials will be crucial to determine whether these preclinical benefits translate to humans.

Conclusion

Despite the limited number of studies examining the effects of OXT on AD and the inherent challenges in conducting such research, the available evidence from animal studies suggests promising results. These findings can serve as a valuable foundation for future human and complementary studies aimed at exploring oxytocin’s therapeutic potential in treating AD.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050386593250521064527
2025-05-23
2025-09-15
Loading full text...

Full text loading...

References

  1. HampelH. HardyJ. BlennowK. ChenC. PerryG. KimS.H. VillemagneV.L. AisenP. VendruscoloM. IwatsuboT. MastersC.L. ChoM. LannfeltL. CummingsJ.L. VergalloA. The amyloid-β pathway in Alzheimer’s disease.Mol. Psychiatry202126105481550310.1038/s41380‑021‑01249‑034456336
    [Google Scholar]
  2. SperlingR.A. MorminoE.C. SchultzA.P. BetenskyR.A. PappK.V. AmariglioR.E. HanseeuwB.J. BuckleyR. ChhatwalJ. HeddenT. MarshallG.A. QuirozY.T. DonovanN.J. JacksonJ. GatchelJ.R. RabinJ.S. JacobsH. YangH.S. ProperziM. KirnD.R. RentzD.M. JohnsonK.A. The impact of amyloid-beta and tau on prospective cognitive decline in older individuals.Ann. Neurol.201985218119310.1002/ana.2539530549303
    [Google Scholar]
  3. RenY. SavadlouA. ParkS. SiskaP. EppJ.R. SarginD. The impact of loneliness and social isolation on the development of cognitive decline and Alzheimer’s disease.Front. Neuroendocrinol.20236910106110.1016/j.yfrne.2023.10106136758770
    [Google Scholar]
  4. 2015 Alzheimer’s disease facts and figures.Alzheimers Dement.201511333238410.1016/j.jalz.2015.02.00325984581
    [Google Scholar]
  5. SilvaM.V.F. LouresC.M.G. AlvesL.C.V. de SouzaL.C. BorgesK.B.G. CarvalhoM.G. Alzheimer’s disease: Risk factors and potentially protective measures.J. Biomed. Sci.20192613310.1186/s12929‑019‑0524‑y31072403
    [Google Scholar]
  6. DamD.V. DijckA.V. JanssenL. DeynP.P.D. Neuropeptides in Alzheimer’s disease: From pathophysiological mechanisms to therapeutic opportunities.Curr. Alzheimer Res.201310544946810.2174/156720501131005000123627705
    [Google Scholar]
  7. RodriguesS.M. SaslowL.R. GarciaN. JohnO.P. KeltnerD. Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans.Proc. Natl. Acad. Sci. USA200910650214372144110.1073/pnas.090957910619934046
    [Google Scholar]
  8. AbramovaO. ZorkinaY. UshakovaV. ZubkovE. MorozovaA. ChekhoninV. The role of oxytocin and vasopressin dysfunction in cognitive impairment and mental disorders.Neuropeptides20208310207910.1016/j.npep.2020.10207932839007
    [Google Scholar]
  9. OrihashiR. MizoguchiY. ImamuraY. YamadaS. UenoT. MonjiA. Oxytocin and elderly MRI-based hippocampus and amygdala volume: A 7-year follow-up study.Brain Commun.202022fcaa08110.1093/braincomms/fcaa08132954331
    [Google Scholar]
  10. PetekkayaE. BurakgaziG. KuşB. Melekİ.M. ArpacıA. Comparative study of the volume of the temporal lobe sections and neuropeptide effect in Alzheimer’s patients and healthy persons.Int. J. Neurosci.2021131872573410.1080/00207454.2020.183149033064056
    [Google Scholar]
  11. MazurekM.F. BealM.F. BirdE.D. MartinJ.B. Oxytocin in Alzheimer’s disease.Neurology19873761001100310.1212/WNL.37.6.10013587615
    [Google Scholar]
  12. TakahashiJ. YamadaD. NaganoW. SaitohA. The role of oxytocin in Alzheimer’s disease and its relationship with social interaction.Cells20231220242610.3390/cells1220242637887270
    [Google Scholar]
  13. PodcasyJ.L. EppersonC.N. Considering sex and gender in Alzheimer disease and other dementias.Dialogues Clin. Neurosci.201618443744610.31887/DCNS.2016.18.4/cepperson28179815
    [Google Scholar]
  14. CaldwellJ.Z.K. BergJ.L. CummingsJ.L. BanksS.J. Moderating effects of sex on the impact of diagnosis and amyloid positivity on verbal memory and hippocampal volume.Alzheimers Res. Ther.2017917210.1186/s13195‑017‑0300‑828899422
    [Google Scholar]
  15. BuckleyR.F. MorminoE.C. AmariglioR.E. ProperziM.J. RabinJ.S. LimY.Y. PappK.V. JacobsH.I.L. BurnhamS. HanseeuwB.J. DoréV. DobsonA. MastersC.L. WallerM. RoweC.C. MaruffP. DonohueM.C. RentzD.M. KirnD. HeddenT. ChhatwalJ. SchultzA.P. JohnsonK.A. VillemagneV.L. SperlingR.A. Sex, amyloid, and APOEε4 and risk of cognitive decline in preclinical Alzheimer’s disease: Findings from three well-characterized cohorts.Alzheimers Dement.20181491193120310.1016/j.jalz.2018.04.01029803541
    [Google Scholar]
  16. SohnD. ShpanskayaK. LucasJ.E. PetrellaJ.R. SaykinA.J. TanziR.E. SamatovaN.F. DoraiswamyP.M. Sex differences in cognitive decline in subjects with high likelihood of mild cognitive impairment due to Alzheimer’s disease.Sci. Rep.201881749010.1038/s41598‑018‑25377‑w29748598
    [Google Scholar]
  17. DumaisK.M. BredewoldR. MayerT.E. VeenemaA.H. Sex differences in oxytocin receptor binding in forebrain regions: Correlations with social interest in brain region- and sex- specific ways.Horm. Behav.201364469370110.1016/j.yhbeh.2013.08.01224055336
    [Google Scholar]
  18. VazM. SilvestreS. Alzheimer’s disease: Recent treatment strategies.Eur. J. Pharmacol.202088717355410.1016/j.ejphar.2020.17355432941929
    [Google Scholar]
  19. MarucciG. BuccioniM. BenD.D. LambertucciC. VolpiniR. AmentaF. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease.Neuropharmacology202119010835210.1016/j.neuropharm.2020.10835233035532
    [Google Scholar]
  20. BirksJ.S. DementiaC. GroupC.I. Cholinesterase inhibitors for Alzheimer’s disease.Cochrane Libr.200620061CD00559310.1002/14651858.CD00559316437532
    [Google Scholar]
  21. YuanL. LiuS. BaiX. GaoY. LiuG. WangX. LiuD. LiT. HaoA. WangZ. Oxytocin inhibits lipopolysaccharide-induced inflammation in microglial cells and attenuates microglial activation in lipopolysaccharide-treated mice.J. Neuroinflammation20161317710.1186/s12974‑016‑0541‑727075756
    [Google Scholar]
  22. El-GanainyS.O. SolimanO.A. GhazyA.A. AllamM. ElbahnasiA.I. MansourA.M. GowayedM.A. Intranasal oxytocin attenuates cognitive impairment, β-amyloid burden and tau deposition in female rats with Alzheimer’s disease: Interplay of ERK1/2/GSK3β/caspase-3.Neurochem. Res.20224782345235610.1007/s11064‑022‑03624‑x35596040
    [Google Scholar]
  23. QuintanaD.S. LischkeA. GraceS. ScheeleD. MaY. BeckerB. Advances in the field of intranasal oxytocin research: Lessons learned and future directions for clinical research.Mol. Psychiatry2021261809110.1038/s41380‑020‑00864‑732807845
    [Google Scholar]
  24. LinC.H. ChenP.K. WangS.H. LaneH.Y. Effect of sodium benzoate on cognitive function among patients with behavioral and psychological symptoms of dementia: Secondary analysis of a randomized clinical trial.JAMA Netw. Open202144e216156e21615610.1001/jamanetworkopen.2021.615633881530
    [Google Scholar]
  25. ScacchiR. GambinaG. BroggioE. CorboR.M. Sex and ESR1 genotype may influence the response to treatment with donepezil and rivastigmine in patients with Alzheimer’s disease.Int. J. Geriatr. Psychiatry201429661061510.1002/gps.404324150894
    [Google Scholar]
  26. FerrettiM.T. IulitaM.F. CavedoE. ChiesaP.A. Schumacher DimechA. Santuccione ChadhaA. BaracchiF. GirouardH. MisochS. GiacobiniE. DepypereH. HampelH. Sex differences in Alzheimer disease — The gateway to precision medicine.Nat. Rev. Neurol.201814845746910.1038/s41582‑018‑0032‑929985474
    [Google Scholar]
  27. HooijmansC.R. RoversM.M. de VriesR.B.M. LeenaarsM. Ritskes-HoitingaM. LangendamM.W. SYRCLE’s risk of bias tool for animal studies.BMC Med. Res. Methodol.20141414310.1186/1471‑2288‑14‑4324667063
    [Google Scholar]
  28. ChengM. YeC. TianC. ZhaoD. LiH. SunZ. MiaoY. ZhangQ. WangJ. DouY. Engineered macrophage-biomimetic versatile nanoantidotes for inflammation-targeted therapy against Alzheimer’s disease by neurotoxin neutralization and immune recognition suppression.Bioact. Mater.20232633735210.1016/j.bioactmat.2023.03.00436950153
    [Google Scholar]
  29. KoulousakisP. Exogenous oxytocin administration restores memory in female APP/PS1 mice.J. Alzheimers Dis.20239631207121910.3233/JAD‑23065737927260
    [Google Scholar]
  30. SellesM.C. FortunaJ.T.S. de FariaY.P.R. SiqueiraL.D. Lima-FilhoR. LongoB.M. FroemkeR.C. ChaoM.V. FerreiraS.T. Oxytocin attenuates microglial activation and restores social and non-social memory in APP/PS1 Alzheimer model mice.iScience202326410654510.1016/j.isci.2023.10654537128547
    [Google Scholar]
  31. TakahashiJ. UetaY. YamadaD. Sasaki-HamadaS. IwaiT. AkitaT. YamashitaC. SaitohA. OkaJ.I. Intracerebroventricular administration of oxytocin and intranasal administration of the oxytocin derivative improve β-amyloid peptide (25–35)-induced memory impairment in mice.Neuropsychopharmacol. Rep.202242449250110.1002/npr2.1229236117475
    [Google Scholar]
  32. YeC. ChengM. MaL. ZhangT. SunZ. YuC. WangJ. DouY. Oxytocin nanogels inhibit innate inflammatory response for early intervention in Alzheimer’s disease.ACS Appl. Mater. Interfaces20221419218222183510.1021/acsami.2c0000735510352
    [Google Scholar]
  33. MroczkoB. GroblewskaM. Litman-ZawadzkaA. KornhuberJ. LewczukP. Amyloid β oligomers (AβOs) in Alzheimer’s disease.J. Neural Transm.2018125217719110.1007/s00702‑017‑1820‑x29196815
    [Google Scholar]
  34. SunJ. NanG. The extracellular signal-regulated kinase 1/2 pathway in neurological diseases: A potential therapeutic target (Review).Int. J. Mol. Med.20173961338134610.3892/ijmm.2017.296228440493
    [Google Scholar]
  35. PłóciennikA. PrendeckiM. ZubaE. SiudzinskiM. DorszewskaJ. Activated caspase-3 and neurodegeneration and synaptic plasticity in Alzheimer’s disease.Adv. Alzheimer Dis.201543637710.4236/aad.2015.43007
    [Google Scholar]
  36. SarlusH. HenekaM.T. Microglia in Alzheimer’s disease.J. Clin. Invest.201712793240324910.1172/JCI9060628862638
    [Google Scholar]
  37. LongX. ChenL. JiangC. ZhangL. Prediction and classification of Alzheimer disease based on quantification of MRI deformation.PLoS One2017123e017337210.1371/journal.pone.017337228264071
    [Google Scholar]
  38. NadalL. CoupéP. HelmerC. ManjonJ.V. AmievaH. TisonF. DartiguesJ.F. CathelineG. PlancheV. Differential annualized rates of hippocampal subfields atrophy in aging and future Alzheimer’s clinical syndrome.Neurobiol. Aging202090758310.1016/j.neurobiolaging.2020.01.01132107063
    [Google Scholar]
  39. ChandlerJ. Cochrane Handbook for Systematic Reviews of Interventions.A John Wiley & Sons, Ltd.Hoboken2019410.1002/9781119536604
    [Google Scholar]
/content/journals/car/10.2174/0115672050386593250521064527
Loading
/content/journals/car/10.2174/0115672050386593250521064527
Loading

Data & Media loading...

Supplements

PRISMA checklist is available on publishers website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test