Skip to content
2000
Volume 22, Issue 5
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Quinolinic Acid (QA), a neurotoxic metabolite in the kynurenine pathway, contributes to neuronal damage, oxidative stress, and neuroinflammation, playing a key role in Alzheimer's Disease (AD) pathogenesis. This study investigates the neuroprotective potential of polyphenolic compounds, particularly lycopene and a Curcumin-Zinc (Cur-Zn) complex, using and approaches targeting the kynurenine pathway.

Methodology

This study evaluated the neuroprotective potential of lycopene and Cur-Zn complex using and approaches. Molecular docking was performed to assess their binding affinities with the kynurenine pathway enzymes, and neuroprotection assays on N2a cells measured their efficacy against QA-induced oxidative stress.

Results

Docking analysis revealed strong binding affinities of Cur-Zn and lycopene to IDO1 and KMO, with fitness scores of 143.11 and 126.41, respectively, indicating their potential as enzyme-specific inhibitors. Lycopene exhibited the most potent neuroprotective effect (IC50 = 0.63 µM), followed by Cur-Zn (1.59 µM). Both compounds significantly reduced QA-induced ROS levels, as confirmed by DCFDA fluorescence imaging. Additionally, they upregulated KAT and QPRT enzymes, promoting neuroprotective metabolite production.

Discussion

Lycopene and Cur-Zn effectively modulate key kynurenine pathway enzymes while mitigating oxidative stress, supporting their potential as neuroprotective agents. Although bisabolol and bromelain exhibited some efficacy, their effects were comparatively lower.

Conclusion

Lycopene and Cur-Zn are promising candidates for AD therapy, demonstrating not only anti-oxidant activity but also a capacity to minimise the neurotoxic effects of QA, offering a dual mechanism of action. Further, studies are needed to validate their therapeutic potential in neurodegenerative diseases.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050383383250529100802
2025-06-05
2025-11-07
Loading full text...

Full text loading...

References

  1. RahmanA. TingK. CullenK.M. BraidyN. BrewB.J. GuilleminG.J. The excitotoxin quinolinic acid induces tau phosphorylation in human neurons.PLoS One200947e634410.1371/journal.pone.000634419623258
    [Google Scholar]
  2. HeyesM.P. Quinolinic acid and inflammation.Ann. N. Y. Acad. Sci.1993679121121610.1111/j.1749‑6632.1993.tb18300.x8512184
    [Google Scholar]
  3. GuilleminG.J. Quinolinic acid, the inescapable neurotoxin.FEBS J.201227981356136510.1111/j.1742‑4658.2012.08485.x22248144
    [Google Scholar]
  4. PierozanP. Biasibetti-BrendlerH. SchmitzF. FerreiraF. NettoC.A. WyseA.T.S. Synergistic toxicity of the neurometabolites quinolinic acid and homocysteine in cortical neurons and astrocytes: Implications in Alzheimer’s disease.Neurotox. Res.201834114716310.1007/s12640‑017‑9834‑629124681
    [Google Scholar]
  5. LoganathanC. ThayumanavanP. Asiatic acid prevents the quinolinic acid-induced oxidative stress and cognitive impairment.Metab. Brain Dis.201833115115910.1007/s11011‑017‑0143‑929086235
    [Google Scholar]
  6. MaddisonD.C. GiorginiF. The kynurenine pathway and neurodegenerative disease.Semin. Cell Dev. Biol.201540134-4110.1016/j.semcdb.2015.03.00225773161
    [Google Scholar]
  7. AddaeJ.I. StoneT.W. Quinolinic acid and related excitotoxins: Mechanisms of neurotoxicity and disease relevance.Handbook of Neurotoxicity2023SpringerCham14716310.1007/978‑3‑031‑15080‑7_127
    [Google Scholar]
  8. BusseM. HettlerV. FischerV. MawrinC. HartigR. DobrowolnyH. BogertsB. FrodlT. BusseS. Increased quinolinic acid in peripheral mononuclear cells in Alzheimer’s dementia.Eur. Arch. Psychiatry Clin. Neurosci.2018268549350010.1007/s00406‑017‑0785‑y28386767
    [Google Scholar]
  9. HestadK. AlexanderJ. RootweltH. AasethJ.O. The role of tryptophan dysmetabolism and quinolinic acid in depressive and neurodegenerative diseases.Biomolecules202212799810.3390/biom1207099835883554
    [Google Scholar]
  10. MarinoA. BattagliniM. MolesN. CiofaniG. Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases.ACS Omega2022730259742599010.1021/acsomega.2c0329135936442
    [Google Scholar]
  11. MalíkM. TlustošP. Nootropic herbs, shrubs, and trees as potential cognitive enhancers.Plants2023126136410.3390/plants1206136436987052
    [Google Scholar]
  12. del Rosario Campos-EsparzaM. Torres-RamosA.M. Neuroprotection by natural polyphenols: Molecular mechanisms.Cent. Nerv. Syst. Agents Med. Chem.201010426927710.2174/18715241079342972820868360
    [Google Scholar]
  13. LiA.N. LiS. ZhangY.J. XuX.R. ChenY.M. LiH.B. Resources and biological activities of natural polyphenols.Nutrients20146126020604710.3390/nu612602025533011
    [Google Scholar]
  14. NewtonA. McCannL. HuoL. LiuA. Kynurenine pathway regulation at its critical junctions with fluctuation of tryptophan.Metabolites202313450010.3390/metabo1304050037110158
    [Google Scholar]
  15. HerowatiR. WidodoG.P. Molecular docking analysis: Interaction studies of natural compounds to anti-inflammatory targets.Quantitative Structure-activity RelationshipIntechOpen201710.5772/intechopen.68666
    [Google Scholar]
  16. HuangY.S. OgbechiJ. ClanchyF.I. WilliamsR.O. StoneT.W. IDO and kynurenine metabolites in peripheral and CNS disorders.Front. Immunol.20201138810.3389/fimmu.2020.0038832194572
    [Google Scholar]
  17. GentileM.T. CamerinoI. CiarmielloL. WoodrowP. MuscarielloL. De ChiaraI. PacificoS. Neuro-nutraceutical polyphenols: How far are we?Antioxidants202312353910.3390/antiox1203053936978787
    [Google Scholar]
  18. CoresÁ. Carmona-ZafraN. CleriguéJ. VillacampaM. MenéndezJ.C. Quinones as neuroprotective agents.Antioxidants2023127146410.3390/antiox1207146437508002
    [Google Scholar]
  19. HermanF. WestfallS. BrathwaiteJ. PasinettiG.M. Suppression of presymptomatic oxidative stress and inflammation in neurodegeneration by grape-derived polyphenols.Front. Pharmacol.2018986710.3389/fphar.2018.0086730210334
    [Google Scholar]
  20. GrayC. PriceC.W. LeeC.T. DewaldA.H. ClineM.A. McAnanyC.E. ColumbusL. MuraC. Known structure, unknown function: An inquiry-based undergraduate biochemistry laboratory course.Biochem. Mol. Biol. Educ.201543424526210.1002/bmb.2087326148241
    [Google Scholar]
  21. MuruganN.A. MuvvaC. JeyarajpandianC. JeyakanthanJ. SubramanianV. Performance of force-field- and machine learning-based scoring functions in ranking MAO-B protein–inhibitor complexes in relevance to developing parkinson’s therapeutics.Int. J. Mol. Sci.20202120764810.3390/ijms2120764833081086
    [Google Scholar]
  22. SutoA. KubotaT. ShimoyamaY. IshibikiK. AbeO. MTT assay with reference to the clinical effect of chemotherapy.J. Surg. Oncol.1989421283210.1002/jso.29304201082770307
    [Google Scholar]
  23. KumarP. NagarajanA. UchilP.D. Analysis of cell viability by the MTT assay.Cold Spring Harb Protoc2018 2018(6).10.1101/pdb.prot09550529858338
    [Google Scholar]
  24. KhaspekovL. KidaE. VictorovI. MossakowskiM.J. Neurotoxic effect induced by quinolinic acid in dissociated cell culture of mouse hippocampus.J. Neurosci. Res.198922215015710.1002/jnr.4902202072523487
    [Google Scholar]
  25. SilachevD.N. PlotnikovE.Y. PevznerI.B. ZorovaL.D. BalakirevaA.V. GulyaevM.V. PirogovY.A. SkulachevV.P. ZorovD.B. Neuroprotective effects of mitochondria-targeted plastoquinone in a rat model of neonatal hypoxic–ischemic brain injury.Molecules2018238187110.3390/molecules2308187130060443
    [Google Scholar]
  26. LuoY. Measurement of reactive oxygen species by fluorescent probes in pancreatic cancer cells.Methods Mol. Biol.2019188220721910.1007/978‑1‑4939‑8879‑2_1930378057
    [Google Scholar]
  27. DinnenR.D. MaoY. FineR.L. The use of fluorescent probes in the study of reactive oxygen species in pancreatic cancer cells.Methods Mol. Biol.201398032132910.1007/978‑1‑62703‑287‑2_1823359163
    [Google Scholar]
  28. CaoZ. GaoY. BrysonJ.B. HouJ. ChaudhryN. SiddiqM. MartinezJ. SpencerT. CarmelJ. HartR.B. FilbinM.T. The cytokine interleukin-6 is sufficient but not necessary to mimic the peripheral conditioning lesion effect on axonal growth.J. Neurosci.200626205565557310.1523/JNEUROSCI.0815‑06.200616707807
    [Google Scholar]
  29. YangJ. ChenY. GaoM. WuL. XiongS. WangS. GaoJ. ZhaoY. WangY. Comprehensive identification of bHLH transcription factors in Litsea cubeba reveals candidate gene involved in the monoterpene biosynthesis pathway.Front. Plant Sci.202213108133510.3389/fpls.2022.108133536618662
    [Google Scholar]
  30. PeirsonS.N. ButlerJ.N. FosterR.G. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis.Nucleic Acids Res.2003311473e7310.1093/nar/gng07312853650
    [Google Scholar]
  31. MartinI. FrankO. Real-time quantitative rt-PCR assays.BMTiE or BiomT2004231237
    [Google Scholar]
  32. ZhuX. ZhangL. HuY. ZhangJ. Identification of suitable reference genes for real-time qPCR in homocysteine-treated human umbilical vein endothelial cells.PLoS One20181312e021008710.1371/journal.pone.021008730596787
    [Google Scholar]
  33. SanfordL.N. WittwerC.T. Fluorescence-based temperature control for polymerase chain reaction.Anal. Biochem.2014448758110.1016/j.ab.2013.11.02724291705
    [Google Scholar]
  34. XuD. LiuA. WangX. ZhangM. ZhangZ. TanZ. QiuM. Identifying suitable reference genes for developing and injured mouse CNS tissues.Dev. Neurobiol.2018781395010.1002/dneu.2255829134774
    [Google Scholar]
  35. BredaC. SathyasaikumarK.V. SograteI.S. NotarangeloF.M. EstraneroJ.G. MooreG.G.L. GreenE.W. KyriacouC.P. SchwarczR. GiorginiF. Tryptophan-2,3-dioxygenase (TDO) inhibition ameliorates neurodegeneration by modulation of kynurenine pathway metabolites.Proc. Natl. Acad. Sci. USA2016113195435544010.1073/pnas.160445311327114543
    [Google Scholar]
  36. GarrisonA.M. ParrottJ.M. TuñonA. DelgadoJ. RedusL. O’ConnorJ.C. Kynurenine pathway metabolic balance influences microglia activity: Targeting kynurenine monooxygenase to dampen neuroinflammation.Psychoneuroendocrinology20189411010.1016/j.psyneuen.2018.04.01929734055
    [Google Scholar]
  37. MaryC.P.V. VijayakumarS. ShankarR. Metal chelating ability and antioxidant properties of Curcumin-metal complexes – A DFT approach.J. Mol. Graph. Model.20187911410.1016/j.jmgm.2017.10.02229127853
    [Google Scholar]
  38. DuBourdieuD. TalukderJ. SrivastavaA. LallR. PanchalS. KothariC. GuptaR.C. Efficacy of turmizn, a metallic complex of curcuminoids-tetrahydrocurcumin and zinc on bioavailability, antioxidant, and cytokine modulation capability.Molecules2023284166410.3390/molecules2804166436838654
    [Google Scholar]
  39. YanF.S. SunJ.L. XieW.H. ShenL. JiH.F. Neuroprotective effects and mechanisms of curcumin–Cu (II) and–Zn (II) complexes systems and their pharmacological implications.Nutrients20171012810.3390/nu1001002829283372
    [Google Scholar]
  40. StahlW. SiesH. Lycopene: A biologically important carotenoid for humans?Arch. Biochem. Biophys.199633611910.1006/abbi.1996.05258951028
    [Google Scholar]
  41. van BreemenR.B. PajkovicN. Multitargeted therapy of cancer by lycopene.Cancer Lett.2008269233935110.1016/j.canlet.2008.05.01618585855
    [Google Scholar]
  42. JiangT. LiaoW. CharcossetC. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications.Food Res. Int.202013210903510.1016/j.foodres.2020.10903532331634
    [Google Scholar]
  43. Rocha-FerreiraE. SisaC. BrightS. FautzT. HarrisM. Contreras RiquelmeI. AgwuC. KuruldayT. MistryB. HillD. LangeS. HristovaM. Curcumin: Novel treatment in neonatal hypoxic-ischemic brain injury.Front. Physiol.201910135110.3389/fphys.2019.0135131798458
    [Google Scholar]
  44. Hernández-EscobarD. ChampagneS. YilmazerH. DikiciB. BoehlertC.J. HermawanH. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.Acta Biomater.20199712210.1016/j.actbio.2019.07.03431351253
    [Google Scholar]
  45. SensiS.L. PaolettiP. KohJ.Y. AizenmanE. BushA.I. HershfinkelM. The neurophysiology and pathology of brain zinc.J. Neurosci.20113145160761608510.1523/JNEUROSCI.3454‑11.201122072659
    [Google Scholar]
  46. CuajungcoM. RamirezM. TolmaskyM. Zinc: Multidimensional effects on living organisms.Biomedicines20219220810.3390/biomedicines902020833671781
    [Google Scholar]
  47. La CruzV.P.-D. Carrillo-MoraP. SantamaríaA. Quinolinic acid, an endogenous molecule combining excitotoxicity, oxidative stress and other toxic mechanisms.Int. J. Tryptophan. Res.201251810.4137/IJTR.S815822408367
    [Google Scholar]
  48. HeyesM.P. SaitoK. CrowleyJ.S. DavisL.E. DemitrackM.A. DerM. DillingL.A. EliaJ. KruesiM.J.P. LacknerA. LarsenS.A. LeeK. LeonardH.L. MarkeyS.P. MartinA. MilsteinS. MouradianM.M. PranzatelliM.R. QuearryB.J. SalazarA. SmithM. StraussS.E. SunderlandT. SwedoS.W. TourtellotteW.W. Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease.Brain199211551249127310.1093/brain/115.5.12491422788
    [Google Scholar]
  49. ChenP. GengX. Research progress on the kynurenine pathway in the prevention and treatment of Parkinson’s disease.J. Enzyme Inhib. Med. Chem.2023381222580010.1080/14756366.2023.222580037381707
    [Google Scholar]
  50. HeyesM.P. Metabolism and neuropathologic significance of quinolinic acid and kynurenic acid.Biochem. Soc. Trans.1993211838910.1042/bst02100838449360
    [Google Scholar]
  51. MorA. Tankiewicz-KwedloA. KrupaA. PawlakD. Role of kynurenine pathway in oxidative stress during neurodegenerative disorders.Cells2021107160310.3390/cells1007160334206739
    [Google Scholar]
  52. OstapiukA. UrbanskaE.M. Kynurenic acid in neurodegenerative disorders—unique neuroprotection or double-edged sword?CNS Neurosci. Ther.2022281193510.1111/cns.1376834862742
    [Google Scholar]
  53. BiernackiT. SandiD. BencsikK. VécseiL. Kynurenines in the pathogenesis of multiple sclerosis: Therapeutic perspectives.Cells202096156410.3390/cells906156432604956
    [Google Scholar]
  54. PathakS. NadarR. KimS. LiuK. GovindarajuluM. CookP. Watts AlexanderC.S. DhanasekaranM. MooreT. The influence of kynurenine metabolites on neurodegenerative pathologies.Int. J. Mol. Sci.202425285310.3390/ijms2502085338255925
    [Google Scholar]
  55. MancusoR. HernisA. AgostiniS. RovarisM. CaputoD. FuchsD. ClericiM. Indoleamine 2, 3 dioxygenase (IDO) expression and activity in relapsing-remitting multiple sclerosis.PLoS One2015106e013071510.1371/journal.pone.013071526110930
    [Google Scholar]
  56. FerreiraF.S. Biasibetti-BrendlerH. PierozanP. SchmitzF. BertóC.G. PrezziC.A. ManfrediniV. WyseA.T.S. Kynurenic acid restores Nrf2 levels and prevents quinolinic acid-induced toxicity in rat striatal slices.Mol. Neurobiol.201855118538854910.1007/s12035‑018‑1003‑229564809
    [Google Scholar]
  57. LiuC.L. ChengS.P. ChenM.J. LinC.H. ChenS.N. KuoY.H. ChangY.C. Quinolinate phosphoribosyltransferase promotes invasiveness of breast cancer through myosin light chain phosphorylation.Front. Endocrinol.20211162194410.3389/fendo.2020.62194433613454
    [Google Scholar]
  58. CumaoğluA. YererM.B. The effects of aldose reductase inhibitor quercetin and monochloropivaloylquercetin in amyloid β peptide (1–42) induced neuroinflammation in microglial cells.Nat. Prod. Commun.201813669369810.1177/1934578X1801300611
    [Google Scholar]
  59. OrtegaJ.T. JastrzebskaB. Neuroinflammation as a therapeutic target in retinitis pigmentosa and quercetin as its potential modulator.Pharmaceutics20211311193510.3390/pharmaceutics1311193534834350
    [Google Scholar]
  60. PhillipsR.S. IradukundaE.C. HughesT. BowenJ.P. Modulation of enzyme activity in the kynurenine pathway by kynurenine monooxygenase inhibition.Front. Mol. Biosci.20196310.3389/fmolb.2019.0000330800661
    [Google Scholar]
  61. SteeneckC. KinzelO. AnderhubS. HornbergerM. PintoS. MorschhaeuserB. AlbersM. SonnekC. CzekańskaM. HoffmannT. Discovery and optimization of substituted oxalamides as novel heme-displacing IDO1 inhibitors.Bioorg. Med. Chem. Lett.20213312774410.1016/j.bmcl.2020.12774433333163
    [Google Scholar]
  62. MazareiG. LeavittB.R. Indoleamine 2, 3 dioxygenase as a potential therapeutic target in Huntington’s disease.J. Huntingtons Dis.20154210911810.3233/JHD‑15900326397892
    [Google Scholar]
  63. HughesT.D. GünerO.F. IradukundaE.C. PhillipsR.S. BowenJ.P. The kynurenine pathway and kynurenine 3-monooxygenase inhibitors.Molecules202227127310.3390/molecules2701027335011505
    [Google Scholar]
  64. OppedisanoF. MaiuoloJ. GliozziM. MusolinoV. CarresiC. NuceraS. ScicchitanoM. ScaranoF. BoscoF. MacrìR. RugaS. ZitoM.C. PalmaE. MuscoliC. MollaceV. The potential for natural antioxidant supplementation in the early stages of neurodegenerative disorders.Int. J. Mol. Sci.2020217261810.3390/ijms2107261832283806
    [Google Scholar]
/content/journals/car/10.2174/0115672050383383250529100802
Loading
/content/journals/car/10.2174/0115672050383383250529100802
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test