Skip to content
2000
Volume 22, Issue 4
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Introduction

Chronic stress is a major global health issue linked to conditions such as anxiety, depression, and cognitive decline. In rodent studies, chronic immobilization stress (CIS) is commonly used to investigate the neuropsychological effects of prolonged stress, leading to behaviours such as anhedonia, anxiety, and depressive-like symptoms. An enriched environment (EE) provides physical, cognitive, and sensory stimulation, which promotes social interaction, supports brain development, and can enhance the effectiveness of pharmacological treatments, improving overall therapeutic outcomes. Metformin, commonly prescribed for type 2 diabetes, has antidiabetic effects and helps reduce oxidative stress, inflammation, and cell death in the brain, which may contribute to its neuroprotective properties. This study aims to evaluate the effectiveness of metformin, an enriched environment (EE), and its combination in alleviating anxiety and depression-like behaviours, memory impairments, and metabolic changes.

Materials and Methods

Rats were exposed to chronic immobilization stress (CIS) for 2 hours per day over a period of 10 days, followed by 14 days of treatment with metformin (200 mg/kg) and 6 hours of daily exposure to an enriched environment (EE). Behavioural tests, including the open field test (OFT), elevated plus maze (EPM), sucrose preference test (SPT), and novel object recognition test (NORT), were conducted. After completing the behavioural assessments, the animals were euthanized, and their plasma levels of corticosterone (CORT), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, triglycerides, and glucose were measured. Additionally, the concentration of brain-derived neurotrophic factor (BDNF) in the hippocampus was analysed.

Results

Rats exposed to chronic immobilization stress (CIS) exhibited increased anxiety and depressive-like behaviours, as well as poor performance in the novel object recognition test (NORT). These behavioural changes were linked to elevated levels of plasma corticosterone (CORT), LDL, cholesterol, triglycerides, and glucose, along with decreased HDL levels and lower hippocampal BDNF. Treatment with metformin, an enriched environment (EE), or their combination alleviated these effects, improving exploratory behaviour, sucrose preference, and recognition memory and reducing anxiety-like behaviours. These benefits were accompanied by increased hippocampal BDNF expression, elevated plasma HDL, and reduced levels of CORT, LDL, cholesterol, triglycerides, and glucose.

Discussion

The combination of metformin and an enriched environment completely restored cognitive impairment and metabolic alterations in chronic stress conditions. Metformin’s ability to improve energy metabolism and reduce oxidative stress could be further enhanced in an enriched environment, which promotes cognitive function and resilience to stress.

Conclusion

Therefore, evidence suggests that EE can positively influence the outcomes of the neuroprotective effects of metformin and present promising therapeutic approaches for mitigating stress-induced behavioural and biochemical alterations.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050379003250520072717
2025-05-21
2025-12-20
Loading full text...

Full text loading...

References

  1. KhalifaN.E. NoreldinA.E. KhafagaA.F. El-BeskawyM. KhalifaE. El-FarA.H. FayedA.H.A. ZakariaA. Chia seeds oil ameliorate chronic immobilization stress-induced neurodisturbance in rat brains via activation of the antioxidant/anti-inflammatory/antiapoptotic signaling pathways.Sci. Rep.20231312240910.1038/s41598‑023‑49061‑w38104182
    [Google Scholar]
  2. Mohseni-MoghaddamP. DoganiM. HatamiM. RoohollahiS. AmiresmaeliA. AskariN. A behavioral and molecular study; ameliorated anxiety-like behavior and cognitive dysfunction in a rat model of chronic unpredictable stress treated with oregano extract.Brain Behav.2022128e272710.1002/brb3.272735898162
    [Google Scholar]
  3. JamesK.A. StrominJ.I. SteenkampN. CombrinckM.I. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition.Front. Endocrinol.202314108595010.3389/fendo.2023.108595036950689
    [Google Scholar]
  4. NirupamaR RajaramanB YajurvediHN Stress and glucose metabolism: A review.Imaging J Clin Med Sci20185100801210.17352/2455‑8702.000037
    [Google Scholar]
  5. TsigosC. ChrousosG.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress.J. Psychosom. Res.200253486587110.1016/S0022‑3999(02)00429‑412377295
    [Google Scholar]
  6. MillerL. BodemeierL.C.M. HandaR.J. WuT.J. The Effects of chronic variable stress and photoperiod alteration on the hypothalamic-pituitary-adrenal axis response and behavior of mice.Neuroscience202249610511810.1016/j.neuroscience.2022.06.01135700818
    [Google Scholar]
  7. KarinO. RazM. TendlerA. BarA. KoremK.Y. MiloT. AlonU. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks.Mol. Syst. Biol.2020167e951010.15252/msb.2020951032672906
    [Google Scholar]
  8. NiraulaA. WangY. GodboutJ.P. SheridanJ.F. Corticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expression.J. Neurosci.20183892328234010.1523/JNEUROSCI.2568‑17.201829382712
    [Google Scholar]
  9. BhagyaV.R. SrikumarB.N. VeenaJ. ShankaranarayanaR.B.S. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.J. Neurosci. Res.20179581602161010.1002/jnr.2399227862185
    [Google Scholar]
  10. ShilpaB.M. BhagyaV. HarishG. SrinivasB.M.M. Shankaranarayana RaoB.S. Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors.Prog. Neuropsychopharmacol. Biol. Psychiatry2017768810010.1016/j.pnpbp.2017.02.02528288856
    [Google Scholar]
  11. MayegowdaS.B. RaoB.V. ShankaranarayanaR.B.S.R. Escitalopram treatment ameliorates chronic immobilization stress-induced depressive behavior and cognitive deficits by modulating BDNF expression in the hippocampus.J. Appl. Pharm. Sci.2024140317018210.7324/JAPS.2024.158094
    [Google Scholar]
  12. HuX. ZhaoH.L. KurbanN. QinY. ChenX. CuiS.Y. ZhangY.H. Reduction of BDNF levels and biphasic changes in glutamate release in the prefrontal cortex correlate with susceptibility to chronic stress-induced anhedonia.eNeuro20231011ENEURO.0406-23.202310.1523/ENEURO.0406‑23.202337989582
    [Google Scholar]
  13. PanQ. WuJ. LiuY. LiX. ChenJ. Involvement of hepatic SHIP2 and PI3K/Akt signalling in the regulation of plasma insulin by Xiaoyaosan in chronic immobilization-stressed rats.Molecules201924348010.3390/molecules2403048030699999
    [Google Scholar]
  14. KrolickK.N. ShiH. Estrogenic action in stress-induced neuroendocrine regulation of energy homeostasis.Cells202211587910.3390/cells1105087935269500
    [Google Scholar]
  15. DilleM. NikolicA. WahlersN. FahlbuschP. JacobS. HartwigS. LehrS. KabraD. KlymenkoO. Al-HasaniH. KotzkaJ. KnebelB. Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21.Biochim. Biophys. Acta Mol. Basis Dis.20221868116628610.1016/j.bbadis.2021.16628634624498
    [Google Scholar]
  16. KovačevićS. Elakovi´cI. Vojnovi´c Milutinovi´cD. Nikoli´c-Koki´cA. Mati´cD. Blagojevi´cG. TappyL. DjordjevicA. BrkljačićJ. Fructose-rich diet attenuates stress-induced metabolic disturbances in the liver of adult female rats.J. Nutr.2021151123661367010.1093/jn/nxab29434510217
    [Google Scholar]
  17. SmailM.A. SmithB.L. NawreenN. HermanJ.P. Differential impact of stress and environmental enrichment on corticolimbic circuits.Pharmacol. Biochem. Behav.202019717299310.1016/j.pbb.2020.17299332659243
    [Google Scholar]
  18. DandiΕ. SpandouE. DallaC. TataD.Α. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review.Eur. J. Neurosci.20235843003302510.1111/ejn.1608937461295
    [Google Scholar]
  19. YuanT. OrockA. Greenwood-VanMeerveldB. An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala.Am. J. Physiol. Gastrointest. Liver Physiol.20223222G223G23310.1152/ajpgi.00307.202134877892
    [Google Scholar]
  20. VeenaJ. SrikumarB.N. MahatiK. BhagyaV. RajuT.R. Shankaranarayana RaoB.S. Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats.J. Neurosci. Res.200987483184310.1002/jnr.2190719006089
    [Google Scholar]
  21. DelanogareE. de SouzaR.M. RosaG.K. GuanabaraF.G. RafachoA. MoreiraE.L.G. Enriched environment ameliorates dexamethasone effects on emotional reactivity and metabolic parameters in mice.Stress202023446647310.1080/10253890.2020.173534432107952
    [Google Scholar]
  22. FaraziN. MahmoudiJ. Sadigh-EteghadS. FarajdokhtF. RastaS.H. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress.Lasers Med. Sci.20223721181119110.1007/s10103‑021‑03370‑634432186
    [Google Scholar]
  23. YangJ. ZhangZ. XieZ. BaiL. XiongP. ChenF. ZhuT. PengQ. WuH. ZhouY. MaY. ZhangY. ChenM. GaoJ. TianW. ShiK. DuY. DuanY. WangH. XuY. KuangY.Q. ZhuM. YuJ. WangK. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice.Biomed. Pharmacother.202214911283710.1016/j.biopha.2022.11283735339829
    [Google Scholar]
  24. VizueteA.F.K. FróesF. SeadyM. HansenF. Ligabue-BraunR. GonçalvesC.A. SouzaD.O. A mechanism of action of metformin in the brain: Prevention of methylglyoxal-induced glutamatergic impairment in acute hippocampal slices.Mol. Neurobiol.20246163223323910.1007/s12035‑023‑03774‑137980327
    [Google Scholar]
  25. KhedrS.A. ElmelgyA.A. El-KharashiO.A. Abd-AlkhalekH.A. LoukaM.L. SallamH.A. Aboul-FotouhS. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: Potential involvement of hippocampal c-Jun repression.Naunyn Schmiedebergs Arch. Pharmacol.2018391440742210.1007/s00210‑018‑1466‑829379991
    [Google Scholar]
  26. KeshavarziS. KermanshahiS. KaramiL. MotaghinejadM. MotevalianM. SadrS. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways.Neurotoxicology201972748410.1016/j.neuro.2019.02.00430742852
    [Google Scholar]
  27. BoneaM. FilipG.A. TomaV.A. BaldeaI. BerghianA.S. DeceaN. OlteanuD. MoldovanR. CriviiC. VinașiR.C. MicluțiaI.V. The modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of Wistar rats.J. Mol. Neurosci.202070121943196110.1007/s12031‑020‑01593‑w32621100
    [Google Scholar]
  28. HammadA.M. IbrahimY.A. KhdairS.I. HallF.S. AlfarajM. JarrarY. AbedA.F. Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α.Behav. Brain Res.202141411347510.1016/j.bbr.2021.11347534280460
    [Google Scholar]
  29. SritawanN. SuwannakotK. NaewlaS. ChaisawangP. AranarochanaA. SirichoatA. PannangrongW. WigmoreP. WelbatJ.U. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats.Biomed. Pharmacother.202114411228010.1016/j.biopha.2021.11228034628167
    [Google Scholar]
  30. BaleT.L. EppersonC.N. Sex differences and stress across the lifespan.Nat. Neurosci.201518101413142010.1038/nn.411226404716
    [Google Scholar]
  31. BaranS.E. ArmstrongC.E. NirenD.C. HannaJ.J. ConradC.D. Chronic stress and sex differences on the recall of fear conditioning and extinction.Neurobiol. Learn. Mem.200991332333210.1016/j.nlm.2008.11.00519073269
    [Google Scholar]
  32. MahatiK. BhagyaV. ChristoferT. SnehaA. Shankaranarayana RaoB.S. Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity.Neurobiol. Learn Mem.2016134Pt B37939110.1016/j.nlm.2016.08.01727555234
    [Google Scholar]
  33. Haroun BarakaB.B. RaoB.V. KrishnamurthyT. Synergistic effect of Celastrus paniculatus and Tribulus terrestris against chronic immobilisation stress-induced memory impairment, BDNF level and neuroinflammation.J. Appl. Pharm. Sci.2024150221522310.7324/JAPS.2025.172799
    [Google Scholar]
  34. LueptowL.M. Novel object recognition test for the investigation of learning and memory in mice.J. Vis. Exp.2017557181265571810.3791/5571828892027
    [Google Scholar]
  35. AkinluyiE. AderibigbeA. AdeoluwaO. AdebesinA. AdeoluwaG. Ameliorating effect of morin hydrate on chronic restraint stress-induced biochemical disruption, neuronal, and behavioral dysfunctions in BALB/c mice.Basic Clin. Neurosci.202213339340610.32598/bcn.2022.1059.236457885
    [Google Scholar]
  36. MontgomeryK.R. BridiM.S. FoltsL.M. Marx-RattnerR. ZierdenH.C. WulffA.B. KodjoE.A. ThompsonS.M. BaleT.L. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects.Neuropsychopharmacology202449244345410.1038/s41386‑023‑01739‑537833589
    [Google Scholar]
  37. GeX.H. ZhuG.J. GengD.Q. ZhangH.Z. HeJ.M. GuoA.Z. MaL.L. YuD.H. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats.Physiol. Behav.201717011512310.1016/j.physbeh.2016.12.02128017679
    [Google Scholar]
  38. WatanabeK. AsanoD. UshikuboH. MoritaA. MoriA. SakamotoK. IshiiK. NakaharaT. Metformin protects against NMDA-induced retinal injury through the MEK/ERK signaling pathway in rats.Int. J. Mol. Sci.2021229443910.3390/ijms2209443933922757
    [Google Scholar]
  39. RuanC. GuoH. GaoJ. WangY. LiuZ. YanJ. LiX. LvH. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway.Brain Behav.20211110e233510.1002/brb3.233534473417
    [Google Scholar]
  40. DuR.W. BuW.G. Metformin improves depressive-like symptoms in mice via inhibition of peripheral and central NF-κB-NLRP3 inflammation activation.Exp. Brain Res.2020238112549255610.1007/s00221‑020‑05911‑x32870322
    [Google Scholar]
  41. FangW. ZhangJ. HongL. HuangW. DaiX. YeQ. ChenX. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation.J. Affect. Disord.202026030231310.1016/j.jad.2019.09.01331521867
    [Google Scholar]
  42. HuD. GuoY. WuR. ShaoT. LongJ. YuB. WangH. LuoY. LuH. ZhangJ. ChenY.E. PengD. New insight into metformin-induced cholesterol-lowering effect crosstalk between glucose and cholesterol homeostasis via ChREBP (carbohydrate-responsive element-binding protein)-mediated PCSK9 (proprotein convertase subtilisin/kexin type 9) regulation.Arterioscler. Thromb. Vasc. Biol.2021414e208e22310.1161/ATVBAHA.120.31570833535788
    [Google Scholar]
  43. El MessaoudiS. RongenG.A. RiksenN.P. Metformin therapy in diabetes: The role of cardioprotection.Curr. Atheroscler. Rep.201315431410.1007/s11883‑013‑0314‑z23423523
    [Google Scholar]
  44. ZhangC. GaoF. LuoH. ZhangC.T. ZhangR. Differential response in levels of high-density lipoprotein cholesterol to one-year metformin treatment in prediabetic patients by race/ethnicity.Cardiovasc. Diabetol.20151417910.1186/s12933‑015‑0240‑126068179
    [Google Scholar]
  45. AmeenO. SamakaR.M. Abo-ElsoudR.A.A. Metformin alleviates neurocognitive impairment in aging via activation of AMPK/BDNF/PI3K pathway.Sci. Rep.20221211708410.1038/s41598‑022‑20945‑736224264
    [Google Scholar]
  46. HaoY. TongY. GuoY. LangX. HuangX. XieX. GuanY. LiZ. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway.Pharmacopsychiatry202154313114110.1055/a‑1351‑056633634460
    [Google Scholar]
  47. GhadernezhadN. KhalajL. Pazoki-ToroudiH. MirmasoumiM. AshabiG. Metformin pretreatment enhanced learning and memory in cerebral forebrain ischaemia: The role of the AMPK/BDNF/P70SK signalling pathway.Pharm. Biol.201654102211221910.3109/13880209.2016.115030626960058
    [Google Scholar]
  48. WangC.P. LorenzoC. HabibS.L. JoB. EspinozaS.E. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes.J. Diabetes Complications201731467968610.1016/j.jdiacomp.2017.01.01328190681
    [Google Scholar]
  49. YoonH. OhY.T. LeeJ.Y. ChoiJ.H. LeeJ.H. BaikH.H. KimS.S. ChoeW. YoonK.S. HaJ. KangI. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells.Biochem. Biophys. Res. Commun.2008371349550010.1016/j.bbrc.2008.04.10218445478
    [Google Scholar]
  50. AyoubR. RuddyR.M. CoxE. OyefiadeA. DerkachD. LaughlinS. Ades-aronB. ShirzadiZ. FieremansE. MacIntoshB.J. de MedeirosC.B. SkocicJ. BouffetE. MillerF.D. MorsheadC.M. MabbottD.J. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin.Nat. Med.20202681285129410.1038/s41591‑020‑0985‑232719487
    [Google Scholar]
  51. ShaoT. HuangJ. ZhaoY. WangW. TianX. HeiG. KangD. GaoY. LiuF. ZhaoJ. LiuB. YuanT.F. WuR. Metformin improves cognitive impairment in patients with schizophrenia: associated with enhanced functional connectivity of dorsolateral prefrontal cortex.Transl. Psychiatry202313131510.1038/s41398‑023‑02616‑x37821461
    [Google Scholar]
  52. LuchsingerJ.A. PerezT. ChangH. MehtaP. SteffenerJ. PradabhanG. IchiseM. ManlyJ. DevanandD.P. BagiellaE. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial.J. Alzheimers Dis.201651250151410.3233/JAD‑15049326890736
    [Google Scholar]
  53. KoenigA.M. Mechanic-HamiltonD. XieS.X. CombsM.F. CappolaA.R. XieL. DetreJ.A. WolkD.A. ArnoldS.E. Effects of the insulin sensitizer metformin in Alzheimer disease: Pilot data from a randomized placebo-controlled crossover study.Alzheimer Dis. Assoc. Disord.201731210711310.1097/WAD.000000000000020228538088
    [Google Scholar]
  54. RahimiS. FerdowsiA. Siahposht-KhachakiA. Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway.Metab. Brain Dis.20203571135114410.1007/s11011‑020‑00594‑332621159
    [Google Scholar]
  55. ZhuJ. LiuK. HuangK. GuY. HuY. PanS. JiZ. Metformin improves neurologic outcome via AMP-activated protein kinase-mediated autophagy activation in a rat model of cardiac arrest and resuscitation.J. Am. Heart Assoc.2018712e00838910.1161/JAHA.117.00838929895585
    [Google Scholar]
  56. MostafaD.K. IsmailC.A. GhareebD.A. Differential metformin dose-dependent effects on cognition in rats: Role of Akt.Psychopharmacology2016233132513252410.1007/s00213‑016‑4301‑227113224
    [Google Scholar]
  57. BojjaS.L. MedhiB. AnandS. BhatiaA. JoshiR. MinzR.W. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation.Inflammopharmacology202129113715110.1007/s10787‑020‑00782‑833386490
    [Google Scholar]
  58. BojjaS.L. AnandS. MinzR.W. MedhiB. Metformin alleviates reactive gliosis and neurodegeneration, improving cognitive deficit in a rat model of temporal lobe epilepsy.Brain Res.2024184414913810.1016/j.brainres.2024.14913839134259
    [Google Scholar]
  59. Sampedro-PiqueroP. Álvarez-SuárezP. Moreno-FernándezR.D. García-CastroG. CuestaM. BegegaA. Environmental enrichment results in both brain connectivity efficiency and selective improvement in different behavioral tasks.Neuroscience201838837438310.1016/j.neuroscience.2018.07.03630086366
    [Google Scholar]
  60. IsmailT.R. YapC.G. NaiduR. PamidiN. Environmental enrichment and metformin improve metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in high-fat/high-sucrose diet-induced type 2 diabetic rats.Biology202312348010.3390/biology1203048036979171
    [Google Scholar]
  61. LimaO.J.F. RibeiroJ.S. VasconcelosJ.D.C. FerrazM.F.I. SilvaC.E.M.T.R. BarrosW.M.A. VieiraG.R. DavidM.C.M.M. MatosR.J.B. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats.Behav. Brain Res.202446011481710.1016/j.bbr.2023.11481738122904
    [Google Scholar]
  62. XuL. ZhuL. ZhuL. ChenD. CaiK. LiuZ. ChenA. Moderate exercise combined with enriched environment enhances learning and memory through BDNF/TrkB signaling pathway in rats.Int. J. Environ. Res. Public Health20211816828310.3390/ijerph1816828334444034
    [Google Scholar]
  63. BelzE.E. KennellJ.S. CzambelR.K. RubinR.T. RhodesM.E. Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats.Pharmacol. Biochem. Behav.2003763-448148610.1016/j.pbb.2003.09.00514643847
    [Google Scholar]
/content/journals/car/10.2174/0115672050379003250520072717
Loading
/content/journals/car/10.2174/0115672050379003250520072717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test