Skip to content
2000
image of Environmental Enrichment and Metformin Combination Improves Cognitive Function through BDNF and HPA Axis in Chronically Stressed Rats

Abstract

Introduction

Chronic stress is a major global health issue linked to conditions such as anxiety, depression, and cognitive decline. In rodent studies, chronic immobilization stress (CIS) is commonly used to investigate the neuropsychological effects of prolonged stress, leading to behaviours such as anhedonia, anxiety, and depressive-like symptoms. An enriched environment (EE) provides physical, cognitive, and sensory stimulation, which promotes social interaction, supports brain development, and can enhance the effectiveness of pharmacological treatments, improving overall therapeutic outcomes. Metformin, commonly prescribed for type 2 diabetes, has antidiabetic effects and helps reduce oxidative stress, inflammation, and cell death in the brain, which may contribute to its neuroprotective properties. This study aims to evaluate the effectiveness of metformin, an enriched environment (EE), and its combination in alleviating anxiety and depression-like behaviours, memory impairments, and metabolic changes.

Materials and Method

Rats were exposed to chronic immobilization stress (CIS) for 2 hours per day over a period of 10 days, followed by 14 days of treatment with metformin (200 mg/kg) and 6 hours of daily exposure to an enriched environment (EE). Behavioural tests, including the open field test (OFT), elevated plus maze (EPM), sucrose preference test (SPT), and novel object recognition test (NORT), were conducted. After completing the behavioural assessments, the animals were euthanized, and their plasma levels of corticosterone (CORT), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, triglycerides, and glucose were measured. Additionally, the concentration of brain-derived neurotrophic factor (BDNF) in the hippocampus was analysed.

Results

Rats exposed to chronic immobilization stress (CIS) exhibited increased anxiety and depressive-like behaviours, as well as poor performance in the novel object recognition test (NORT). These behavioural changes were linked to elevated levels of plasma corticosterone (CORT), LDL, cholesterol, triglycerides, and glucose, along with decreased HDL levels and lower hippocampal BDNF. Treatment with metformin, an enriched environment (EE), or their combination alleviated these effects, improving exploratory behaviour, sucrose preference, and recognition memory and reducing anxiety-like behaviours. These benefits were accompanied by increased hippocampal BDNF expression, elevated plasma HDL, and reduced levels of CORT, LDL, cholesterol, triglycerides, and glucose.

Discussion

The combination of metformin and an enriched environment completely restored cognitive impairment and metabolic alterations in chronic stress conditions. Metformin’s ability to improve energy metabolism and reduce oxidative stress could be further enhanced in an enriched environment, which promotes cognitive function and resilience to stress.

Conclusion:

Therefore, evidence suggests that EE can positively influence the outcomes of the neuroprotective effects of metformin and present promising therapeutic approaches for mitigating stress-induced behavioural and biochemical alterations.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050379003250520072717
2025-05-21
2025-09-08
Loading full text...

Full text loading...

References

  1. Khalifa N.E. Noreldin A.E. Khafaga A.F. El-Beskawy M. Khalifa E. El-Far A.H. Fayed A.H.A. Zakaria A. Chia seeds oil ameliorate chronic immobilization stress-induced neurodisturbance in rat brains via activation of the antioxidant/anti-inflammatory/antiapoptotic signaling pathways. Sci. Rep. 2023 13 1 22409 10.1038/s41598‑023‑49061‑w 38104182
    [Google Scholar]
  2. Mohseni-Moghaddam P. Dogani M. Hatami M. Roohollahi S. Amiresmaeli A. Askari N. A behavioral and molecular study; ameliorated anxiety-like behavior and cognitive dysfunction in a rat model of chronic unpredictable stress treated with oregano extract. Brain Behav. 2022 12 8 e2727 10.1002/brb3.2727 35898162
    [Google Scholar]
  3. James K.A. Stromin J.I. Steenkamp N. Combrinck M.I. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front. Endocrinol. 2023 14 1085950 10.3389/fendo.2023.1085950 36950689
    [Google Scholar]
  4. Nirupama R Rajaraman B Yajurvedi HN Stress and glucose metabolism: A review. Imaging J Clin Med Sci 2018 5 1 008 012 10.17352/2455‑8702.000037
    [Google Scholar]
  5. Tsigos C. Chrousos G.P. Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002 53 4 865 871 10.1016/S0022‑3999(02)00429‑4 12377295
    [Google Scholar]
  6. Miller L. Bodemeier Loayza Careaga M. Handa R.J. Wu T.J. The Effects of chronic variable stress and photoperiod alteration on the hypothalamic-pituitary-adrenal axis response and behavior of mice. Neuroscience 2022 496 105 118 10.1016/j.neuroscience.2022.06.011 35700818
    [Google Scholar]
  7. Karin O. Raz M. Tendler A. Bar A. Korem Kohanim Y. Milo T. Alon U. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol. Syst. Biol. 2020 16 7 e9510 10.15252/msb.20209510 32672906
    [Google Scholar]
  8. Niraula A. Wang Y. Godbout J.P. Sheridan J.F. Corticosterone production during repeated social defeat causes monocyte mobilization from the bone marrow, glucocorticoid resistance, and neurovascular adhesion molecule expression. J. Neurosci. 2018 38 9 2328 2340 10.1523/JNEUROSCI.2568‑17.2018 29382712
    [Google Scholar]
  9. Bhagya V.R. Srikumar B.N. Veena J. Shankaranarayana Rao B.S. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits. J. Neurosci. Res. 2017 95 8 1602 1610 10.1002/jnr.23992 27862185
    [Google Scholar]
  10. Shilpa B.M. Bhagya V. Harish G. Srinivas Bharath M.M. Shankaranarayana Rao B.S. Environmental enrichment ameliorates chronic immobilisation stress-induced spatial learning deficits and restores the expression of BDNF, VEGF, GFAP and glucocorticoid receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 76 88 100 10.1016/j.pnpbp.2017.02.025 28288856
    [Google Scholar]
  11. Mayegowda S.B. Rao B.V. Shankaranarayana Rao B.S.R. Escitalopram treatment ameliorates chronic immobilization stress-induced depressive behavior and cognitive deficits by modulating BDNF expression in the hippocampus. J. Appl. Pharm. Sci. 2024 14 03 170 182 10.7324/JAPS.2024.158094
    [Google Scholar]
  12. Hu X Zhao HL Kurban N Qin Y Chen X Cui SY Zhang YH Reduction of BDNF levels and biphasic changes in glutamate release in the prefrontal cortex correlate with susceptibility to chronic stress-induced anhedonia. eNeuro 2023 10 11 ENEURO.0406-23.2023 10.1523/ENEURO.0406‑23.2023 37989582
    [Google Scholar]
  13. Pan Q. Wu J. Liu Y. Li X. Chen J. Involvement of hepatic SHIP2 and PI3K/Akt signalling in the regulation of plasma insulin by Xiaoyaosan in chronic immobilization-stressed rats. Molecules 2019 24 3 480 10.3390/molecules24030480 30699999
    [Google Scholar]
  14. Krolick K.N. Shi H. Estrogenic action in stress-induced neuroendocrine regulation of energy homeostasis. Cells 2022 11 5 879 10.3390/cells11050879 35269500
    [Google Scholar]
  15. Dille M. Nikolic A. Wahlers N. Fahlbusch P. Jacob S. Hartwig S. Lehr S. Kabra D. Klymenko O. Al-Hasani H. Kotzka J. Knebel B. Long-term adjustment of hepatic lipid metabolism after chronic stress and the role of FGF21. Biochim. Biophys. Acta Mol. Basis Dis. 2022 1868 1 166286 10.1016/j.bbadis.2021.166286 34624498
    [Google Scholar]
  16. Kovačević S. Elakovi´c I. Vojnovi´c Milutinovi´c D. Nikoli´c-Koki´c A. Mati´c D. Blagojevi´c G. Tappy L. Djordjevic A. Brkljačić J. Fructose-rich diet attenuates stress-induced metabolic disturbances in the liver of adult female rats. J. Nutr. 2021 151 12 3661 3670 10.1093/jn/nxab294 34510217
    [Google Scholar]
  17. Smail M.A. Smith B.L. Nawreen N. Herman J.P. Differential impact of stress and environmental enrichment on corticolimbic circuits. Pharmacol. Biochem. Behav. 2020 197 172993 10.1016/j.pbb.2020.172993 32659243
    [Google Scholar]
  18. Dandi Ε. Spandou E. Dalla C. Tata D.Α. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review. Eur. J. Neurosci. 2023 58 4 3003 3025 10.1111/ejn.16089 37461295
    [Google Scholar]
  19. Yuan T. Orock A. Greenwood-VanMeerveld B. An enriched environment reduces chronic stress-induced visceral pain through modulating microglial activity in the central nucleus of the amygdala. Am. J. Physiol. Gastrointest. Liver Physiol. 2022 322 2 G223 G233 10.1152/ajpgi.00307.2021 34877892
    [Google Scholar]
  20. Veena J. Srikumar B.N. Mahati K. Bhagya V. Raju T.R. Shankaranarayana Rao B.S. Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. J. Neurosci. Res. 2009 87 4 831 843 10.1002/jnr.21907 19006089
    [Google Scholar]
  21. Delanogare E. de Souza R.M. Rosa G.K. Guanabara F.G. Rafacho A. Moreira E.L.G. Enriched environment ameliorates dexamethasone effects on emotional reactivity and metabolic parameters in mice. Stress 2020 23 4 466 473 10.1080/10253890.2020.1735344 32107952
    [Google Scholar]
  22. Farazi N. Mahmoudi J. Sadigh-Eteghad S. Farajdokht F. Rasta S.H. Synergistic effects of combined therapy with transcranial photobiomodulation and enriched environment on depressive- and anxiety-like behaviors in a mice model of noise stress. Lasers Med. Sci. 2022 37 2 1181 1191 10.1007/s10103‑021‑03370‑6 34432186
    [Google Scholar]
  23. Yang J. Zhang Z. Xie Z. Bai L. Xiong P. Chen F. Zhu T. Peng Q. Wu H. Zhou Y. Ma Y. Zhang Y. Chen M. Gao J. Tian W. Shi K. Du Y. Duan Y. Wang H. Xu Y. Kuang Y.Q. Zhu M. Yu J. Wang K. Metformin modulates microbiota-derived inosine and ameliorates methamphetamine-induced anxiety and depression-like withdrawal symptoms in mice. Biomed. Pharmacother. 2022 149 112837 10.1016/j.biopha.2022.112837 35339829
    [Google Scholar]
  24. Vizuete A.F.K. Fróes F. Seady M. Hansen F. Ligabue-Braun R. Gonçalves C.A. Souza D.O. A mechanism of action of metformin in the brain: Prevention of methylglyoxal-induced glutamatergic impairment in acute hippocampal slices. Mol. Neurobiol. 2024 61 6 3223 3239 10.1007/s12035‑023‑03774‑1 37980327
    [Google Scholar]
  25. Khedr S.A. Elmelgy A.A. El-Kharashi O.A. Abd-Alkhalek H.A. Louka M.L. Sallam H.A. Aboul-Fotouh S. Metformin potentiates cognitive and antidepressant effects of fluoxetine in rats exposed to chronic restraint stress and high fat diet: Potential involvement of hippocampal c-Jun repression. Naunyn Schmiedebergs Arch. Pharmacol. 2018 391 4 407 422 10.1007/s00210‑018‑1466‑8 29379991
    [Google Scholar]
  26. Keshavarzi S. Kermanshahi S. Karami L. Motaghinejad M. Motevalian M. Sadr S. Protective role of metformin against methamphetamine induced anxiety, depression, cognition impairment and neurodegeneration in rat: The role of CREB/BDNF and Akt/GSK3 signaling pathways. Neurotoxicology 2019 72 74 84 10.1016/j.neuro.2019.02.004 30742852
    [Google Scholar]
  27. Bonea M. Filip G.A. Toma V.A. Baldea I. Berghian A.S. Decea N. Olteanu D. Moldovan R. Crivii C. Vinași R.C. Micluția I.V. The modulatory effect of metformin on ethanol-induced anxiety, redox imbalance, and extracellular matrix levels in the brains of Wistar rats. J. Mol. Neurosci. 2020 70 12 1943 1961 10.1007/s12031‑020‑01593‑w 32621100
    [Google Scholar]
  28. Hammad A.M. Ibrahim Y.A. Khdair S.I. Hall F.S. Alfaraj M. Jarrar Y. Abed A.F. Metformin reduces oxandrolone- induced depression-like behavior in rats via modulating the expression of IL-1β, IL-6, IL-10 and TNF-α. Behav. Brain Res. 2021 414 113475 10.1016/j.bbr.2021.113475 34280460
    [Google Scholar]
  29. Sritawan N. Suwannakot K. Naewla S. Chaisawang P. Aranarochana A. Sirichoat A. Pannangrong W. Wigmore P. Welbat J.U. Effect of metformin treatment on memory and hippocampal neurogenesis decline correlated with oxidative stress induced by methotrexate in rats. Biomed. Pharmacother. 2021 144 112280 10.1016/j.biopha.2021.112280 34628167
    [Google Scholar]
  30. Bale T.L. Epperson C.N. Sex differences and stress across the lifespan. Nat. Neurosci. 2015 18 10 1413 1420 10.1038/nn.4112 26404716
    [Google Scholar]
  31. Baran S.E. Armstrong C.E. Niren D.C. Hanna J.J. Conrad C.D. Chronic stress and sex differences on the recall of fear conditioning and extinction. Neurobiol. Learn. Mem. 2009 91 3 323 332 10.1016/j.nlm.2008.11.005 19073269
    [Google Scholar]
  32. Mahati K Bhagya V Christofer T Sneha A Shankaranarayana Rao BS Enriched environment ameliorates depression-induced cognitive deficits and restores abnormal hippocampal synaptic plasticity. Neurobiol Learn Mem 2016 134 Pt B 379 391 10.1016/j.nlm.2016.08.017 27555234
    [Google Scholar]
  33. Haroun Baraka B.B. Rao B.V. Krishnamurthy T. Synergistic effect of Celastrus paniculatus and Tribulus terrestris against chronic immobilisation stress-induced memory impairment, BDNF level and neuroinflammation. J. Appl. Pharm. Sci. 2024 15 02 215 223 10.7324/JAPS.2025.172799
    [Google Scholar]
  34. Lueptow L.M. Novel object recognition test for the investigation of learning and memory in mice. J. Vis. Exp. 2017 55718 126 55718 10.3791/55718 28892027
    [Google Scholar]
  35. Akinluyi E. Aderibigbe A. Adeoluwa O. Adebesin A. Adeoluwa G. Ameliorating effect of morin hydrate on chronic restraint stress-induced biochemical disruption, neuronal, and behavioral dysfunctions in BALB/c mice. Basic Clin. Neurosci. 2022 13 3 393 406 10.32598/bcn.2022.1059.2 36457885
    [Google Scholar]
  36. Montgomery K.R. Bridi M.S. Folts L.M. Marx-Rattner R. Zierden H.C. Wulff A.B. Kodjo E.A. Thompson S.M. Bale T.L. Chemogenetic activation of CRF neurons as a model of chronic stress produces sex-specific physiological and behavioral effects. Neuropsychopharmacology 2024 49 2 443 454 10.1038/s41386‑023‑01739‑5 37833589
    [Google Scholar]
  37. Ge X.H. Zhu G.J. Geng D.Q. Zhang H.Z. He J.M. Guo A.Z. Ma L.L. Yu D.H. Metformin protects the brain against ischemia/reperfusion injury through PI3K/Akt1/JNK3 signaling pathways in rats. Physiol. Behav. 2017 170 115 123 10.1016/j.physbeh.2016.12.021 28017679
    [Google Scholar]
  38. Watanabe K. Asano D. Ushikubo H. Morita A. Mori A. Sakamoto K. Ishii K. Nakahara T. Metformin protects against NMDA-induced retinal injury through the MEK/ERK signaling pathway in rats. Int. J. Mol. Sci. 2021 22 9 4439 10.3390/ijms22094439 33922757
    [Google Scholar]
  39. Ruan C. Guo H. Gao J. Wang Y. Liu Z. Yan J. Li X. Lv H. Neuroprotective effects of metformin on cerebral ischemia-reperfusion injury by regulating PI3K/Akt pathway. Brain Behav. 2021 11 10 e2335 10.1002/brb3.2335 34473417
    [Google Scholar]
  40. Du R.W. Bu W.G. Metformin improves depressive-like symptoms in mice via inhibition of peripheral and central NF-κB-NLRP3 inflammation activation. Exp. Brain Res. 2020 238 11 2549 2556 10.1007/s00221‑020‑05911‑x 32870322
    [Google Scholar]
  41. Fang W. Zhang J. Hong L. Huang W. Dai X. Ye Q. Chen X. Metformin ameliorates stress-induced depression-like behaviors via enhancing the expression of BDNF by activating AMPK/CREB-mediated histone acetylation. J. Affect. Disord. 2020 260 302 313 10.1016/j.jad.2019.09.013 31521867
    [Google Scholar]
  42. Hu D. Guo Y. Wu R. Shao T. Long J. Yu B. Wang H. Luo Y. Lu H. Zhang J. Chen Y.E. Peng D. New insight into metformin-induced cholesterol-lowering effect crosstalk between glucose and cholesterol homeostasis via ChREBP (carbohydrate-responsive element-binding protein)-mediated PCSK9 (proprotein convertase subtilisin/kexin type 9) regulation. Arterioscler. Thromb. Vasc. Biol. 2021 41 4 e208 e223 10.1161/ATVBAHA.120.315708 33535788
    [Google Scholar]
  43. El Messaoudi S. Rongen G.A. Riksen N.P. Metformin therapy in diabetes: The role of cardioprotection. Curr. Atheroscler. Rep. 2013 15 4 314 10.1007/s11883‑013‑0314‑z 23423523
    [Google Scholar]
  44. Zhang C. Gao F. Luo H. Zhang C.T. Zhang R. Differential response in levels of high-density lipoprotein cholesterol to one-year metformin treatment in prediabetic patients by race/ethnicity. Cardiovasc. Diabetol. 2015 14 1 79 10.1186/s12933‑015‑0240‑1 26068179
    [Google Scholar]
  45. Ameen O. Samaka R.M. Abo-Elsoud R.A.A. Metformin alleviates neurocognitive impairment in aging via activation of AMPK/BDNF/PI3K pathway. Sci. Rep. 2022 12 1 17084 10.1038/s41598‑022‑20945‑7 36224264
    [Google Scholar]
  46. Hao Y. Tong Y. Guo Y. Lang X. Huang X. Xie X. Guan Y. Li Z. Metformin attenuates the metabolic disturbance and depression-like behaviors induced by corticosterone and mediates the glucose metabolism pathway. Pharmacopsychiatry 2021 54 3 131 141 10.1055/a‑1351‑0566 33634460
    [Google Scholar]
  47. Ghadernezhad N. Khalaj L. Pazoki-Toroudi H. Mirmasoumi M. Ashabi G. Metformin pretreatment enhanced learning and memory in cerebral forebrain ischaemia: The role of the AMPK/BDNF/P70SK signalling pathway. Pharm. Biol. 2016 54 10 2211 2219 10.3109/13880209.2016.1150306 26960058
    [Google Scholar]
  48. Wang C.P. Lorenzo C. Habib S.L. Jo B. Espinoza S.E. Differential effects of metformin on age related comorbidities in older men with type 2 diabetes. J. Diabetes Complications 2017 31 4 679 686 10.1016/j.jdiacomp.2017.01.013 28190681
    [Google Scholar]
  49. Yoon H. Oh Y.T. Lee J.Y. Choi J.H. Lee J.H. Baik H.H. Kim S.S. Choe W. Yoon K.S. Ha J. Kang I. Activation of AMP-activated protein kinase by kainic acid mediates brain-derived neurotrophic factor expression through a NF-kappaB dependent mechanism in C6 glioma cells. Biochem. Biophys. Res. Commun. 2008 371 3 495 500 10.1016/j.bbrc.2008.04.102 18445478
    [Google Scholar]
  50. Ayoub R. Ruddy R.M. Cox E. Oyefiade A. Derkach D. Laughlin S. Ades-aron B. Shirzadi Z. Fieremans E. MacIntosh B.J. de Medeiros C.B. Skocic J. Bouffet E. Miller F.D. Morshead C.M. Mabbott D.J. Assessment of cognitive and neural recovery in survivors of pediatric brain tumors in a pilot clinical trial using metformin. Nat. Med. 2020 26 8 1285 1294 10.1038/s41591‑020‑0985‑2 32719487
    [Google Scholar]
  51. Shao T. Huang J. Zhao Y. Wang W. Tian X. Hei G. Kang D. Gao Y. Liu F. Zhao J. Liu B. Yuan T.F. Wu R. Metformin improves cognitive impairment in patients with schizophrenia: associated with enhanced functional connectivity of dorsolateral prefrontal cortex. Transl. Psychiatry 2023 13 1 315 10.1038/s41398‑023‑02616‑x 37821461
    [Google Scholar]
  52. Luchsinger J.A. Perez T. Chang H. Mehta P. Steffener J. Pradabhan G. Ichise M. Manly J. Devanand D.P. Bagiella E. Metformin in amnestic mild cognitive impairment: Results of a pilot randomized placebo controlled clinical trial. J. Alzheimers Dis. 2016 51 2 501 514 10.3233/JAD‑150493 26890736
    [Google Scholar]
  53. Koenig A.M. Mechanic-Hamilton D. Xie S.X. Combs M.F. Cappola A.R. Xie L. Detre J.A. Wolk D.A. Arnold S.E. Effects of the insulin sensitizer metformin in alzheimer disease: Pilot data from a randomized placebo-controlled crossover study. Alzheimer Dis. Assoc. Disord. 2017 31 2 107 113 10.1097/WAD.0000000000000202 28538088
    [Google Scholar]
  54. Rahimi S. Ferdowsi A. Siahposht-Khachaki A. Neuroprotective effects of metformin on traumatic brain injury in rats is associated with the AMP-activated protein kinase signaling pathway. Metab. Brain Dis. 2020 35 7 1135 1144 10.1007/s11011‑020‑00594‑3 32621159
    [Google Scholar]
  55. Zhu J. Liu K. Huang K. Gu Y. Hu Y. Pan S. Ji Z. Metformin improves neurologic outcome via AMP-activated protein kinase-mediated autophagy activation in a rat model of cardiac arrest and resuscitation. J. Am. Heart Assoc. 2018 7 12 e008389 10.1161/JAHA.117.008389 29895585
    [Google Scholar]
  56. Mostafa D.K. Ismail C.A. Ghareeb D.A. Differential metformin dose-dependent effects on cognition in rats: Role of Akt. Psychopharmacology 2016 233 13 2513 2524 10.1007/s00213‑016‑4301‑2 27113224
    [Google Scholar]
  57. Bojja S.L. Medhi B. Anand S. Bhatia A. Joshi R. Minz R.W. Metformin ameliorates the status epilepticus- induced hippocampal pathology through possible mTOR modulation. Inflammopharmacology 2021 29 1 137 151 10.1007/s10787‑020‑00782‑8 33386490
    [Google Scholar]
  58. Bojja S.L. Anand S. Minz R.W. Medhi B. Metformin alleviates reactive gliosis and neurodegeneration, improving cognitive deficit in a rat model of temporal lobe epilepsy. Brain Res. 2024 1844 149138 10.1016/j.brainres.2024.149138 39134259
    [Google Scholar]
  59. Sampedro-Piquero P. Álvarez-Suárez P. Moreno-Fernández R.D. García-Castro G. Cuesta M. Begega A. Environmental enrichment results in both brain connectivity efficiency and selective improvement in different behavioral tasks. Neuroscience 2018 388 374 383 10.1016/j.neuroscience.2018.07.036 30086366
    [Google Scholar]
  60. Ismail T.R. Yap C.G. Naidu R. Pamidi N. Environmental enrichment and metformin improve metabolic functions, hippocampal neuron survival, and hippocampal-dependent memory in high-fat/high-sucrose diet-induced type 2 diabetic rats. Biology 2023 12 3 480 10.3390/biology12030480 36979171
    [Google Scholar]
  61. Lima O.J.F. Ribeiro J.S. Vasconcelos J.D.C. Ferraz M.F.I. Silva C.E.M.T.R. Barros W.M.A. Vieira G.R. David M.C.M.M. Matos R.J.B. Environmental enrichment changes the effects of prenatal and postnatal undernutrition on memory, anxiety traits, Bdnf and TrkB expression in the hippocampus of male adult rats. Behav. Brain Res. 2024 460 114817 10.1016/j.bbr.2023.114817 38122904
    [Google Scholar]
  62. Xu L. Zhu L. Zhu L. Chen D. Cai K. Liu Z. Chen A. Moderate exercise combined with enriched environment enhances learning and memory through BDNF/TrkB signaling pathway in rats. Int. J. Environ. Res. Public Health 2021 18 16 8283 10.3390/ijerph18168283 34444034
    [Google Scholar]
  63. Belz E.E. Kennell J.S. Czambel R.K. Rubin R.T. Rhodes M.E. Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacol. Biochem. Behav. 2003 76 3-4 481 486 10.1016/j.pbb.2003.09.005 14643847
    [Google Scholar]
/content/journals/car/10.2174/0115672050379003250520072717
Loading
/content/journals/car/10.2174/0115672050379003250520072717
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test