Skip to content
2000
image of Vagus Nerve Stimulation in the Management of Neurodegenerative Diseases: A Systematic Review of Advances in Animal Research and Clinical Applications

Abstract

Introduction

Vagus Nerve Stimulation (VNS) has been approved by the FDA as a treatment for epilepsy, depression, post-ischemic stroke rehabilitation, and migraine in patients. It is emerging as a potential treatment for neurodegenerative diseases. Herein, we summarize the research on VNS and its application in common neurodegenerative diseases.

Methods

A literature search was completed in PubMed, ScienceDirect, and Google Scholar using the terms: “neurodegeneration,” “neuromodulation,” “Vagus Nerve Stimulation,” “Parkinson's Disease (PD),” “Alzheimer's Disease (AD),” “dementia,” “neuroinflammation,” and “cognitive dysfunction.” Animal and clinical studies using VNS as a primary intervention in neurodegenerative diseases were included.

Results

The studies of VNS application in Parkinson’s and Alzheimer’s models were reviewed. In animal studies, VNS was associated with increased locomotion and balance, as well as reduced cognitive impairments. The underlying neuroprotective mechanisms included: increased dopaminergic neurons, reduced α-synuclein concentration in the brain, preservation of the nigrostriatal dopaminergic pathway, increased α7nAChR expression, reduced apoptotic markers, reduced neuroinflammation, and significant reductions in microglial and astrocytic densities. In clinical studies with small patient populations of PD or AD/mild cognitive impairment, VNS was associated with improved gait parameters and enhanced performance in memory-based tasks.

Discussion

Vagus Nerve Stimulation (VNS) shows neuroprotective and anti-inflammatory effects in animal models of Alzheimer’s and Parkinson’s disease, but clinical results remain inconsistent due to variability in treatment duration, outcome measures, and reliance on subjective assessments. Emerging physiologic biomarkers such as VSEP, EEG, and magnetoencephalography may provide more objective measures of therapeutic response.

Conclusions

The systematic review highlights the potential of VNS as a therapeutic approach for managing neurodegenerative diseases. The efficacy of VNS in animal models of Parkinson’s and Alzheimer’s diseases involves both neuroprotection and anti-neuroinflammation, while additional protective mechanisms require further exploration.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050373772251103053036
2026-01-21
2026-02-02
Loading full text...

Full text loading...

References

  1. Lanska D.J. J.L. Corning and vagal nerve stimulation for seizures in the 1880s. Neurology 2002 58 3 452 459 10.1212/WNL.58.3.452 11839848
    [Google Scholar]
  2. Badran B.W. Austelle C.W. The future is noninvasive: A brief review of the evolution and clinical utility of vagus nerve stimulation. Focus Am Psychiatr Publ 2022 20 1 3 7 10.1176/appi.focus.20210023 35746934
    [Google Scholar]
  3. Zanchetti A. Wang S.C. Moruzzi G. The effect of vagal afferent stimulation on the EEG pattern of the cat. Electroencephalogr Clin Neurophysiol 1952 4 3 357 361 10.1016/0013‑4694(52)90064‑3 12989094
    [Google Scholar]
  4. Bailey P. Bremer F. A sensory cortical representation of the vagus nerve: with a note on the effects of low blood pressure on the cortical electrogram. J Neurophysiol 1938 1 5 405 412 10.1152/jn.1938.1.5.405
    [Google Scholar]
  5. Zabara J. Inhibition of experimental seizures in canines by repetitive vagal stimulation. Epilepsia 1992 33 6 1005 1012 10.1111/j.1528‑1157.1992.tb01751.x 1464256
    [Google Scholar]
  6. Penry J.K. Dean J.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: preliminary results. Epilepsia 1990 31 s2 S40 S43 10.1111/j.1528‑1157.1990.tb05848.x 2121469
    [Google Scholar]
  7. Ben-Menachem E. Mañon-Espaillat R. Ristanovic R. Wilder B.J. Stefan H. Mirza W. Tarver W.B. Wernicke J.F. Vagus nerve stimulation for treatment of partial seizures: 1. A controlled study of effect on seizures. Epilepsia 1994 35 3 616 626 10.1111/j.1528‑1157.1994.tb02482.x 8026408
    [Google Scholar]
  8. Ramsay R.E. Uthman B.M. Augustinsson L.E. Upton A.R.M. Naritoku D. Willis J. Treig T. Barolat G. Wernicke J.F. Vagus nerve stimulation for treatment of partial seizures: 2. Safety, side effects, and tolerability. Epilepsia 1994 35 3 627 636 10.1111/j.1528‑1157.1994.tb02483.x 8026409
    [Google Scholar]
  9. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 1995 45 2 224 230 10.1212/WNL.45.2.224 7854516
    [Google Scholar]
  10. O’Reardon J.P. Cristancho P. Peshek A.D. Vagus Nerve Stimulation (VNS) and Treatment of Depression: To the Brainstem and Beyond. Psychiatry (Edgmont) 2006 3 5 54 63 21103178
    [Google Scholar]
  11. Song D. Li P. Wang Y. Cao J. Noninvasive vagus nerve stimulation for migraine: A systematic review and meta-analysis of randomized controlled trials. Front Neurol 2023 14 1190062 10.3389/fneur.2023.1190062 37251233
    [Google Scholar]
  12. Li L. Wang D. Pan H. Huang L. Sun X. He C. Wei Q. Non-invasive vagus nerve stimulation in cerebral stroke: Current status and future perspectives. Front Neurosci 2022 16 820665 10.3389/fnins.2022.820665 35250458
    [Google Scholar]
  13. Biggio F. Gorini G. Utzeri C. Olla P. Marrosu F. Mocchetti I. Follesa P. Chronic vagus nerve stimulation induces neuronal plasticity in the rat hippocampus. Int J Neuropsychopharmacol 2009 12 9 1209 1221 10.1017/S1461145709000200 19309534
    [Google Scholar]
  14. Hamano R. Takahashi H.K. Iwagaki H. Yoshino T. Nishibori M. Tanaka N. Stimulation of α7 nicotinic acetylcholine Receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 2006 26 4 358 364 10.1097/01.shk.0000228168.86845.60 16980882
    [Google Scholar]
  15. Frazier C.J. Strowbridge B.W. Papke R.L. Nicotinic receptors on local circuit neurons in dentate gyrus: A potential role in regulation of granule cell excitability. J Neurophysiol 2003 89 6 3018 3028 10.1152/jn.01036.2002 12611982
    [Google Scholar]
  16. Caravaca A.S. Gallina A.L. Tarnawski L. Shavva V.S. Colas R.A. Dalli J. Malin S.G. Hult H. Arnardottir H. Olofsson P.S. Vagus nerve stimulation promotes resolution of inflammation by a mechanism that involves Alox15 and requires the α7nAChR subunit. Proc Natl Acad Sci USA 2022 119 22 e2023285119 10.1073/pnas.2023285119 35622894
    [Google Scholar]
  17. Bathina S. Das U.N. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015 6 6 1164 1178 10.5114/aoms.2015.56342 26788077
    [Google Scholar]
  18. Huffman W.J. Subramaniyan S. Rodriguiz R.M. Wetsel W.C. Grill W.M. Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimul 2019 12 1 19 29 10.1016/j.brs.2018.10.005 30337243
    [Google Scholar]
  19. Tang H. Li J. Zhou Q. Li S. Xie C. Niu L. Ma J. Li C. Vagus nerve stimulation alleviated cerebral ischemia and reperfusion injury in rats by inhibiting pyroptosis via α7 nicotinic acetylcholine receptor. Cell Death Discov 2022 8 1 54 10.1038/s41420‑022‑00852‑6 35136042
    [Google Scholar]
  20. Kalkman H.O. Feuerbach D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol Life Sci 2016 73 13 2511 2530 10.1007/s00018‑016‑2175‑4 26979166
    [Google Scholar]
  21. Borovikova L.V. Ivanova S. Zhang M. Yang H. Botchkina G.I. Watkins L.R. Wang H. Abumrad N. Eaton J.W. Tracey K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000 405 6785 458 462 10.1038/35013070 10839541
    [Google Scholar]
  22. Yakel J.L. Nicotinic ACh receptors in the hippocampus: Role in excitability and plasticity. Nicotine Tob Res 2012 14 11 1249 1257 10.1093/ntr/nts091 22472168
    [Google Scholar]
  23. Shytle R.D. Mori T. Townsend K. Vendrame M. Sun N. Zeng J. Ehrhart J. Silver A.A. Sanberg P.R. Tan J. Cholinergic modulation of microglial activation by α7 nicotinic receptors. J Neurochem 2004 89 2 337 343 10.1046/j.1471‑4159.2004.02347.x 15056277
    [Google Scholar]
  24. Shen J. Yakel J.L. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J Mol Neurosci 2012 48 1 14 21 10.1007/s12031‑012‑9719‑3 22351110
    [Google Scholar]
  25. Xu D. Lian D. Wu J. Liu Y. Zhu M. Sun J. He D. Li L. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation 2017 14 1 156 10.1186/s12974‑017‑0930‑6 28778220
    [Google Scholar]
  26. Climent E. Sancho-Tello M. Miñana R. Barettino D. Guerri C. Astrocytes in culture express the full-length Trk-B receptor and respond to brain derived neurotrophic factor by changing intracellular calcium levels: effect of ethanol exposure in rats. Neurosci Lett 2000 288 1 53 56 10.1016/S0304‑3940(00)01207‑6 10869814
    [Google Scholar]
  27. van der Kooy D. Koda L.Y. McGinty J.F. Gerfen C.R. Bloom F.E. The organization of projections from the cortes, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 1984 224 1 1 24 10.1002/cne.902240102 6715573
    [Google Scholar]
  28. Chen X. Liang H. Hu K. Sun Q. Sun B. Bian L. Sun Y. Vagus nerve stimulation suppresses corticotropin-releasing factor-induced adrenocorticotropic hormone release in rats. Neuroreport 2021 32 9 792 796 10.1097/WNR.0000000000001656 33994530
    [Google Scholar]
  29. Farrand A.Q. Verner R.S. McGuire R.M. Helke K.L. Hinson V.K. Boger H.A. Differential effects of vagus nerve stimulation paradigms guide clinical development for Parkinson’s disease. Brain Stimul 2020 13 5 1323 1332 10.1016/j.brs.2020.06.078 32629028
    [Google Scholar]
  30. Farrand A.Q. Helke K.L. Gregory R.A. Gooz M. Hinson V.K. Boger H.A. Vagus nerve stimulation improves locomotion and neuronal populations in a model of Parkinson’s disease. Brain Stimul 2017 10 6 1045 1054 10.1016/j.brs.2017.08.008 28918943
    [Google Scholar]
  31. Kin I. Sasaki T. Yasuhara T. Kameda M. Agari T. Okazaki M. Hosomoto K. Okazaki Y. Yabuno S. Kawauchi S. Kuwahara K. Morimoto J. Kin K. Umakoshi M. Tomita Y. Tajiri N. Borlongan C. Date I. Vagus Nerve stimulation with mild stimulation intensity exerts anti-inflammatory and neuroprotective effects in parkinson’s disease model rats. Biomedicines 2021 9 7 789 10.3390/biomedicines9070789 34356853
    [Google Scholar]
  32. Torrecillos F. Tan H. Brown P. Capone F. Ricciuti R. Di Lazzaro V. Marano M. Non-invasive vagus nerve stimulation modulates subthalamic beta activity in Parkinson’s disease. Brain Stimul 2022 15 6 1513 1516 10.1016/j.brs.2022.11.006
    [Google Scholar]
  33. Zhang H. Cao X. Wang L. Tong Q. Sun H. Gan C. Shan A. Yuan Y. Zhang K. Transcutaneous auricular vagus nerve stimulation improves gait and cortical activity in Parkinson’s disease: A pilot randomized study. CNS Neurosci Ther. 2023 29 12 3889 3900 10.1111/cns.14309 37311693
    [Google Scholar]
  34. Cai L. Lu K. Chen X. Huang J.Y. Zhang B.P. Zhang H. Auricular vagus nerve stimulation protects against postoperative cognitive dysfunction by attenuating neuroinflammation and neurodegeneration in aged rats. Neurosci Lett. 2019 703 104 110 10.1016/j.neulet.2019.03.034 30904576
    [Google Scholar]
  35. Murphy A.J. O’Neal A.G. Cohen R.A. Lamb D.G. Porges E.C. Bottari S.A. Ho B. Trifilio E. DeKosky S.T. Heilman K.M. Williamson J.B. The effects of transcutaneous vagus nerve stimulation on functional connectivity within semantic and hippocampal networks in mild cognitive impairment. Neurotherapeutics 2023 20 2 419 430 10.1007/s13311‑022‑01318‑4 36477709
    [Google Scholar]
  36. Hosomoto K. Sasaki T. Yasuhara T. Kameda M. Sasada S. Kin I. Kuwahara K. Kawauchi S. Okazaki Y. Yabuno S. Sugahara C. Kawai K. Nagase T. Tanimoto S. Borlongan C.V. Date I. Continuous vagus nerve stimulation exerts beneficial effects on rats with experimentally induced Parkinson’s disease: Evidence suggesting involvement of a vagal afferent pathway. Brain Stimul. 2023 16 2 594 603 10.1016/j.brs.2023.03.003 36914065
    [Google Scholar]
  37. Jiang Y. Cao Z. Ma H. Wang G. Wang X. Wang Z. Yang Y. Zhao H. Liu G. Li L. Feng T. Auricular vagus nerve stimulation exerts antiinflammatory effects and immune regulatory function in a 6-OHDA model of parkinson’s disease. Neurochem. Res. 2018 43 11 2155 2164 10.1007/s11064‑018‑2639‑z 30311182
    [Google Scholar]
  38. Wang C. Su T. Xiao L. Wang Y. Huo X. Li W. Ding J. Sun T. Right vagus nerve stimulation improves motor behavior by exerting neuroprotective effects in Parkinson’s disease rats. Ann Transl. Med. 2022 10 24 1314 10.21037/atm‑22‑5366 36660708
    [Google Scholar]
  39. Marano M. Anzini G. Musumeci G. Magliozzi A. Pozzilli V. Capone F. Di Lazzaro V. Transcutaneous auricular vagus stimulation improves gait and reaction time in parkinson’s disease. Mov. Disord. 2022 37 10 2163 2164 10.1002/mds.29166 35861362
    [Google Scholar]
  40. Lench D.H. Turner T.H. McLeod C. Boger H.A. Lovera L. Heidelberg L. Elm J. Phan A. Badran B.W. Hinson V.K. Multi-session transcutaneous auricular vagus nerve stimulation for Parkinson’s disease: evaluating feasibility, safety, and preliminary efficacy. Front. Neurol. 2023 14 1210103 10.3389/fneur.2023.1210103 37554394
    [Google Scholar]
  41. Kaut O. Janocha L. Weismüller T.J. Wüllner U. Transcutaneous vagal nerve stimulation improves gastroenteric complaints in Parkinson’s disease patients. NeuroRehabilitation 2019 45 4 449 451 10.3233/NRE‑192909 31868695
    [Google Scholar]
  42. Morris R. Yarnall A.J. Hunter H. Taylor J.P. Baker M.R. Rochester L. Noninvasive vagus nerve stimulation to target gait impairment in Parkinson’s disease. Mov. Disord. 2019 34 6 918 919 10.1002/mds.27664 30889295
    [Google Scholar]
  43. Mondal B. Choudhury S. Simon B. Baker M.R. Kumar H. Noninvasive vagus nerve stimulation improves gait and reduces freezing of gait in Parkinson’s disease. Mov. Disord. 2019 34 6 917 918 10.1002/mds.27662 30869809
    [Google Scholar]
  44. Kaczmarczyk R. Tejera D. Simon B.J. Heneka M.T. Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease. J Neurochem 2018 146 1 76-85 10.1111/jnc.14284 29266221
    [Google Scholar]
  45. Yesiltepe M. Cimen B. Sara Y. Effects of chronic vagal nerve stimulation in the treatment of β-amyloid-induced neuropsychiatric symptoms. Eur. J. Pharmacol. 2022 931 175179 10.1016/j.ejphar.2022.175179 35973478
    [Google Scholar]
  46. Wang L. Zhang J. Guo C. He J. Zhang S. Wang Y. Zhao Y. Li L. Wang J. Hou L. Li S. Wang Y. Hao L. Zhao Y. Wu M. Fang J. Rong P. The efficacy and safety of transcutaneous auricular vagus nerve stimulation in patients with mild cognitive impairment: A double blinded randomized clinical trial. Brain Stimul. 2022 15 6 1405 1414 10.1016/j.brs.2022.09.003 36150665
    [Google Scholar]
  47. Jacobs H.I.L. Riphagen J.M. Razat C.M. Wiese S. Sack A.T. Transcutaneous vagus nerve stimulation boosts associative memory in older individuals. Neurobiol. Aging 2015 36 5 1860 1867 10.1016/j.neurobiolaging.2015.02.023 25805212
    [Google Scholar]
  48. Merrill C.A. Jonsson M.A.G. Minthon L. Ejnell H. Silander H.C. Blennow K. Karlsson M. Nordlund A. Rolstad S. Warkentin S. Ben-Menachem E. Sjögren M.J.C. Vagus nerve stimulation in patients with Alzheimer’s disease: Additional follow-up results of a pilot study through 1 year. J. Clin. Psychiatry 2006 67 8 1171 1178 10.4088/JCP.v67n0801 16965193
    [Google Scholar]
  49. Sjögren M.J.C. Hellström P.T.O. Jonsson M.A.G. Runnerstam M. C-son Silander H. Ben-Menachem E. Sjögren J.C. Hellström P.T.O. Cognition-enhancing effect of vagus nerve stimulation in patients with Alzheimer’s disease: A pilot study. J. Clin. Psychiatry 2002 63 11 972 980 10.4088/JCP.v63n1103 12444809
    [Google Scholar]
  50. Polak T. Zeller D. Fallgatter A.J. Metzger F.G. Vagus somatosensory-evoked potentials are prolonged in patients with multiple sclerosis with brainstem involvement. Neuroreport 2013 24 5 251 253 10.1097/WNR.0b013e32835f00a3 23407276
    [Google Scholar]
  51. Leon-Ariza J.S. Mosquera M.A. Siomin V. Fonseca A. Leon-Ariza D.S. Gualdron M.A. Leon-Sarmiento F.E. The vagus nerve somatosensory-evoked potential in neural disorders: Systematic review and illustrative vignettes. Clin. EEG Neurosci. 2022 53 3 256 263 10.1177/15500594211001221 33709798
    [Google Scholar]
  52. Hagen K. Ehlis A.C. Schneider S. Haeussinger F.B. Fallgatter A.J. Metzger F.G. Influence of different stimulation parameters on the somatosensory evoked potentials of the nervus vagus--how varied stimulation parameters affect VSEP. J. Clin. Neurophysiol. 2014 31 2 143 148 10.1097/WNP.0000000000000038 24691232
    [Google Scholar]
  53. Polak T. Markulin F. Ehlis A.C. Langer J.B.M. Ringel T.M. Fallgatter A.J. Far field potentials from brain stem after transcutaneous Vagus nerve stimulation: optimization of stimulation and recording parameters. J. Neural. Transm. (Vienna) 2009 116 10 1237 1242 10.1007/s00702‑009‑0282‑1 19728032
    [Google Scholar]
  54. Keatch C. Lambert E. Kameneva T. Woods W. Functional connectivity analysis of transcutaneous vagus nerve stimulation (tVNS) using magnetoencephalography (MEG). IEEE Trans. Neural. Syst. Rehabil. Eng. 2023 31 3630 3640 10.1109/TNSRE.2023.3297736 37478038
    [Google Scholar]
  55. Ricci L. Croce P. Lanzone J. Boscarino M. Zappasodi F. Tombini M. Di Lazzaro V. Assenza G. Transcutaneous vagus nerve stimulation modulates EEG microstates and delta activity in healthy subjects. Brain Sci. 2020 10 10 668 10.3390/brainsci10100668 32992726
    [Google Scholar]
  56. Keute M. Barth D. Liebrand M. Heinze H-J. Kraemer U. Zaehle T. Effects of transcutaneous vagus nerve stimulation (tVNS) on conflict-related behavioral performance and frontal midline theta activity. J. Cogn. Enhanc. 2020 4 2 121 130 10.1007/s41465‑019‑00152‑5
    [Google Scholar]
  57. Gianlorenco A.C.L. de Melo P.S. Marduy A. Kim A.Y. Kim C.K. Choi H. Song J.J. Fregni F. Electroencephalographic patterns in taVNS: A systematic review. Biomedicines 2022 10 9 2208 10.3390/biomedicines10092208 36140309
    [Google Scholar]
/content/journals/car/10.2174/0115672050373772251103053036
Loading
/content/journals/car/10.2174/0115672050373772251103053036
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test