Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Background

Prolonged or repeated psychological stress triggers dental and orthodontic diseases inflammatory pathways and oxidative stress. This review aims to elucidate the role of inflammation, gut microbiota, stress, and cognition, exploring their impact on the development of therapeutics to enhance oral health.

Objective

The primary aim pertinent to this systematic review is to elucidate the significant implications of cognition and stress in dental and orthodontic health. Specifically, the review aims to (1) investigate the association between emotional stress and the incidence or progression of periodontal disease; (2) explore the impact of physiological and emotional stress on cellular and molecular inflammatory responses in orthodontics; (3) examine the influence of gut-mediated psychophysiological factors on emotional changes in mental health and cognition with a focus on periodontics and orthodontics; and (4) investigate the potential of gut microbiota alterations to influence oral and cognitive/mental health, including the impact of probiotic supplementation and dietary interventions.

Methods

A systematic review was conducted without comprehensive meta-analysis, focusing on literature from 1960 to 2024. Databases searched included PubMed, Embase, ReleMed, National Library of Medicine (NLM), Scopus, and Google Scholar. Keywords used were “cognition,” “emotional stress,” “gut microbiota,” “orthodontics,” “prosthetics,” “pathophysiology,” and “mental health.” Studies were selected based on relevance, publication date, access to full texts, and adherence to PRISMA guidelines. The review integrated findings on the impact of emotional stress on periodontal disease and orthodontic health through pathophysiological implications.

Results

Age-related neurodegeneration causes Alzheimer’s disease and severe dementia that subsequently promotes poor oral health. The review identified a complex interplay between emotional stress and periodontal disease. While a direct association remains to be conclusively proven, several studies highlight the influence of stress on the severity and incidence of periodontal disease through inflammatory and immunological pathways. Stress manifests in various ways, such as increased masticatory muscle tone, changes in eating behavior, and the initiation of bruxism, all of which can affect dental health. Physiological stress induces an inflammatory response to orthodontic tooth movement, impacting orthodontic treatment outcomes. Furthermore, the review elucidates the role of gut-mediated psychophysiological factors in emotional changes, influencing periodontal and orthodontic health. Emerging evidence suggests that gut microbiota alterations can significantly impact oral and cognitive health through systemic inflammation and neuroimmune mechanisms.

 Conclusion 

This review highlights the significant impact of physiological and emotional stress on periodontal and orthodontic health. Detailed exploration of cellular and molecular inflammatory responses provides insights into the pathophysiology of orthodontic diseases and their impact on oral health. Gut-brain-oral axis has significance in oral health, exploring how alterations in gut microbiota influence oral and cognitive health. It is essential to investigate the impact of probiotic supplementation and dietary modifications on gut microbiota composition, systemic inflammation, and their influence on both cognitive and oral health. Clinical trials assessing the effectiveness of anti-inflammatory treatments in reducing periodontal disease and cognitive decline could offer valuable insights. Integrating advanced microbiome analysis techniques and neuroimaging can help clarify the mechanisms linking gut health, systemic inflammation, and cognitive function. Exploring specific gut microbiota strains that regulate systemic inflammation and cognitive function may lead to targeted probiotic therapies, potentially alleviating neuroinflammation and enhancing cognitive performance. Additionally, understanding the role of oral probiotics in periodontal health and their effects on gut microbiota and systemic inflammation could contribute to the development of innovative treatment approaches. This knowledge can aid molecular biologists, dentists, and researchers in managing oral and gut health more effectively.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050361661250327061024
2025-04-11
2025-10-02
Loading full text...

Full text loading...

References

  1. GoyalS. GuptaG. ThomasB. BhatK.M. BhatG.S. Stress and periodontal disease: The link and logic.Ind. Psychiatry J.201322141110.4103/0972‑6748.12358524459366
    [Google Scholar]
  2. LeRescheL. DworkinS.F. The role of stress in inflammatory disease, including periodontal disease: Review of concepts and current findings.Periodontol. 200020023019110310.1034/j.1600‑0757.2002.03009.x12236899
    [Google Scholar]
  3. HolmesT.H. RaheR.H. The social readjustment rating scale.J. Psychosom. Res.196711221321810.1016/0022‑3999(67)90010‑46059863
    [Google Scholar]
  4. GodhiB.S. BeerakaN.M. BuddiJ.S.H.P. MahadevaiahS. MadhunapantulaS.V. Updates in the analytical isolation of indian propolis chemical constituents and their role in dental pharmacology-A review.Nat. Prod. J.2022127e09052220441710.2174/2210315512666220509111439
    [Google Scholar]
  5. BansalJ. BansalA. ShahiM. KedigeS. NarulaR. Periodontal emotional stress syndrome: Review of basic concepts, mechanism and management.J. Med. Psychol.20143326110.4236/ojmp.2014.33026
    [Google Scholar]
  6. BuduneliN. ÖzçakaÖ. NalbantsoyA. Salivary and plasma levels of Toll-like receptor 2 and Toll-like receptor 4 in chronic periodontitis.J. Periodontol.201182687888410.1902/jop.2010.10046721138350
    [Google Scholar]
  7. PaniS.C. Al AskarA.M. Al MohrijS.I. Al OhaliT.A. Evaluation of stress in final-year Saudi dental students using salivary cortisol as a biomarker.J. Dent. Educ.201175337738410.1002/j.0022‑0337.2011.75.3.tb05051.x21368262
    [Google Scholar]
  8. JohannsenA. BjurshammarN. GustafssonA. The influence of academic stress on gingival inflammation.Int. J. Dent. Hyg.201081222710.1111/j.1601‑5037.2009.00397.x20096078
    [Google Scholar]
  9. PollE.M. Kreitschmann-AndermahrI. LangejuergenY. StanzelS. GilsbachJ.M. GressnerA. YagmurE. Saliva collection method affects predictability of serum cortisol.Clin. Chim. Acta20073821-2151910.1016/j.cca.2007.03.00917449021
    [Google Scholar]
  10. DickersonS.S. KemenyM.E. Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research.Psychol. Bull.2004130335539110.1037/0033‑2909.130.3.35515122924
    [Google Scholar]
  11. GroerM. MurphyR. BunnellW. SalomonK. Van EepoelJ. RankinB. WhiteK. BykowskiC. Salivary measures of stress and immunity in police officers engaged in simulated critical incident scenarios.J. Occup. Environ. Med.201052659560210.1097/JOM.0b013e3181e129da20523239
    [Google Scholar]
  12. Kunz-EbrechtS.R. Mohamed-AliV. FeldmanP.J. KirschbaumC. SteptoeA. Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines.Brain Behav. Immun.200317537338310.1016/S0889‑1591(03)00029‑112946659
    [Google Scholar]
  13. PapacostaE. NassisG.P. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science.J. Sci. Med. Sport201114542443410.1016/j.jsams.2011.03.00421474377
    [Google Scholar]
  14. GattiR. AntonelliG. PrearoM. SpinellaP. CappellinE. De PaloE.F. Cortisol assays and diagnostic laboratory procedures in human biological fluids.Clin. Biochem.200942121205121710.1016/j.clinbiochem.2009.04.01119414006
    [Google Scholar]
  15. Webster MarketonJ.I. GlaserR. Stress hormones and immune function.Cell. Immunol.20082521-2162610.1016/j.cellimm.2007.09.00618279846
    [Google Scholar]
  16. HänselA. HongS. CámaraR.J.A. von KänelR. Inflammation as a psychophysiological biomarker in chronic psychosocial stress.Neurosci. Biobehav. Rev.201035111512110.1016/j.neubiorev.2009.12.01220026349
    [Google Scholar]
  17. Ben-EliyahuS. ShakharG. PageG.G. StefanskiV. ShakharK. Suppression of NK cell activity and of resistance to metastasis by stress: A role for adrenal catecholamines and β-adrenoceptors.Neuroimmunomodulation20008315416410.1159/00005427611124582
    [Google Scholar]
  18. PadgettD.A. GlaserR. How stress influences the immune response.Trends Immunol.200324844444810.1016/S1471‑4906(03)00173‑X12909458
    [Google Scholar]
  19. TakaiN. YamaguchiM. AragakiT. EtoK. UchihashiK. NishikawaY. Effect of psychological stress on the salivary cortisol and amylase levels in healthy young adults.Arch. Oral Biol.2004491296396810.1016/j.archoralbio.2004.06.00715485637
    [Google Scholar]
  20. HamaguchiT. FukudoS. KanazawaM. TomiieT. ShimizuK. OyamaM. SakuraiK. Changes in salivary physiological stress markers induced by muscle stretching in patients with irritable bowel syndrome.Biopsychosoc. Med.2008212010.1186/1751‑0759‑2‑2018983682
    [Google Scholar]
  21. NakaneH. AsamiO. YamadaY. OhiraH. Effect of negative air ions on computer operation, anxiety and salivary chromogranin A-like immunoreactivity.Int. J. Psychophysiol.2002461858910.1016/S0167‑8760(02)00067‑312374649
    [Google Scholar]
  22. SarutaJ. TsukinokiK. SasaguriK. IshiiH. YasudaM. OsamuraY.R. WatanabeY. SatoS. Expression and localization of chromogranin A gene and protein in human submandibular gland.Cells Tissues Organs2005180423724410.1159/00008893916330879
    [Google Scholar]
  23. PradeepA.R. RajS. ArunaG. ChowdhryS. Gingival crevicular fluid and plasma levels of neuropeptide Substance-P in periodontal health, disease and after nonsurgical therapy.J. Periodontal Res.200944223223710.1111/j.1600‑0765.2008.01138.x18973530
    [Google Scholar]
  24. MillerD.B. O’CallaghanJ.P. Neuroendocrine aspects of the response to stress.Metabolism2002516Suppl. 151010.1053/meta.2002.3318412040534
    [Google Scholar]
  25. SoellM. ElkaimR. TenenbaumH. Cathepsin C, matrix metalloproteinases, and their tissue inhibitors in gingiva and gingival crevicular fluid from periodontitis-affected patients.J. Dent. Res.200281317417810.1177/081017411876270
    [Google Scholar]
  26. BuduneliN. BıyıkoğluB. SherrabehS. LappinD.F. Saliva concentrations of RANKL and osteoprotegerin in smoker versus non-smoker chronic periodontitis patients.J. Clin. Periodontol.2008351084685210.1111/j.1600‑051X.2008.01310.x18727653
    [Google Scholar]
  27. SheihamA. NicolauB. Evaluation of social and psychological factors in periodontal disease.Periodontol. 2000200539111813110.1111/j.1600‑0757.2005.00115.x16135067
    [Google Scholar]
  28. GencoR.J. HoA.W. KopmanJ. GrossiS.G. DunfordR.G. TedescoL.A. Models to evaluate the role of stress in periodontal disease.Ann. Periodontol.19983128830210.1902/annals.1998.3.1.2889722713
    [Google Scholar]
  29. IshisakaA. AnsaiT. SohI. InenagaK. YoshidaA. ShigeyamaC. AwanoS. HamasakiT. SonokiK. TakataY. TakeharaT. Association of salivary levels of cortisol and dehydroepiandrosterone with periodontitis in older Japanese adults.J. Periodontol.20077891767177310.1902/jop.2007.07004417760547
    [Google Scholar]
  30. De HertM. DetrauxJ. VancampfortD. The intriguing relationship between coronary heart disease and mental disorders.Dialogues Clin. Neurosci.2018201314010.31887/DCNS.2018.20.1/mdehert29946209
    [Google Scholar]
  31. KueblerU. WirtzP.H. SakaiM. StemmerA. EhlertU. Acute stress reduces wound-induced activation of microbicidal potential of ex vivo isolated human monocyte-derived macrophages.PLoS One201382e5587510.1371/journal.pone.005587523431364
    [Google Scholar]
  32. ChoiJ. FauceS.R. EffrosR.B. Reduced telomerase activity in human T lymphocytes exposed to cortisol.Brain Behav. Immun.200822460060510.1016/j.bbi.2007.12.00418222063
    [Google Scholar]
  33. KingG.J. KeelingS.D. McCoyE.A. WardT.H. Measuring dental drift and orthodontic tooth movement in response to various initial forces in adult rats.Am. J. Orthod. Dentofacial Orthop.199199545646510.1016/S0889‑5406(05)81579‑32028935
    [Google Scholar]
  34. KirillovO.I. KhasinaE.I. DurkinaV.B. Effect of stress on postnatal growth in weight of rat body and adrenal gland.Ontogenez200334537137614582230
    [Google Scholar]
  35. PereiraR.M.R. DelanyA.M. CanalisE. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture.Bone200128548449010.1016/S8756‑3282(01)00422‑711344047
    [Google Scholar]
  36. JiangC. LiZ. QuanH. XiaoL. ZhaoJ. JiangC. WangY. LiuJ. GouY. AnS. HuangY. YuW. ZhangY. HeW. YiY. ChenY. WangJ. Osteoimmunology in orthodontic tooth movement.Oral Dis.201521669470410.1111/odi.1227325040955
    [Google Scholar]
  37. JouryE. MarcenesW. JohalA. The role of psychosocial factors in predicting orthodontic treatment outcome at the end of 1 year of active treatment.Eur. J. Orthod.201335220521510.1093/ejo/cjr11121965182
    [Google Scholar]
  38. GameiroG.H. NouerD.F. Pereira-NetoJ.S. UrtadoM.B. NovaesP.D. de CastroM. ArrudaV.M.C.F. The effects of systemic stress on orthodontic tooth movement.Australas. Orthod. J.200824212112810.2478/aoj‑2008‑001819113077
    [Google Scholar]
  39. Al-ShammeryD. MichelogiannakisD. RossouwE. RomanosG.E. JavedF. Influence of psychological stress exposure on orthodontic therapy: A comprehensive review.J. Investig. Clin. Dent.2019102e1238810.1111/jicd.1238830618117
    [Google Scholar]
  40. WeiT. DuY. HouT. ZhaiC. LiY. XiaoW. LiuK. Association between adverse oral conditions and cognitive impairment: A literature review.Front. Public Health202311114702610.3389/fpubh.2023.114702637089515
    [Google Scholar]
  41. De MarcoT.J. Periodontal emotional stress syndrome.J. Periodontol.1976472676810.1902/jop.1976.47.2.671062550
    [Google Scholar]
  42. da SilvaA.M.M. NewmanH.N. OakleyD.A. Psychosocial factors in inflammatory periodontal diseases.J. Clin. Periodontol.199522751652610.1111/j.1600‑051X.1995.tb00799.x7560234
    [Google Scholar]
  43. PeruzzoD.C. BenattiB.B. AmbrosanoG.M.B. Nogueira-FilhoG.R. SallumE.A. CasatiM.Z. NocitiF.H.Jr A systematic review of stress and psychological factors as possible risk factors for periodontal disease.J. Periodontol.20077881491150410.1902/jop.2007.06037117668968
    [Google Scholar]
  44. SainiR. SainiS. SainiS. Periodontitis and psychological stress: A dental view.Ind. Psychiatry J.2010191666710.4103/0972‑6748.7764421694796
    [Google Scholar]
  45. McCrackenG. Positive relationship between stress and periodontal disease?Evid. Based Dent.2009102424210.1038/sj.ebd.640064519561574
    [Google Scholar]
  46. BindushreeA. RanganthV. NichaniA. Periodontal disease and stress: A review.Int J Dent Health Sci20141575588
    [Google Scholar]
  47. JusterR.P. McEwenB.S. LupienS.J. Allostatic load biomarkers of chronic stress and impact on health and cognition.Neurosci. Biobehav. Rev.201035121610.1016/j.neubiorev.2009.10.00219822172
    [Google Scholar]
  48. FormicolaA.J. WitteE.T. CurranP.M. A study of personality traits and acute necrotizing ulcerative gingivitis.J. Periodontol.1970411363810.1902/jop.1970.41.1.365264373
    [Google Scholar]
  49. RenersM. BrecxM. Stress and periodontal disease.Int. J. Dent. Hyg.20075419920410.1111/j.1601‑5037.2007.00267.x17927631
    [Google Scholar]
  50. GunepinM. DeracheF. TrousselardM. SalsouB. RissoJ.J. Impact of chronic stress on periodontal health.J. Oral. Med. Oral Surg.2018241445010.1051/mbcb/2017028
    [Google Scholar]
  51. RosaniaA.E. LowK.G. McCormickC.M. RosaniaD.A. Stress, depression, cortisol, and periodontal disease.J. Periodontol.200980226026610.1902/jop.2009.08033419186966
    [Google Scholar]
  52. ZhaoY-J LiQ. ChengB.-X. ZhangM. ChenY.-J. Psychological stress delays periodontitis healing in rats: The involvement of basic fibroblast growth factor.Mediators Inflamm.20122012173290210.1155/2012/732902
    [Google Scholar]
  53. CarvalhoR.S. de SouzaC.M. NevesJ.C.S. Holanda-PintoS.A. PintoL.M.S. BritoG.A.C. de AndradeG.M. Effect of venlafaxine on bone loss associated with ligature-induced periodontitis in Wistar rats.J. Negat. Results Biomed.201091310.1186/1477‑5751‑9‑320546603
    [Google Scholar]
  54. Semenoff-SegundoA. PortoA.N. SemenoffT.A.D.V. CortelliJ.R. CostaF.O. CortelliS.C. BoscoÁ.F. Effects of two chronic stress models on ligature-induced periodontitis in Wistar rats.Arch. Oral Biol.2012571667210.1016/j.archoralbio.2011.07.01422119224
    [Google Scholar]
  55. StoykovaM. MusurlievaN. BoyadzhievD. Risk factors for development of chronic periodontitis in Bulgarian patients (pilot research).Biotechnol. Biotechnol. Equip.20142861150115410.1080/13102818.2014.97432826019602
    [Google Scholar]
  56. GoyalS. JajooS. NagappaG. RaoG. Estimation of relationship between psychosocial stress and periodontal status using serum cortisol level: A clinico-biochemical study.Indian J. Dent. Res.20112216910.4103/0970‑9290.7996621525669
    [Google Scholar]
  57. HilgertJ.B. HugoF.N. BandeiraD.R. BozzettiM.C. Stress, cortisol, and periodontitis in a population aged 50 years and over.J. Dent. Res.200685432432810.1177/15440591060850040816567552
    [Google Scholar]
  58. SateeshC. SanthoshK.R. PushpalathaG. Relationship between stress and periodontal disease.J. Dent. Sci. Res.2010115461
    [Google Scholar]
  59. ChandnaS. BathlaM. Stress and periodontium: A review of concepts.J. Oral Health Community Dent.2010411722
    [Google Scholar]
  60. AkcaliA. HuckO. TenenbaumH. DavideauJ.L. BuduneliN. Periodontal diseases and stress: A brief review.J. Oral Rehabil.2013401606810.1111/j.1365‑2842.2012.02341.x22882663
    [Google Scholar]
  61. StabholzA. SoskolneW.A. ShapiraL. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis.Periodontol. 2000201053113815310.1111/j.1600‑0757.2010.00340.x20403110
    [Google Scholar]
  62. RaiB. KaurJ. AnandS.C. JacobsR. Salivary stress markers, stress, and periodontitis: A pilot study.J. Periodontol.201182228729210.1902/jop.2010.10031920722529
    [Google Scholar]
  63. WarrenK.R. PostolacheT.T. GroerM.E. PinjariO. KellyD.L. ReynoldsM.A. Role of chronic stress and depression in periodontal diseases.Periodontol. 2000201464112713810.1111/prd.1203624320960
    [Google Scholar]
  64. RettoriE. LaurentiisA. DeesW. EndruhnA. RettoriV. Host neuro- immuno-endocrine responses in periodontal disease.Curr. Pharm. Des.201420294749475910.2174/138161282066614013020404324588827
    [Google Scholar]
  65. HildebrandH.C. EpsteinJ. LarjavaH. The influence of psychological stress on periodontal disease.J. West. Soc. Periodontol. Periodontal Abstr.2000483697711381953
    [Google Scholar]
  66. IngoleR.S. IngoleY.S. WankhadeJ. DammaniB. GandaguleR.R. Correlation of oral health status and stress: A cross-sectional study.IOSR-JDMS20191856976
    [Google Scholar]
  67. GencoR.J. Current view of risk factors for periodontal diseases.J. Periodontol.19966710S1041104910.1902/jop.1996.67.10s.1041
    [Google Scholar]
  68. MossM.E. BeckJ.D. KaplanB.H. OffenbacherS. WeintraubJ.A. KochG.G. GencoR.J. MachteiE.E. TedescoL.A. Exploratory case-control analysis of psychosocial factors and adult periodontitis.J. Periodontol.19966710S1060106910.1902/jop.1996.67.10s.1060
    [Google Scholar]
  69. Monteiro da SilvaA.M. OakleyD.A. NewmanH.N. NohlF.S. LloydH.M. Psychosocial factors and adult onset rapidly progressive periodontitis.J. Clin. Periodontol.199623878979410.1111/j.1600‑051X.1996.tb00611.x8877667
    [Google Scholar]
  70. BreivikT. OpstadP.K. GjermoP. ThraneP.S. Effects of hypothalamic-pituitary-adrenal axis reactivity on periodontal tissue destruction in rats.Eur. J. Oral Sci.2000108211512210.1034/j.1600‑0722.2000.00774.x10768724
    [Google Scholar]
  71. DorlandW.A.N. Dorland’s illustrated medical dictionary.WB Saunders1925
    [Google Scholar]
  72. CroucherR. MarcenesW.S. TorresM.C.M.B. HughesF. SheihamA. The relationship between life-events and periodontitis A case-control study.J. Clin. Periodontol.1997241394310.1111/j.1600‑051X.1997.tb01182.x9049796
    [Google Scholar]
  73. BallieuxR.E. Impact of mental stress on the immune response.J. Clin. Periodontol.199118642743010.1111/j.1600‑051X.1991.tb02311.x1890223
    [Google Scholar]
  74. ChattertonR.T.Jr VogelsongK.M. LuY-C. HudgensG.A. Hormonal responses to psychological stress in men preparing for skydiving.J. Clin. Endocrinol. Metab.19978282503250910.1210/jc.82.8.25039253325
    [Google Scholar]
  75. GlaserR. Kiecolt-GlaserJ.K. Stress-induced immune dysfunction: Implications for health.Nat. Rev. Immunol.20055324325110.1038/nri157115738954
    [Google Scholar]
  76. RennieJ.S. ReadeP.C. HayK.D. ScullyC. Recurrent aphthous stomatitis.Br. Dent. J.19851591136136710.1038/sj.bdj.48057343907674
    [Google Scholar]
  77. KoнoнoвaO Immunological indicators in patients with generalized parodontitis andpsychoemotional stress.Thesis, O.M.Marseev Institute of Public Health of the NAMS of Ukraine2019
    [Google Scholar]
  78. RedwineL. MillsP.J. SadaM. DimsdaleJ. PattersonT. GrantI. Differential immune cell chemotaxis responses to acute psychological stress in Alzheimer caregivers compared to non- caregiver controls.Psychosom. Med.200466577077510.1097/01.psy.0000138118.62018.8715385705
    [Google Scholar]
  79. SegerstromS.C. MillerG.E. Psychological stress and the human immune system: A meta-analytic study of 30 years of inquiry.Psychol. Bull.2004130460163010.1037/0033‑2909.130.4.60115250815
    [Google Scholar]
  80. MahendraL. AustinR.D. MahendraJ. SenthilS. Psychological stress and oral diseases - A link?IJCRR2012417525810.31782/2231‑2196
    [Google Scholar]
  81. PageR.C. The role of inflammatory mediators in the pathogenesis of periodontal disease.J. Periodontal Res.199126323024210.1111/j.1600‑0765.1991.tb01649.x1679130
    [Google Scholar]
  82. Birkedal-HansenH. MooreW.G.I. BoddenM.K. WindsorL.J. Birkedal-HansenB. DeCarloA. EnglerJ.A. Matrix metalloproteinases: A review.Crit. Rev. Oral Biol. Med.19934219725010.1177/104544119300400204018435466
    [Google Scholar]
  83. VerstappenJ. Von den HoffJ.W. Tissue inhibitors of metalloproteinases (TIMPs): Their biological functions and involvement in oral disease.J. Dent. Res.200685121074108410.1177/15440591060850120217122157
    [Google Scholar]
  84. AibaT. AkenoN. KawaneT. OkamotoH. HoriuchiN. Matrix metalloproteinases-1 and -8 and TIMP-1 mRNA levels in normal and diseased human gingivae.Eur. J. Oral Sci.19961045-656256910.1111/j.1600‑0722.1996.tb00142.x9021326
    [Google Scholar]
  85. KylmäniemiM. OikarinenA. OikarinenK. SaloT. Effects of dexamethasone and cell proliferation on the expression of matrix metalloproteinases in human mucosal normal and malignant cells.J. Dent. Res.199675391992610.1177/002203459607500309018675803
    [Google Scholar]
  86. CuryP.R. AraújoV.C. CanavezF. FuruseC. AraújoN.S. Hydrocortisone affects the expression of matrix metalloproteinases (MMP-1, -2, -3, -7, and -11) and tissue inhibitor of matrix metalloproteinases (TIMP-1) in human gingival fibroblasts.J. Periodontol.20077871309131510.1902/jop.2007.06022517608586
    [Google Scholar]
  87. TakemuraT. TakahashiT. FukudaM. OhnukiT. AsunumaT. MasudaY. KondohH. KanbayashiT. ShimizuT. A psychological study on patients with masticatory muscle disorder and sleep bruxism.Cranio200624319119810.1179/crn.2006.03116933460
    [Google Scholar]
  88. HasegawaY. LavigneG. RompréP. KatoT. UradeM. HuynhN. Is there a first night effect on sleep bruxism? A sleep laboratory study.J. Clin. Sleep Med.20139111139114510.5664/jcsm.315224235894
    [Google Scholar]
  89. AbeS. GagnonJ.F. MontplaisirJ.Y. PostumaR.B. RompréP.H. HuynhN.T. KatoT. KawanoF. LavigneG.J. Sleep bruxism and oromandibular myoclonus in rapid eye movement sleep behavior disorder: A preliminary report.Sleep Med.201314101024103010.1016/j.sleep.2013.04.02123953215
    [Google Scholar]
  90. De RossiS.S. SternI. SollecitoT.P. Disorders of the masticatory muscles.Dent. Clin. North Am.201357344946410.1016/j.cden.2013.04.00723809303
    [Google Scholar]
  91. FernandesG. FrancoA.L. GonçalvesD.A. SpecialiJ.G. BigalM.E. CamparisC.M. Temporomandibular disorders, sleep bruxism, and primary headaches are mutually associated.J. Orofac. Pain2013271142023424716
    [Google Scholar]
  92. Walczyńska-DragonK. BaronS. The biomechanical and functional relationship between temporomandibular dysfunction and cervical spine pain.Acta Bioeng. Biomech.2011134939822339095
    [Google Scholar]
  93. McNamaraJ.A.Jr SeligmanD.A. OkesonJ.P. Occlusion, Orthodontic treatment, and temporomandibular disorders: A review.J. Orofac. Pain19959173907581209
    [Google Scholar]
  94. ShettyS. PittiV. Satish BabuC.L. Surendra KumarG.P. DeepthiB.C. Bruxism: A literature review.J. Indian Prosthodont. Soc.201010314114810.1007/s13191‑011‑0041‑521886404
    [Google Scholar]
  95. IsraelH.A. DiamondB. Saed-NejadF. RatcliffeA. The relationship between parafunctional masticatory activity and arthroscopically diagnosed temporomandibular joint pathology.J. Oral Maxillofac. Surg.19995791034103910.1016/S0278‑2391(99)90321‑X10484103
    [Google Scholar]
  96. KatoT. MasudaY. YoshidaA. MorimotoT. Masseter EMG activity during sleep and sleep bruxism.Arch. Ital. Biol.2011149447849122205593
    [Google Scholar]
  97. YoshizawaS. SuganumaT. TakabaM. OnoY. SakaiT. YoshizawaA. KawanaF. KatoT. BabaK. Phasic jaw motor episodes in healthy subjects with or without clinical signs and symptoms of sleep bruxism: a pilot study.Sleep Breath.201418118719310.1007/s11325‑013‑0868‑623775827
    [Google Scholar]
  98. AmorimC.F. GiannasiL.C. FerreiraL.M.A. MaginiM. OliveiraC.S. de OliveiraL.V.F. HirataT. PolittiF. Behavior analysis of electromyographic activity of the masseter muscle in sleep bruxers.J. Bodyw. Mov. Ther.201014323423810.1016/j.jbmt.2008.12.00220538220
    [Google Scholar]
  99. BlanchardS. Top ten drugs of 2001.Pharm. Times20026841015
    [Google Scholar]
  100. Attanasio, R. An overview of bruxism and its management. Dent. Clin. North America, 1997, 41(2), pp. 229-241.
  101. BrocardD. LaluqueJ-F. KnellesenC. Understanding bruxism.Quintessence Int.2007
    [Google Scholar]
  102. ReddyS.V. KumarM.P. SravanthiD. MohsinA.H.B. AnuhyaV. Bruxism: A literature review.J. Int. Oral Health20146610510925628497
    [Google Scholar]
  103. RughJ.D. BarghiN. DragoC.J. Experimental occlusal discrepancies and nocturnal bruxism.J. Prosthet. Dent.198451454855310.1016/0022‑3913(84)90312‑36587078
    [Google Scholar]
  104. SlavicekR. The Masticatory Organ: Functions and Dysfunctions.GAMMA Medizinisch-wissenschaftliche Fortbildung-AG2002
    [Google Scholar]
  105. KatoT. ThieN.M. HuynhN. MiyawakiS. LavigneG.J. Topical review: Sleep bruxism and the role of peripheral sensory influences.J. Orofac. Pain200317319121314520766
    [Google Scholar]
  106. LobbezooF. SoucyJ.P. HartmanN.G. MontplaisirJ.Y. LavigneG.J. Effects of the D2 receptor agonist bromocriptine on sleep bruxism: Report of two single-patient clinical trials.J. Dent. Res.19977691610161410.1177/002203459707600914019294496
    [Google Scholar]
  107. OkesonJ.P. The American Academy of orofacial pain: Orofacial pain guidelines for assessment, diagnosis, and management.ChicagoQuintessence Publishing Co Inc1996113184
    [Google Scholar]
  108. SchiffmanE. OhrbachR. TrueloveE. LookJ. AndersonG. GouletJ.P. ListT. SvenssonP. GonzalezY. LobbezooF. MichelottiA. BrooksS.L. CeustersW. DrangsholtM. EttlinD. GaulC. GoldbergL.J. HaythornthwaiteJ.A. HollenderL. MaixnerW. van der MeulenM. MurrayG.M. NixdorfD.R. PallaS. PeterssonA. PionchonP. SmithB. VisscherC.M. ZakrzewskaJ. DworkinS.F. SmithB. VisscherC.M. ZakrzewskaJ. DworkinS.F. International RDC/TMD Consortium Network, International association for Dental Research Orofacial Pain Special Interest Group, International Association for the Study of Pain Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: Recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group.J. Oral Facial Pain Headache201428162710.11607/jop.115124482784
    [Google Scholar]
  109. EllaB. GhorayebI. BurbaudP. GuehlD. Bruxism in movement disorders: A comprehensive review.J. Prosthodont.201726759960510.1111/jopr.1247927077925
    [Google Scholar]
  110. ManfrediniD. FabbriA. PerettaR. Guarda-NardiniL. LobbezooF. Influence of psychological symptoms on home-recorded sleep-time masticatory muscle activity in healthy subjects.J. Oral Rehabil.2011381290291110.1111/j.1365‑2842.2011.02226.x21569074
    [Google Scholar]
  111. ArnoldM. Bruxism and the occlusion.Dent. Clin. North Am.19812533954076943102
    [Google Scholar]
  112. OlkinuoraM. A psychosomatic study of bruxism with emphasis on mental strain and familiar predisposition factors.Proc. Finn. Dent. Soc.19726831101234509076
    [Google Scholar]
  113. LobbezooF. AhlbergJ. GlarosA.G. KatoT. KoyanoK. LavigneG.J. de LeeuwR. ManfrediniD. SvenssonP. WinocurE. Bruxism defined and graded: An international consensus.J. Oral Rehabil.20134012410.1111/joor.1201123121262
    [Google Scholar]
  114. CavalloP. CarpinelliL. SavareseG. Perceived stress and bruxism in university students.BMC Res. Notes20169151410.1186/s13104‑016‑2311‑028003024
    [Google Scholar]
  115. SoaresK.A.N. MeloR.M.C.S. GomesM.C. PerazzoM.F. Granville-GarciaA.F. MenezesV.A. Prevalence and factors associated to bruxism in preschool children.J. Public Health (Berl.)201624320921410.1007/s10389‑016‑0713‑z
    [Google Scholar]
  116. DavisC.H. JenkinsC.D. Mental stress and oral disease.J. Dent. Res.19624151045104910.1177/0022034562041005060113993646
    [Google Scholar]
  117. BreivikT. ThraneP.S. MurisonR. GjermoP. Emotional stress effects on immunity, gingivitis and periodontitis.Eur. J. Oral Sci.1996104432733410.1111/j.1600‑0722.1996.tb00087.x8930578
    [Google Scholar]
  118. AgarwalM. AgarwalP. BhattacharyaH.S. RastogiP. AgarwalA. Evaluation of association between potential stress markers and periodontal health in medical and dental students: A questionnaire-based study.Natl. J. Maxillofac. Surg.2022131909410.4103/njms.NJMS_101_1935911810
    [Google Scholar]
  119. RingsdorfW.M.Jr CheraskinE. Emotional status and the periodontium.J. Tenn. State Dent. Assoc.19694915185250892
    [Google Scholar]
  120. MeyerM.J. Stress and periodontal disease: A review of the literature.J. N. Z. Soc. Periodontol.19896823262701006
    [Google Scholar]
  121. DeinzerR. RüttermannS. MöbesO. HerforthA. Increase in gingival inflammation under academic stress.J. Clin. Periodontol.199825543143310.1111/j.1600‑051X.1998.tb02467.x9650882
    [Google Scholar]
  122. DeinzerR. HilpertD. BachK. SchawachtM. HerforthA. Effects of academic stress on oral hygiene: A potential link between stress and plaque-associated disease?J. Clin. Periodontol.200128545946410.1034/j.1600‑051x.2001.028005459.x11350510
    [Google Scholar]
  123. DeinzerR. GranrathN. SpahlM. LinzS. WaschulB. HerforthA. Stress, oral health behaviour and clinical outcome.Br. J. Health Psychol.200510226928310.1348/135910705X2685815969854
    [Google Scholar]
  124. HaberJ. Smoking is a major risk factor for periodontitis.Curr. Opin. Periodontol.1994199412188032453
    [Google Scholar]
  125. ManholdJ.H. DoyleJ.L. WeisingerE.H. Effects of social stress on oral and other bodily tissues. II. Results offering substance to a hypothesis for the mechanism of formation of periodontal pathology.J. Periodontol.197142210911110.1902/jop.1971.42.2.1095278791
    [Google Scholar]
  126. GuptaO.P. Psychosomatic factors in periodontal disease.Dent. Clin. North Am.1966101111910.1016/S0011‑8532(22)03408‑55216130
    [Google Scholar]
  127. CogenR.B. StevensA.W.Jr Cohen-ColeS. KirkK. FreemanA. Leukocyte function in the etiology of acute necrotizing ulcerative gingivitis.J. Periodontol.198354740240710.1902/jop.1983.54.7.4026577177
    [Google Scholar]
  128. PageR.C. AltmanL.C. EbersoleJ.L. VandesteenG.E. DahlbergW.H. WilliamsB.L. OsterbergS.K. Rapidly progressive periodontitis. A distinct clinical condition.J. Periodontol.198354419720910.1902/jop.1983.54.4.1976574228
    [Google Scholar]
  129. KammaJ.J. BaehniP.C. Five-year maintenance follow-up of early-onset periodontitis patients.J. Clin. Periodontol.200330656257210.1034/j.1600‑051X.2003.00289.x12795796
    [Google Scholar]
  130. WimmerG. KöhldorferG. MischakI. LorenzoniM. KallusK.W. Coping with stress: its influence on periodontal therapy.J. Periodontol.2005761909810.1902/jop.2005.76.1.9015830642
    [Google Scholar]
  131. GamboaA.B.O. HughesF.J. MarcenesW. The relationship between emotional intelligence and initial response to a standardized periodontal treatment.J. Clin. Periodontol.200532770270710.1111/j.1600‑051X.2005.00771.x15966874
    [Google Scholar]
  132. RozlogL.A. Kiecolt-GlaserJ.K. MaruchaP.T. SheridanJ.F. GlaserR. Stress and immunity: Implications for viral disease and wound healing.J. Periodontol.199970778679210.1902/jop.1999.70.7.78610440641
    [Google Scholar]
  133. BartoldP.M. NarayananA.S. Molecular and cell biology of healthy and diseased periodontal tissues.Periodontol. 20002006401294910.1111/j.1600‑0757.2005.00140.x16398684
    [Google Scholar]
  134. DutraE.H. NandaR. YadavS. Bone response of loaded periodontal ligament.Curr. Osteoporos. Rep.201614628028310.1007/s11914‑016‑0328‑x27681936
    [Google Scholar]
  135. ArronJ.R. ChoiY. Bone versus immune system.Nature2000408681253553610.1038/3504619611117729
    [Google Scholar]
  136. CornishJ. GillespieM.T. CallonK.E. HorwoodN.J. MoseleyJ.M. ReidI.R. Interleukin-18 is a novel mitogen of osteogenic and chondrogenic cells.Endocrinology200314441194120110.1210/en.2002‑22093612639900
    [Google Scholar]
  137. Masella, R.S.; Meister, M. Current concepts in the biology of orthodontic tooth movement. Am. J. Orthod. Dentof. Orthoped., 2006, 129(4), pp. 458-468.
  138. KanzakiH. ChibaM. ShimizuY. MitaniH. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis.J. Bone Miner. Res.200217221022010.1359/jbmr.2002.17.2.21011811551
    [Google Scholar]
  139. KleinY. FleissigO. PolakD. BarenholzY. MandelboimO. ChaushuS. Immunorthodontics: In vivo gene expression of orthodontic tooth movement.Sci. Rep.2020101817210.1038/s41598‑020‑65089‑832424121
    [Google Scholar]
  140. Di DomenicoM D'apuzzoF FeolaA CitoL MonsurròA PierantoniG BerrinoL De RosaA PolimeniA PerilloL Cytokines and VEGF induction in orthodontic movement in animal models BioMed. Res.Int.20122016891410.1155/2012/201689
    [Google Scholar]
  141. KanzakiH. ChibaM. SatoA. MiyagawaA. AraiK. NukatsukaS. MitaniH. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction.J. Dent. Res.200685545746210.1177/15440591060850051216632761
    [Google Scholar]
  142. TeixeiraC.C. KhooE. TranJ. ChartresI. LiuY. ThantL.M. KhabenskyI. GartL.P. CisnerosG. AlikhaniM. Cytokine expression and accelerated tooth movement.J. Dent. Res.201089101135114110.1177/002203451037376420639508
    [Google Scholar]
  143. d'ApuzzoF CappabiancaS CiavarellaD MonsurròA Silvestrini-BiavatiA PerilloL Biomarkers of periodontal tissue remodeling during orthodontic tooth movement in mice and men: Overview and clinical relevance.ScientificWorld J.2013201310587310.1155/2013/105873
    [Google Scholar]
  144. KookS.H. JangY.S. LeeJ.C. Human periodontal ligament fibroblasts stimulate osteoclastogenesis in response to compression force through TNF-α-mediated activation of CD4+ T cells.J. Cell. Biochem.2011112102891290110.1002/jcb.2320521618593
    [Google Scholar]
  145. YanY. LiuF. KouX. LiuD. YangR. WangX. SongY. HeD. GanY. ZhouY. T cells are required for orthodontic tooth movement.J. Dent. Res.201594101463147010.1177/002203451559500326187644
    [Google Scholar]
  146. RyghP. ReitanK. Ultrastructural changes in the periodontal ligament incident to orthodontic tooth movement.Trans. Eur. Orthod. Soc.19723934054523550
    [Google Scholar]
  147. BrownM.H. BolesK. Anton van der MerweP. KumarV. MathewP.A. Neil BarclayA. MH B 2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48.J. Exp. Med.1998188112083209010.1084/jem.188.11.20839841922
    [Google Scholar]
  148. DonovanJ.A. KoretzkyG.A. CD45 and the immune response.J. Am. Soc. Nephrol.19934497698510.1681/ASN.V449768286719
    [Google Scholar]
  149. WatanabeM. TakagiY. KotaniM. HaraY. InamineA. HayashiK. OgawaS. TakedaK. TanabeK. AbeR. Down-regulation of ICOS ligand by interaction with ICOS functions as a regulatory mechanism for immune responses.J. Immunol.200818085222523410.4049/jimmunol.180.8.522218390703
    [Google Scholar]
  150. HickeyM.J. Has Ly6G finally found a job?Blood201212071352135310.1182/blood‑2012‑06‑43516422899474
    [Google Scholar]
  151. NayakB. Molecular biology of orthodontic tooth movement.J. Dent. Oral Health201311
    [Google Scholar]
  152. KawaiK. TsunoN.H. MatsuhashiM. KitayamaJ. OsadaT. YamadaJ. TsuchiyaT. YoneyamaS. WatanabeT. TakahashiK. NagawaH. CD11b-mediated migratory property of peripheral blood B cells.J. Allergy Clin. Immunol.2005116119219710.1016/j.jaci.2005.03.02115990794
    [Google Scholar]
  153. ZhengD.X. KangX.N. WangY.X. HuangY.N. PangC.F. ChenY.X. KuangZ.L. PengY. Periodontal disease and emotional disorders: A meta-analysis.J. Clin. Periodontol.202148218020410.1111/jcpe.1339533103263
    [Google Scholar]
  154. HorstO.V. Cunha-CruzJ. ZhouL. ManningW. ManclL. DeRouenT.A. Prevalence of pain in the orofacial regions in patients visiting general dentists in the Northwest practice-based research collaborative in evidence-based dentistry research network.J. Am. Dent. Assoc.201514610721728.e310.1016/j.adaj.2015.04.00126409981
    [Google Scholar]
  155. ShinalR.M. FillingimR.B. Overview of orofacial pain: Epidemiology and gender differences in orofacial pain.Dent. Clin. North Am.2007511118, v10.1016/j.cden.2006.09.00417185057
    [Google Scholar]
  156. LongH. ZhouY. PyakurelU. LiaoL. JianF. XueJ. YeN. YangX. WangY. LaiW. Comparison of adverse effects between lingual and labial orthodontic treatment: A systematic review.Angle Orthod.20138361066107310.2319/010113‑2.123581503
    [Google Scholar]
  157. LongH. WangY. JianF. LiaoL.N. YangX. LaiW.L. Current advances in orthodontic pain.Int. J. Oral Sci.201682677510.1038/ijos.2016.2427341389
    [Google Scholar]
  158. LyuJ. WenJ. GuoR. ZhuY. LiangH. GaoM. WangH. LaiW. LongH. Botulinum toxin A alleviates orofacial nociception induced by orthodontic tooth movement through nociceptin/orphanin-FQ pathway in rats.Arch. Oral Biol.202011710481710.1016/j.archoralbio.2020.10481732603879
    [Google Scholar]
  159. GaoM. LongH. MaW. LiaoL. YangX. ZhouY. ShanD. HuangR. JianF. WangY. LaiW. The role of periodontal ASIC3 in orofacial pain induced by experimental tooth movement in rats.Eur. J. Orthod.201638657758310.1093/ejo/cjv08226675477
    [Google Scholar]
  160. ChandraR. RachalaM. MadhaviK. KambalyalP. ReddyA. AliM. Periodontally accelerated osteogenic orthodontics combined with recombinant human bone morphogenetic protein-2: An outcome assessment.J. Indian Soc. Periodontol.201923325726310.4103/jisp.jisp_612_1831143007
    [Google Scholar]
  161. WeiL. TengF. DengL. LiuG. LuanM. JiangJ. LiuZ. LiuY. Periodontal regeneration using bone morphogenetic protein 2 incorporated biomimetic calcium phosphate in conjunction with barrier membrane: A pre-clinical study in dogs.J. Clin. Periodontol.201946121254126310.1111/jcpe.1319531518453
    [Google Scholar]
  162. LongH. ShanD. HuangR. LiuH. ZhouY. GaoM. JianF. WangY. LaiW. Bite force measurements for objective evaluations of orthodontic tooth movement-induced pain in rats.Arch. Oral Biol.20191011710.1016/j.archoralbio.2019.02.00230836256
    [Google Scholar]
  163. MizumuraK. MuraseS. Role of nerve growth factor in pain.Handb. Exp. Pharmacol.201522757710.1007/978‑3‑662‑46450‑2_4
    [Google Scholar]
  164. LiR. LiD. WuC. YeL. WuY. YuanY. YangS. XieL. MaoY. JiangT. LiY. WangJ. ZhangH. LiX. XiaoJ. Nerve growth factor activates autophagy in Schwann cells to enhance myelin debris clearance and to expedite nerve regeneration.Theranostics20201041649167710.7150/thno.4091932042328
    [Google Scholar]
  165. CostaY.M. ExpostoF.G. KothariM. CastrillonE.E. ContiP.C.R. BonjardimL.R. SvenssonP. Masseter corticomotor excitability is decreased after intramuscular administration of nerve growth factor.Eur. J. Pain20192391619163010.1002/ejp.143831192515
    [Google Scholar]
  166. MillerC.G. GuermaziA. RoemerF. The current status of imaging in anti-NGF clinical trials.Osteoarthritis Cartilage201523Suppl. 1S3S710.1016/j.joca.2014.09.00225527218
    [Google Scholar]
  167. KhodorovaA. NicolG.D. StrichartzG. The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: Modulation by the p75 neurotrophin receptor.Neuroscience201734038439710.1016/j.neuroscience.2016.10.06427826102
    [Google Scholar]
  168. LekicP. McCullochC.A.G. Periodontal ligament cell populations: The central role of fibroblasts in creating a unique tissue.Anat. Rec.1996245232734110.1002/(SICI)1097‑0185(199606)245:2<327::AID‑AR15>3.0.CO;2‑R8769671
    [Google Scholar]
  169. SmithP.C. MartínezC. MartínezJ. McCullochC.A. Role of fibroblast populations in periodontal wound healing and tissue remodeling.Front. Physiol.20191027010.3389/fphys.2019.0027031068825
    [Google Scholar]
  170. ChukkapalliS.S. LeleT.P. Periodontal cell mechanotransduction.Open Biol.20188918005310.1098/rsob.18005330209038
    [Google Scholar]
  171. XuY. XiaM. ChenT. YangY. FuG. JiP. WuQ. Inferior alveolar nerve transection disturbs innate immune responses and bone healing after tooth extraction.Ann. N. Y. Acad. Sci.201914481526410.1111/nyas.1412031095746
    [Google Scholar]
  172. HeH. ChaiJ. ZhangS. DingL. YanP. DuW. YangZ. CGRP may regulate bone metabolism through stimulating osteoblast differentiation and inhibiting osteoclast formation.Mol. Med. Rep.20161353977398410.3892/mmr.2016.502327035229
    [Google Scholar]
  173. YuX. LiuS. ChenX. DuY. YinX. DuY. LiS. Calcitonin gene related peptide gene-modified rat bone mesenchymal stem cells are effective seed cells in tissue engineering to repair skull defects.Histol. Histopathol.201934111229124130896037
    [Google Scholar]
  174. LongH. LiaoL. GaoM. MaW. ZhouY. JianF. WangY. LaiW. Periodontal CGRP contributes to orofacial pain following experimental tooth movement in rats.Neuropeptides201552313710.1016/j.npep.2015.06.00626164378
    [Google Scholar]
  175. LiangH. HuH. ShanD. LyuJ. YanX. WangY. JianF. LiX. LaiW. LongH. CGRP modulates orofacial pain through mediating neuron-glia crosstalk.J. Dent. Res.202110019810510.1177/002203452095029632853530
    [Google Scholar]
  176. TomlinsonR.E. LiZ. LiZ. MinichielloL. RiddleR.C. VenkatesanA. ClemensT.L. NGF-TrkA signaling in sensory nerves is required for skeletal adaptation to mechanical loads in mice.Proc. Natl. Acad. Sci. USA201711418E3632E364110.1073/pnas.170105411428416686
    [Google Scholar]
  177. YangH. ShanD. JinY. LiangH. LiuL. GuanY. ChenC. LuoQ. YangY. LaiW. LongH. The role of acid-sensing ion channel 3 in the modulation of tooth mechanical hyperalgesia induced by orthodontic tooth movement.Neuroscience202044227428510.1016/j.neuroscience.2020.06.02332592826
    [Google Scholar]
  178. DurhamP.L. MastersonC.G. Two mechanisms involved in trigeminal CGRP release: Implications for migraine treatment.Headache2013531678010.1111/j.1526‑4610.2012.02262.x23095108
    [Google Scholar]
  179. GaoM. YanX. LuY. RenL. ZhangS. ZhangX. KuangQ. LiuL. ZhouJ. WangY. LaiW. LongH. Retrograde nerve growth factor signaling modulates tooth mechanical hyperalgesia induced by orthodontic tooth movement via acid-sensing ion channel 3.Int. J. Oral Sci.20211311810.1038/s41368‑021‑00124‑634088898
    [Google Scholar]
  180. KurataS. GotoT. K GunjigakeK. KataokaS. N KuroishiK. OnoK. ToyonoT. KobayashiS. YamaguchiK. Nerve growth factor involves mutual interaction between neurons and satellite glial cells in the rat trigeminal ganglion.Acta Histochem. Cytochem.2013462657310.1267/ahc.1300323720605
    [Google Scholar]
  181. RahmanF. HaradaF. SaitoI. SuzukiA. KawanoY. IzumiK. Nozawa-InoueK. MaedaT. Detection of acid-sensing ion channel 3 (ASIC3) in periodontal Ruffini endings of mouse incisors.Neurosci. Lett.2011488217317710.1016/j.neulet.2010.11.02321078372
    [Google Scholar]
  182. GuoR. ZhouY. LongH. ShanD. WenJ. HuH. YangH. WuZ. LaiW. Transient receptor potential Vanilloid 1-based gene therapy alleviates orthodontic pain in rats.Int. J. Oral Sci.20191111110.1038/s41368‑019‑0044‑330853711
    [Google Scholar]
  183. GunthorpeM.J. RamiH.K. JermanJ.C. SmartD. GillC.H. SoffinE.M. Luis HannanS. LappinS.C. EgertonJ. SmithG.D. WorbyA. HowettL. OwenD. NasirS. DaviesC.H. ThompsonM. WymanP.A. RandallA.D. DavisJ.B. Identification and characterisation of SB-366791, a potent and selective vanilloid receptor (VR1/TRPV1) antagonist.Neuropharmacology200446113314910.1016/S0028‑3908(03)00305‑814654105
    [Google Scholar]
  184. GavvaN.R. TamirR. QuY. KlionskyL. ZhangT.J. ImmkeD. WangJ. ZhuD. VanderahT.W. PorrecaF. DohertyE.M. NormanM.H. WildK.D. BannonA.W. LouisJ.C. TreanorJ.J.S. AMG 9810 [(E)-3-(4-t-Butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide], a Novel Vanilloid Receptor 1 (TRPV1) antagonist with antihyperalgesic properties.J. Pharmacol. Exp. Ther.2005313147448410.1124/jpet.104.07985515615864
    [Google Scholar]
  185. El KouhenR. SurowyC.S. BianchiB.R. NeelandsT.R. McDonaldH.A. NiforatosW. GomtsyanA. LeeC.H. HonoreP. SullivanJ.P. JarvisM.F. FaltynekC.R. A-425619 [1-isoquinolin-5-yl-3-(4-trifluoromethyl-benzyl)-urea], a novel and selective transient receptor potential type V1 receptor antagonist, blocks channel activation by vanilloids, heat, and acid.J. Pharmacol. Exp. Ther.2005314140040910.1124/jpet.105.08410315837819
    [Google Scholar]
  186. BehrendtH-J. GermannT. GillenC. HattH. JostockR. Characterization of the mouse cold-menthol receptor TRPM8 and vanilloid receptor type-1 VR1 using a fluorometric imaging plate reader (FLIPR) assay.Br. J. Pharmacol.2004141473774510.1038/sj.bjp.070565214757700
    [Google Scholar]
  187. WiskurB.J. TylerK. Campbell-DittmeyerK. ChaplanS.R. WickendenA.D. Greenwood-Van MeerveldB. A novel TRPV1 receptor antagonist JNJ-17203212 attenuates colonic hypersensitivity in rats.Methods Find. Exp. Clin. Pharmacol.201032855756410.1358/mf.2010.32.8.150785321132125
    [Google Scholar]
  188. TeramotoS. IshiiT. MatsuseT. FukuchiY. Recombinant adeno-associated virus vectors efficiently transduce foreign gene into bovine aortic endothelial cells: comparison with adenovirus vectors.Jpn. J. Pharmacol.200084220621210.1254/jjp.84.20611128044
    [Google Scholar]
  189. DelendaC. Lentiviral vectors: Optimization of packaging, transduction and gene expressionJ. Gene Med.200461S12510.1002/jgm.501
    [Google Scholar]
  190. BenavidesO. SatlinL. BurrowC. WilsonP. HeroldB. Herpes simplex virus (HSV) as a model vector for gene therapy for renal diseaseJ. American Soc. Nephrol.200261(1 Suppl)S3-8
    [Google Scholar]
  191. DayaS. BernsK.I. Gene therapy using adeno-associated virus vectors.Clin. Microbiol. Rev.200821458359310.1128/CMR.00008‑0818854481
    [Google Scholar]
  192. LappinS.C. RandallA.D. GunthorpeM.J. MorissetV. TRPV1 antagonist, SB-366791, inhibits glutamatergic synaptic transmission in rat spinal dorsal horn following peripheral inflammation.Eur. J. Pharmacol.20065401-3738110.1016/j.ejphar.2006.04.04616737693
    [Google Scholar]
  193. KrishnanV. Biological Mechanisms of Tooth Movement. John Wiley and Sons Ltd.2021
    [Google Scholar]
  194. YamaguchiM. RANK/RANKL/OPG during orthodontic tooth movement.Orthod. Craniofac. Res.200912211311910.1111/j.1601‑6343.2009.01444.x19419454
    [Google Scholar]
  195. InchingoloF. InchingoloA.M. MalcangiG. FerranteL. TrilliI. Di NoiaA. PirasF. ManciniA. PalermoA. InchingoloA.D. DipalmaG. The interaction of cytokines in orthodontics: A systematic review.Appl. Sci.20241412513310.3390/app14125133
    [Google Scholar]
  196. LiY. ZhanQ. BaoM. YiJ. LiY. Biomechanical and biological responses of periodontium in orthodontic tooth movement: Up-date in a new decade.Int. J. Oral Sci.20211312010.1038/s41368‑021‑00125‑534183652
    [Google Scholar]
  197. BonnetN. PierrozD.D. FerrariS.L. Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis.J. Musculoskelet. Neuronal Interact.2008829410418622078
    [Google Scholar]
  198. MengL. YangP. ZhangW. ZhangX. RongX. LiuH. LiM. Brain-derived neurotrophic factor promotes orthodontic tooth movement by alleviating periodontal ligament stem cell senescence.Cell. Signal.202310811072410.1016/j.cellsig.2023.11072437211081
    [Google Scholar]
  199. CookeM.B. CatchloveS. TooleyK.L. Examining the influence of the human gut microbiota on cognition and stress: A systematic review of the literature.Nutrients20221421462310.3390/nu1421462336364881
    [Google Scholar]
  200. JohannsenA. RydmarkI. SöderB. ÅsbergM. Gingival inflammation, increased periodontal pocket depth and elevated interleukin-6 in gingival crevicular fluid of depressed women on long-term sick leave.J. Periodontal Res.200742654655210.1111/j.1600‑0765.2007.00980.x17956468
    [Google Scholar]
  201. GencoR.J. HoA.W. GrossiS.G. DunfordR.G. TedescoL.A. Relationship of stress, distress and inadequate coping behaviors to periodontal disease.J. Periodontol.199970771172310.1902/jop.1999.70.7.71110440631
    [Google Scholar]
  202. NgS.K.S. Keung LeungW. A community study on the relationship between stress, coping, affective dispositions and periodontal attachment loss.Community Dent. Oral Epidemiol.200634425226610.1111/j.1600‑0528.2006.00282.x16856946
    [Google Scholar]
  203. LiQ XuC WuY GuoW ZhangL LiuY YuC PengJ Relationship between the chronic periodontitis and the depression anxiety psychological factor.J. Cent. South. Univ. Med. Sci.20113618892
    [Google Scholar]
  204. AraújoM.M. MartinsC.C. CostaL.C.M. CotaL.O.M. FariaR.L.A.M. CunhaF.A. CostaF.O. Association between depression and periodontitis: A systematic review and meta-analysis.J. Clin. Periodontol.201643321622810.1111/jcpe.1251026743451
    [Google Scholar]
  205. CastroG.D.C. OppermannR.V. HaasA.N. WinterR. AlchieriJ.C. Association between psychosocial factors and periodontitis: A case–control study.J. Clin. Periodontol.200633210911410.1111/j.1600‑051X.2005.00878.x16441734
    [Google Scholar]
  206. SolisA.C.O. LotufoR.F.M. PannutiC.M. BrunheiroE.C. MarquesA.H. Lotufo-NetoF. Association of periodontal disease to anxiety and depression symptoms, and psychosocial stress factors.J. Clin. Periodontol.200431863363810.1111/j.1600‑051X.2004.00538.x15257740
    [Google Scholar]
  207. ElterJ.R. WhiteB.A. GaynesB.N. BaderJ.D. Relationship of clinical depression to periodontal treatment outcome.J. Periodontol.200273444144910.1902/jop.2002.73.4.44111990446
    [Google Scholar]
  208. PetitC. Anadon-RosinachV. RettigL. Schmidt-MutterC. TuzinN. DavideauJ.L. HuckO. Influence of psychological stress on non-surgical periodontal treatment outcomes in patients with severe chronic periodontitis.J. Periodontol.202192218619510.1002/JPER.20‑010532716522
    [Google Scholar]
  209. Erenİ. NazıroğluM. DemirdaşA. ÇelikÖ. UğuzA.C. AltunbaşakA. Özmenİ. UzE. Venlafaxine modulates depression-induced oxidative stress in brain and medulla of rat.Neurochem. Res.200732349750510.1007/s11064‑006‑9258‑917268845
    [Google Scholar]
  210. Erenİ. NazıroğluM. DemirdaşA. Protective effects of lamotrigine, aripiprazole and escitalopram on depression-induced oxidative stress in rat brain.Neurochem. Res.20073271188119510.1007/s11064‑007‑9289‑x17401662
    [Google Scholar]
  211. Branco-de-AlmeidaL.S. FrancoG.C. CastroM.L. dos SantosJ.G. AnbinderA.L. CortelliS.C. KajiyaM. KawaiT. RosalenP.L. Fluoxetine inhibits inflammatory response and bone loss in a rat model of ligature-induced periodontitis.J. Periodontol.201283566467110.1902/jop.2011.11037021966942
    [Google Scholar]
  212. AguiarJ.C.A. GomesE.P.P. Fonseca-SilvaT. VellosoN.A. VieiraL.T. FernandesM.F. SantosS.H.S. NetoJ.F.R. De-PaulaA.M.B. GuimarãesA.L.S. Fluoxetine reduces periodontal disease progression in a conditioned fear stress model in rats.J. Periodontal Res.201348563263710.1111/jre.1204923425324
    [Google Scholar]
  213. BhatiaA. SharmaR.K. TewariS. KhuranaH. NarulaS.C. Effect of fluoxetine on periodontal status in patients with depression: A cross-sectional observational study.J. Periodontol.201586892793510.1902/jop.2015.14070625812910
    [Google Scholar]
  214. AllanCE ValkanovaV EbmeierKP Depression in older people is underdiagnosedThe Practitioner201425817711942
    [Google Scholar]
  215. HongJ.S. TianJ. Prevalence of anxiety and depression and their risk factors in Chinese cancer patients.Support. Care Cancer201422245345910.1007/s00520‑013‑1997‑y24091720
    [Google Scholar]
  216. BoillotA. El HalabiB. BattyG.D. RangéH. CzernichowS. BouchardP. Education as a predictor of chronic periodontitis: A systematic review with meta-analysis population-based studies.PLoS One201167e2150810.1371/journal.pone.002150821814546
    [Google Scholar]
  217. DunlopD.D. SongJ. LyonsJ.S. ManheimL.M. ChangR.W. Racial/ethnic differences in rates of depression among preretirement adults.Am. J. Public Health200393111945195210.2105/AJPH.93.11.194514600071
    [Google Scholar]
  218. MiechR.A. ShanahanM.J. Socioeconomic status and depression over the life course.J. Health Soc. Behav.200041216217610.2307/2676303
    [Google Scholar]
  219. HaasA.N. GaioE.J. OppermannR.V. RösingC.K. AlbandarJ.M. SusinC. Pattern and rate of progression of periodontal attachment loss in an urban population of South B razil: A 5-years population-based prospective study.J. Clin. Periodontol.20123911910.1111/j.1600‑051X.2011.01818.x22093104
    [Google Scholar]
  220. KlimkiewiczA. KlimkiewiczJ. JakubczykA. Kieres-SalomońskiI. WojnarM. Comorbidity of alcohol dependence with other psychiatric disorders. Part I. Epidemiology of dual diagnosis.Psychiatr. Pol.201549226527510.12740/PP/2570426093591
    [Google Scholar]
  221. RoyM. TapadiaM.G. JoshiS. KochB. Molecular and genetic basis of depression.J. Genet.201493387989210.1007/s12041‑014‑0449‑x25572252
    [Google Scholar]
  222. Belvederi MurriM. ParianteC. MondelliV. MasottiM. AttiA.R. MellacquaZ. AntonioliM. GhioL. MenchettiM. ZanetidouS. InnamoratiM. AmoreM. HPA axis and aging in depression: Systematic review and meta-analysis.Psychoneuroendocrinology201441466210.1016/j.psyneuen.2013.12.00424495607
    [Google Scholar]
  223. ZorrillaE.P. LuborskyL. McKayJ.R. RosenthalR. HouldinA. TaxA. McCorkleR. SeligmanD.A. SchmidtK. The relationship of depression and stressors to immunological assays: A meta-analytic review.Brain Behav. Immun.200115319922610.1006/brbi.2000.059711566046
    [Google Scholar]
  224. BreivikT. ThraneP.S. GjermoP. OpstadP.K. PabstR. Von HörstenS. Hypothalamic-pituitary-adrenal axis activation by experimental periodontal disease in rats.J. Periodontal Res.200136529530010.1034/j.1600‑0765.2001.360504.x11585116
    [Google Scholar]
  225. DowlatiY. HerrmannN. SwardfagerW. LiuH. ShamL. ReimE.K. LanctôtK.L. A meta-analysis of cytokines in major depression.Biol. Psychiatry201067544645710.1016/j.biopsych.2009.09.03320015486
    [Google Scholar]
  226. BlackC. MillerB.J. Meta-analysis of cytokines and chemokines in suicidality: Distinguishing suicidal versus nonsuicidal patients.Biol. Psychiatry2015781283710.1016/j.biopsych.2014.10.01425541493
    [Google Scholar]
  227. BerkM. WadeeA.A. KuschkeR.H. O’Neill-KerrA. Acute phase proteins in major depression.J. Psychosom. Res.199743552953410.1016/S0022‑3999(97)00139‑69394269
    [Google Scholar]
  228. D’AiutoF. ParkarM. AndreouG. SuvanJ. BrettP.M. ReadyD. TonettiM.S. Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers.J. Dent. Res.200483215616010.1177/15440591040830021414742655
    [Google Scholar]
  229. BretzW.A. WeyantR.J. CorbyP.M. RenD. WeissfeldL. KritchevskyS.B. HarrisT. KurellaM. SatterfieldS. VisserM. NewmanA.B. Systemic inflammatory markers, periodontal diseases, and periodontal infections in an elderly population.J. Am. Geriatr. Soc.20055391532153710.1111/j.1532‑5415.2005.53468.x16137283
    [Google Scholar]
  230. FredrikssonM.I. GustafssonA.K. BergströmK.G. ÅsmanB.E. Constitutionally hyperreactive neutrophils in periodontitis.J. Periodontol.200374221922410.1902/jop.2003.74.2.21912666711
    [Google Scholar]
  231. ClarkD.B. Dental care for the patient with bipolar disorder.J. Can. Dent. Assoc.2003691202412556265
    [Google Scholar]
  232. BarnesG.P. AllenE.H. ParkerW.A. LyonT.C. ArmentroutW. ColeJ.S. Dental treatment needs among hospitalized adult mental patients.Spec. Care Dentist.19888417317710.1111/j.1754‑4505.1988.tb00726.x2978775
    [Google Scholar]
  233. VelascoE. BullónP. Periodontal status and treatment needs among Spanish hospitalized psychiatric patients.Spec. Care Dentist.199919625425810.1111/j.1754‑4505.1999.tb01394.x11833430
    [Google Scholar]
  234. SjögrenR. NordströmG. Oral health status of psychiatric patients.J. Clin. Nurs.20009463263810.1046/j.1365‑2702.2000.00380.x11261146
    [Google Scholar]
  235. FriedlanderA.A. BrillN.Q. The dental management of patients with bipolar disorder.Oral Surg. Oral Med. Oral Pathol.198661657958110.1016/0030‑4220(86)90097‑62873546
    [Google Scholar]
  236. BrietzkeE. StertzL. FernandesB.S. Kauer-Sant’AnnaM. MascarenhasM. Escosteguy VargasA. ChiesJ.A. KapczinskiF. Comparison of cytokine levels in depressed, manic and euthymic patients with bipolar disorder.J. Affect. Disord.2009116321421710.1016/j.jad.2008.12.00119251324
    [Google Scholar]
  237. CorreiaA.S. ValeN. Advancements exploring major depressive disorder: Insights on oxidative stress, serotonin metabolism, bdnf, hpa axis dysfunction, and pharmacotherapy advances.Int. J. Transl. Med.20244117619610.3390/ijtm4010010
    [Google Scholar]
  238. MantheyL. LeedsC. GiltayE.J. van VeenT. VreeburgS.A. PenninxB.W.J.H. ZitmanF.G. Antidepressant use and salivary cortisol in depressive and anxiety disorders.Eur. Neuropsychopharmacol.201121969169910.1016/j.euroneuro.2011.03.00221458959
    [Google Scholar]
  239. Sansores-EspañaL.D. Melgar-RodríguezS. Olivares-SagredoK. CafferataE.A. Martínez-AguilarV.M. VernalR. Paula-LimaA.C. Díaz-ZúñigaJ. Oral-gut-brain axis in experimental models of periodontitis: Associating gut dysbiosis with neurodegenerative diseases.Front. Aging2021278158210.3389/fragi.2021.78158235822001
    [Google Scholar]
  240. D’AmbrosioF. CaggianoM. SchiavoL. SavareseG. CarpinelliL. AmatoA. IandoloA. Chronic stress and depression in periodontitis and peri-implantitis: A narrative review on neurobiological, neurobehavioral and immune–microbiome interplays and clinical management implications.Dent. J.20221034910.3390/dj1003004935323251
    [Google Scholar]
  241. MartínezM. PostolacheT.T. García-BuenoB. LezaJ.C. FigueroE. LowryC.A. Malan-MüllerS. The role of the oral microbiota related to periodontal diseases in anxiety, mood and trauma-and stress-related disorders.Front. Psychiatry20221281417710.3389/fpsyt.2021.81417735153869
    [Google Scholar]
  242. BallJ. DarbyI. Mental health and periodontal and peri-implant diseases.Periodontol. 2000202290110612410.1111/prd.1245235913583
    [Google Scholar]
  243. BreivikT.J. GjermoP. GundersenY. OpstadP.K. MurisonR. HugosonA. von HörstenS. FristadI. Microbiota-immune-brain interactions: A new vision in the understanding of periodontal health and disease.Periodontol. 20002024961204110.1111/prd.1261039233381
    [Google Scholar]
  244. KozakM. Dabrowska-ZamojcinE. Mazurek-MocholM. PawlikA. Cytokines and their genetic polymorphisms related to periodontal disease.J. Clin. Med.2020912404510.3390/jcm912404533327639
    [Google Scholar]
  245. ChoY.D. KimW.J. RyooH.M. KimH.G. KimK.H. KuY. SeolY.J. Current advances of epigenetics in periodontology from ENCODE project: A review and future perspectives.Clin. Epigenetics20211319210.1186/s13148‑021‑01074‑w33902683
    [Google Scholar]
  246. LabergeS. AkoumD. WlodarczykP. MasséJ.D. FournierD. SemlaliA. The potential role of epigenetic modifications on different facets in the periodontal pathogenesis.Genes (Basel)2023146120210.3390/genes1406120237372382
    [Google Scholar]
  247. NoldeM. HoltfreterB. KocherT. AlayashZ. ReckelkammS.L. EhmkeB. BaurechtH. BaumeisterS.E. No bidirectional relationship between depression and periodontitis: A genetic correlation and Mendelian randomization study.Front. Immunol.20221391840410.3389/fimmu.2022.91840435935963
    [Google Scholar]
  248. Castro-ValeI. van RossumE.F.C. MachadoJ.C. Mota-CardosoR. CarvalhoD. Genetics of glucocorticoid regulation and posttraumatic stress disorder—What do we know?Neurosci. Biobehav. Rev.20166314315710.1016/j.neubiorev.2016.02.00526872620
    [Google Scholar]
  249. FriesG. GassenN. ReinT. The FKBP51 glucocorticoid receptor co-chaperone: Regulation, function, and implications in health and disease.Int. J. Mol. Sci.20171812261410.3390/ijms1812261429206196
    [Google Scholar]
  250. World Health Organization The ICD-10 classification of mental and behavioural disorders: Clinical descriptions and diagnostic guidelines.World Health Organization1992Vol. 1.
    [Google Scholar]
  251. ReidA.G. Lingford-HughesA.R. CancelaL.M. KalivasP.W. Substance abuse disorders.Handb. Clin. Neurol.2012106141943110.1016/B978‑0‑444‑52002‑9.00024‑322608635
    [Google Scholar]
  252. WiseR.A. Brain reward circuitry: Insights from unsensed incentives.Neuron200236222924010.1016/S0896‑6273(02)00965‑012383779
    [Google Scholar]
  253. SchultzW. Neural coding of basic reward terms of animal learning theory, game theory, microeconomics and behavioural ecology.Curr. Opin. Neurobiol.200414213914710.1016/j.conb.2004.03.01715082317
    [Google Scholar]
  254. MoghaddamB. Stress activation of glutamate neurotransmission in the prefrontal cortex: Implications for dopamine-associated psychiatric disorders.Biol. Psychiatry2002511077578710.1016/S0006‑3223(01)01362‑212007451
    [Google Scholar]
  255. LeiteF.R.M. NascimentoG.G. ScheutzF. LópezR. Effect of smoking on periodontitis: A systematic review and meta-regression.Am. J. Prev. Med.201854683184110.1016/j.amepre.2018.02.01429656920
    [Google Scholar]
  256. ZambonJ.J. GrossiS.G. MachteiE.E. HoA.W. DunfordR. GencoR.J. Cigarette smoking increases the risk for subgingival infection with periodontal pathogens.J. Periodontol.19966710S1050105410.1902/jop.1996.67.10s.1050
    [Google Scholar]
  257. BergströmJ. BoströmL. Tobacco smoking and periodontal hemorrhagic responsiveness.J. Clin. Periodontol.200128768068510.1034/j.1600‑051x.2001.028007680.x11422590
    [Google Scholar]
  258. GüntschA. ErlerM. PreshawP.M. SiguschB.W. KlingerG. GlockmannE. Effect of smoking on crevicular polymorphonuclear neutrophil function in periodontally healthy subjects.J. Periodontal Res.200641318418810.1111/j.1600‑0765.2005.00852.x16677286
    [Google Scholar]
  259. PetropoulosG. McKayI.J. HughesF.J. The association between neutrophil numbers and interleukin-1α concentrations in gingival crevicular fluid of smokers and non-smokers with periodontal disease.J. Clin. Periodontol.200431539039510.1111/j.1600‑051x.2004.00489.x15086622
    [Google Scholar]
  260. JamesJ.A. SayersN.M. DruckerD.B. HullP.S. Effects of tobacco products on the attachment and growth of periodontal ligament fibroblasts.J. Periodontol.199970551852510.1902/jop.1999.70.5.51810368056
    [Google Scholar]
  261. ThomsonW.M. PoultonR. BroadbentJ.M. MoffittT.E. CaspiA. BeckJ.D. WelchD. HancoxR.J. Cannabis smoking and periodontal disease among young adults.JAMA2008299552553110.1001/jama.299.5.52518252882
    [Google Scholar]
  262. KhochtA. JanalM. SchleiferS. KellerS. The influence of gingival margin recession on loss of clinical attachment in alcohol-dependent patients without medical disorders.J. Periodontol.200374448549310.1902/jop.2003.74.4.48512747453
    [Google Scholar]
  263. AmaralC.S.F. VettoreM.V. LeãoA. The relationship of alcohol dependence and alcohol consumption with periodontitis: A systematic review.J. Dent.200937964365110.1016/j.jdent.2009.04.01119576673
    [Google Scholar]
  264. AleksandrovaK. Romero-MosqueraB. HernandezV. Diet, gut microbiome and epigenetics: Emerging links with inflammatory bowel diseases and prospects for management and prevention.Nutrients20179996210.3390/nu909096228867793
    [Google Scholar]
  265. ZanniniE. ArendtE.K. Low FODMAPs and gluten-free foods for irritable bowel syndrome treatment: Lights and shadows.Food Res. Int.2018110334110.1016/j.foodres.2017.04.00130029704
    [Google Scholar]
  266. JohalA. AlyaqoobiI. PatelR. CoxS. The impact of orthodontic treatment on quality of life and self-esteem in adult patients.Eur. J. Orthod.201537323323710.1093/ejo/cju04725214505
    [Google Scholar]
  267. ZhangQ.E. WangF. GengQ. ZhengW. NgC.H. UngvariG.S. YuanZ. MeiS. WangG. XiangY.T. Depressive symptoms in patients with irritable bowel syndrome: A meta-analysis of comparative studies.Int. J. Biol. Sci.201814111504151210.7150/ijbs.2500130263003
    [Google Scholar]
  268. TianX. LiY. DengL. HanW. PuD. HanX. DuS. DengW. Anxiety and depression mediate the relationship between digestive tract conditions and oral health-related quality of life in orthodontic patients.Front. Psychol.20221387398310.3389/fpsyg.2022.87398335967641
    [Google Scholar]
  269. BearT.L.K. DalzielJ.E. CoadJ. RoyN.C. ButtsC.A. GopalP.K. The role of the gut microbiota in dietary interventions for depression and anxiety.Adv. Nutr.202011489090710.1093/advances/nmaa01632149335
    [Google Scholar]
  270. Valles-ColomerM. FalonyG. DarziY. TigchelaarE.F. WangJ. TitoR.Y. SchiweckC. KurilshikovA. JoossensM. WijmengaC. ClaesS. Van OudenhoveL. ZhernakovaA. Vieira-SilvaS. RaesJ. The neuroactive potential of the human gut microbiota in quality of life and depression.Nat. Microbiol.20194462363210.1038/s41564‑018‑0337‑x30718848
    [Google Scholar]
  271. DziedzicA. Is periodontitis associated with age-related cognitive impairment? The systematic review, confounders assessment and meta-analysis of clinical studies.Int. J. Mol. Sci.202223231532010.3390/ijms23231532036499656
    [Google Scholar]
  272. HajishengallisG. Periodontitis: From microbial immune subversion to systemic inflammation.Nat. Rev. Immunol.2015151304410.1038/nri378525534621
    [Google Scholar]
  273. TakahashiN. NyvadB. Ecological hypothesis of dentin and root caries.Caries Res.201650442243110.1159/00044730927458979
    [Google Scholar]
  274. VilaT. SultanA.S. Montelongo-JaureguiD. Jabra-RizkM.A. Oral candidiasis: A disease of opportunity.J. Fungi2020611510.3390/jof601001531963180
    [Google Scholar]
  275. DawesC. PedersenA.M.L. VillaA. EkströmJ. ProctorG.B. VissinkA. AframianD. McGowanR. AlikoA. NarayanaN. SiaY.W. JoshiR.K. JensenS.B. KerrA.R. WolffA. The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI.Arch. Oral Biol.201560686387410.1016/j.archoralbio.2015.03.00425841068
    [Google Scholar]
  276. BotelhoJ. MascarenhasP. VianaJ. ProençaL. OrlandiM. LeiraY. ChambroneL. MendesJ.J. MachadoV. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases.Nat. Commun.2022131761410.1038/s41467‑022‑35337‑836494387
    [Google Scholar]
  277. JadhavG. HegdeR. J JadhavY. ShigliA. HerkarP. Gut-brain-oral dysbiosis: A comprehensive review.Contemp. Pediatr. Dent.20245311312510.51463/cpd.2024.43
    [Google Scholar]
  278. DominyS.S. LynchC. ErminiF. BenedykM. MarczykA. KonradiA. NguyenM. HaditschU. RahaD. GriffinC. HolsingerL.J. Arastu-KapurS. KabaS. LeeA. RyderM.I. PotempaB. MydelP. HellvardA. AdamowiczK. HasturkH. WalkerG.D. ReynoldsE.C. FaullR.L.M. CurtisM.A. DragunowM. PotempaJ. Porphyromonas gingivalis in Alzheimer’s disease brains: Evidence for disease causation and treatment with small-molecule inhibitors.Sci. Adv.201951eaau333310.1126/sciadv.aau333330746447
    [Google Scholar]
  279. KasarelloK. Cudnoch-JedrzejewskaA. CzarzastaK. Communication of gut microbiota and brain via immune and neuroendocrine signaling.Front. Microbiol.202314111852910.3389/fmicb.2023.111852936760508
    [Google Scholar]
  280. BonazB. BazinT. PellissierS. The vagus nerve at the interface of the microbiota-gut-brain axis.Front. Neurosci.2018124910.3389/fnins.2018.0004929467611
    [Google Scholar]
  281. DengY. XiaoJ. MaL. WangC. WangX. HuangX. CaoZ. Mitochondrial dysfunction in periodontitis and associated systemic diseases: Implications for pathomechanisms and therapeutic strategies.Int. J. Mol. Sci.2024252102410.3390/ijms2502102438256098
    [Google Scholar]
  282. JiangC. LiG. HuangP. LiuZ. ZhaoB. The gut microbiota and Alzheimer’s disease.J. Alzheimers Dis.201758111510.3233/JAD‑16114128372330
    [Google Scholar]
  283. CuginiC. RamasubbuN. TsiagbeV.K. FineD.H. Dysbiosis from a microbial and host perspective relative to oral health and disease.Front. Microbiol.20211261748510.3389/fmicb.2021.61748533763040
    [Google Scholar]
  284. WangY. DuY. LiJ. QiuC. Lifespan intellectual factors, genetic susceptibility, and cognitive phenotypes in aging: implications for interventions.Front. Aging Neurosci.20191112910.3389/fnagi.2019.0012931214016
    [Google Scholar]
  285. World Health Organization Risk reduction of cognitive decline and dementia: WHO guidelines.World Health Organization2019
    [Google Scholar]
  286. MingY. HsuS.W. YenY.Y. LanS.J. Association of oral health–related quality of life and Alzheimer disease: A systematic review.J. Prosthet. Dent.2020124216817510.1016/j.prosdent.2019.08.01531753458
    [Google Scholar]
  287. NakamuraT. ZouK. ShibuyaY. MichikawaM. Oral dysfunctions and cognitive impairment/dementia.J. Neurosci. Res.202199251852810.1002/jnr.2474533164225
    [Google Scholar]
  288. GaoL. XuT. HuangG. JiangS. GuY. ChenF. Oral microbiomes: More and more importance in oral cavity and whole body.Protein Cell20189548850010.1007/s13238‑018‑0548‑129736705
    [Google Scholar]
  289. GuW. LiJ. LiF. HoT.E. FengX. WangY. FanM. CuiM. XuK. ChenX. LuH. JiangY. Association between oral health and cognitive function among Chinese older adults: The Taizhou imaging study.BMC Oral Health202323164010.1186/s12903‑023‑03353‑937670297
    [Google Scholar]
  290. WuB. FillenbaumG.G. PlassmanB.L. GuoL. Association between oral health and cognitive status: A systematic review.J. Am. Geriatr. Soc.201664473975110.1111/jgs.1403627037761
    [Google Scholar]
  291. ChenJ.T. TsaiS. ChenM.H. PitiphatW. MatangkasombutO. ChiouJ.M. HanM.L. ChenJ.H. ChenY.C. Association between oral health and cognitive impairment in older adults: Insights from a Six-year prospective cohort study.J. Dent.202414710508810.1016/j.jdent.2024.10508838801941
    [Google Scholar]
  292. OnozukaM. FujitaM. WatanabeK. HiranoY. NiwaM. NishiyamaK. SaitoS. Mapping brain region activity during chewing: A functional magnetic resonance imaging study.J. Dent. Res.2002811174374610.1177/081074312407087
    [Google Scholar]
  293. NaritaN. KamiyaK. YamamuraK. KawasakiS. MatsumotoT. TanakaN. Chewing-related prefrontal cortex activation while wearing partial denture prosthesis: Pilot study.J. Prosthodont. Res.200953312613510.1016/j.jpor.2009.02.00519345661
    [Google Scholar]
  294. HedbergL. EkmanU. NordinL.E. SmedbergJ.I. SkottP. SeigerÅ. Sandborgh-EnglundG. WestmanE. KumarA. TrulssonM. Cognitive changes and neural correlates after oral rehabilitation procedures in older adults: A protocol for an interventional study.BMC Oral Health202121129710.1186/s12903‑021‑01654‑534107933
    [Google Scholar]
  295. LiY. YeH. YeF. LiuY. LvL. ZhangP. ZhangX. ZhouY. The current situation and future prospects of simulators in dental education.J. Med. Internet Res.2021234e2363510.2196/2363533830059
    [Google Scholar]
  296. GaoX. HamzahS.H. YiuC.K.Y. McGrathC. KingN.M. Dental fear and anxiety in children and adolescents: Qualitative study using YouTube.J. Med. Internet Res.2013152e2910.2196/jmir.229023435094
    [Google Scholar]
/content/journals/car/10.2174/0115672050361661250327061024
Loading
/content/journals/car/10.2174/0115672050361661250327061024
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test