Skip to content
2000
Volume 22, Issue 2
  • ISSN: 1567-2050
  • E-ISSN: 1875-5828

Abstract

Mild Cognitive Impairment (MCI) is marked by a measurable decline in cognitive function that exceeds typical age-related changes but does not yet qualify as dementia. The brain's Default Mode Network (DMN) remains active during rest and plays a crucial role in introspective processes, such as memory retrieval and self-referential thinking. Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive neuroimaging technique that measures spontaneous fluctuations in blood oxygenation, providing insights into functional connectivity within brain networks. Investigating the DMN using rs-fMRI in individuals with MCI allows researchers to identify early neural changes associated with cognitive decline, which may serve as biomarkers for the early detection of Alzheimer's disease or related dementias. The rs-fMRI technique has been widely used in MCI research to explore the underlying neurobiological mechanisms of cognitive impairment. This study aims to synthesize findings from rs-fMRI studies focusing on alterations in DMN connectivity in MCI populations. This analysis deepens our understanding of the early-stage neural disruptions in MCI and holds significant implications for developing early diagnostic tools and interventions aimed at delaying the progression to dementia.

Loading

Article metrics loading...

/content/journals/car/10.2174/0115672050352061250328055829
2025-04-11
2025-09-13
Loading full text...

Full text loading...

References

  1. GauthierS. ReisbergB. ZaudigM. PetersenR.C. RitchieK. BroichK. BellevilleS. BrodatyH. BennettD. ChertkowH. CummingsJ.L. de LeonM. FeldmanH. GanguliM. HampelH. ScheltensP. TierneyM.C. WhitehouseP. WinbladB. Mild cognitive impairment.Lancet200636795181262127010.1016/S0140‑6736(06)68542‑516631882
    [Google Scholar]
  2. YangH. ChengZ. LiZ. JiangY. ZhaoJ. WuY. GuS. XuH. Validation study of the Alzheimer’s Disease Assessment Scale-Cognitive Subscale for people with mild cognitive impairment and Alzheimer’s disease in Chinese communities.Int. J. Geriatr. Psychiatry201934111658166610.1002/gps.517931347192
    [Google Scholar]
  3. JiaJ. ZhouA. WeiC. JiaX. WangF. LiF. WuX. MokV. GauthierS. TangM. ChuL. ZhouY. ZhouC. CuiY. WangQ. WangW. YinP. HuN. ZuoX. SongH. QinW. WuL. LiD. JiaL. SongJ. HanY. XingY. YangP. LiY. QiaoY. TangY. LvJ. DongX. The prevalence of mild cognitive impairment and its etiological subtypes in elderly Chinese.Alzheimers Dement.201410443944710.1016/j.jalz.2013.09.00824418053
    [Google Scholar]
  4. PetersenR.C. Mild cognitive impairment as a diagnostic entity.J. Intern. Med.2004256318319410.1111/j.1365‑2796.2004.01388.x15324362
    [Google Scholar]
  5. SeoE.H. LeeD.Y. LeeJ.M. ParkJ.S. SohnB.K. LeeD.S. ChoeY.M. WooJ.I. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease.PLoS One201381e5392210.1371/journal.pone.005392223335980
    [Google Scholar]
  6. WangY. ZhaoX. XuS. YuL. WangL. SongM. YangL. WangX. Using regional homogeneity to reveal altered spontaneous activity in patients with mild cognitive impairment.BioMed Res. Int.201520151810.1155/2015/80709325738156
    [Google Scholar]
  7. ChenX. ZhangH. ZhangL. ShenC. LeeS.W. ShenD. Extraction of dynamic functional connectivity from brain grey matter and white matter for MCI classification.Hum. Brain Mapp.201738105019503410.1002/hbm.2371128665045
    [Google Scholar]
  8. RaichleM.E. MacLeodA.M. SnyderA.Z. PowersW.J. GusnardD.A. ShulmanG.L. A default mode of brain function.Proc. Natl. Acad. Sci. USA200198267668210.1073/pnas.98.2.67611209064
    [Google Scholar]
  9. SambataroF. MurtyV.P. CallicottJ.H. TanH.Y. DasS. WeinbergerD.R. MattayV.S. Age-related alterations in default mode network: Impact on working memory performance.Neurobiol. Aging201031583985210.1016/j.neurobiolaging.2008.05.02218674847
    [Google Scholar]
  10. GardiniS. VenneriA. SambataroF. CuetosF. FasanoF. MarchiM. CrisiG. CaffarraP. Increased functional connectivity in the default mode network in mild cognitive impairment: A maladaptive compensatory mechanism associated with poor semantic memory performance.J. Alzheimers Dis.201545245747010.3233/JAD‑14254725547636
    [Google Scholar]
  11. SprengR.N. StevensW.D. ChamberlainJ.P. GilmoreA.W. SchacterD.L. Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition.Neuroimage201053130331710.1016/j.neuroimage.2010.06.01620600998
    [Google Scholar]
  12. QiD. WangA. ChenY. ChenK. ZhangS. ZhangJ. LiX. AiL. ZhangZ. Default mode network connectivity and related white matter disruption in type 2 diabetes mellitus patients concurrent with amnestic mild cognitive impairment.Curr. Alzheimer Res.201714111238124628413981
    [Google Scholar]
  13. BucknerR.L. Andrews-HannaJ.R. SchacterD.L. The brain’s default network: Anatomy, function, and relevance to disease.Ann. N. Y. Acad. Sci.20081124113810.1196/annals.1440.01118400922
    [Google Scholar]
  14. GreiciusM.D. SrivastavaG. ReissA.L. MenonV. Default- mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI.Proc. Natl. Acad. Sci. USA2004101134637464210.1073/pnas.030862710115070770
    [Google Scholar]
  15. YuanX. HanY. WeiY. XiaM. ShengC. JiaJ. HeY. Regional homogeneity changes in amnestic mild cognitive impairment patients.Neurosci. Lett.20166291810.1016/j.neulet.2016.06.04727345927
    [Google Scholar]
  16. BiX. SunQ. ZhaoJ. XuQ. WangL. Non-linear ICA analysis of resting-state fMRI in mild cognitive impairment.Front. Neurosci.20181241310.3389/fnins.2018.0041329970984
    [Google Scholar]
  17. KangD.W. LimH.K. JooS.H. LeeN.R. LeeC.U. Alterations in intra- and interregional intrinsic brain connectivity are differentially associated with memory performance in amnestic mild cognitive impairment.Dement. Geriatr. Cogn. Disord.2018463-422924210.1159/00049316730343307
    [Google Scholar]
  18. EylerL.T. ElmanJ.A. HattonS.N. GoughS. MischelA.K. HaglerD.J. FranzC.E. DochertyA. Fennema-NotestineC. GillespieN. GustavsonD. LyonsM.J. NealeM.C. PanizzonM.S. DaleA.M. KremenW.S. Resting state abnormalities of the default mode network in mild cognitive impairment: A systematic review and meta-analysis.J. Alzheimers Dis.201970110712010.3233/JAD‑18084731177210
    [Google Scholar]
  19. WangC. PanY. LiuY. XuK. HaoL. HuangF. KeJ. ShengL. MaH. GuoW. Aberrant default mode network in amnestic mild cognitive impairment: A meta-analysis of independent component analysis studies.Neurol. Sci.201839591993110.1007/s10072‑018‑3306‑529511960
    [Google Scholar]
  20. ZhouY. MilhamM.P. LuiY.W. MilesL. ReaumeJ. SodicksonD.K. GrossmanR.I. GeY. Default-mode network disruption in mild traumatic brain injury.Radiology2012265388289210.1148/radiol.1212074823175546
    [Google Scholar]
  21. BassettD.S. WymbsN.F. PorterM.A. MuchaP.J. CarlsonJ.M. GraftonS.T. Dynamic reconfiguration of human brain networks during learning.Proc. Natl. Acad. Sci. USA2011108187641764610.1073/pnas.101898510821502525
    [Google Scholar]
  22. ColeM.W. ReynoldsJ.R. PowerJ.D. RepovsG. AnticevicA. BraverT.S. Multi-task connectivity reveals flexible hubs for adaptive task control.Nat. Neurosci.20131691348135510.1038/nn.347023892552
    [Google Scholar]
  23. KimH.E. KimJ.J. SeokJ.H. ParkJ.Y. OhJ. Resting-state functional connectivity and cognitive performance in aging adults with cognitive decline: A data-driven multivariate pattern analysis.Compr. Psychiatry202412915244510.1016/j.comppsych.2023.15244538154288
    [Google Scholar]
  24. WangJ. LiX. PangH. Differential connectivity patterns of mild cognitive impairment in Alzheimer's and Parkinson's disease: A large-scale brain network study.Acad Radiol2025[Epub a head of print]10.1016/j.acra.2024.09.01739828502
    [Google Scholar]
  25. MattisP.J. NiethammerM. SakoW. TangC.C. NazemA. GordonM.L. BrandtV. DhawanV. EidelbergD. Distinct brain networks underlie cognitive dysfunction in Parkinson and Alzheimer diseases.Neurology201687181925193310.1212/WNL.000000000000328527708130
    [Google Scholar]
  26. HarringtonD.L. ShenQ. CastilloG.N. FiloteoJ.V. LitvanI. TakahashiC. FrenchC. Aberrant intrinsic activity and connectivity in cognitively normal Parkinson’s disease.Front. Aging Neurosci.2017919710.3389/fnagi.2017.0019728674492
    [Google Scholar]
  27. ChengH. SunG. LiM. YinM. ChenH. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: A resting-state fMRI study on military pilots.Biosci. Trends201913543044010.5582/bst.2019.0119031611544
    [Google Scholar]
  28. ZuoX.N. Di MartinoA. KellyC. ShehzadZ.E. GeeD.G. KleinD.F. CastellanosF.X. BiswalB.B. MilhamM.P. The oscillating brain: Complex and reliable.Neuroimage20104921432144510.1016/j.neuroimage.2009.09.03719782143
    [Google Scholar]
  29. LiangP. XiangJ. LiangH. QiZ. LiK. Altered amplitude of low-frequency fluctuations in early and late mild cognitive impairment and Alzheimer’s disease.Curr. Alzheimer Res.201411438939810.2174/156720501166614033122533524720892
    [Google Scholar]
  30. WuY.Q. WangY.N. ZhangL.J. LiuL.Q. PanY.C. SuT. LiaoX.L. ShuH.Y. KangM. YingP. XuS.H. ShaoY. Regional homogeneity in patients with mild cognitive impairment: A resting-state functional magnetic resonance imaging study.Front. Aging Neurosci.20221487728110.3389/fnagi.2022.87728135493938
    [Google Scholar]
  31. CostaT. PremiE. BorroniB. ManuelloJ. CaudaF. DucaS. LiloiaD. Local functional connectivity abnormalities in mild cognitive impairment and Alzheimer’s disease: A meta-analytic investigation using minimum Bayes factor activation likelihood estimation.Neuroimage202429812079810.1016/j.neuroimage.2024.12079839153521
    [Google Scholar]
  32. WangY. LiQ. YaoL. HeN. TangY. ChenL. LongF. ChenY. KempG.J. LuiS. LiF. Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer’s disease.Cereb. Cortex2024343bhae09410.1093/cercor/bhae09438521993
    [Google Scholar]
  33. ZhengD. XiaW. YiZ.Q. ZhaoP.W. ZhongJ.G. ShiH.C. LiH.L. DaiZ.Y. PanP.L. Alterations of brain local functional connectivity in amnestic mild cognitive impairment.Transl. Neurodegener.2018712610.1186/s40035‑018‑0134‑830443345
    [Google Scholar]
  34. PostemaM.C. De MarcoM. ColatoE. VenneriA. A study of within-subject reliability of the brain’s default-mode network.MAGMA201932339140510.1007/s10334‑018‑00732‑030730023
    [Google Scholar]
  35. LiY. JingB. LiuH. LiY. GaoX. LiY. MuB. YuH. ChengJ. BarkerP.B. WangH. HanY. Frequency-dependent changes in the amplitude of low-frequency fluctuations in mild cognitive impairment with mild depression.J. Alzheimers Dis.20175841175118710.3233/JAD‑16128228550250
    [Google Scholar]
  36. LaiZ. ZhangQ. LiangL. WeiY. DuanG. MaiW. ZhaoL. LiuP. DengD. Efficacy and mechanism of moxibustion treatment on mild cognitive impairment patients: An fMRI study using ALFF.Front. Mol. Neurosci.20221585288210.3389/fnmol.2022.85288235620445
    [Google Scholar]
  37. LiH.J. DaiX.J. GongH.H. NieX. ZhangW. PengD.C. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI.Neuropsychiatr. Dis. Treat.20151120721425653530
    [Google Scholar]
  38. ZhangZ. LiuY. JiangT. ZhouB. AnN. DaiH. WangP. NiuY. WangL. ZhangX. Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by regional homogeneity.Neuroimage20125921429144010.1016/j.neuroimage.2011.08.04921907292
    [Google Scholar]
  39. XingY. FuS. LiM. MaX. LiuM. LiuX. HuangY. XuG. JiaoY. WuH. JiangG. TianJ. Regional neural activity changes in Parkinson’s disease-associated mild cognitive impairment and cognitively normal patients.Neuropsychiatr. Dis. Treat.2021172697270610.2147/NDT.S32312734429605
    [Google Scholar]
  40. WangP. LiR. YuJ. HuangZ. LiJ. Frequency-dependent brain regional homogeneity alterations in patients with mild cognitive impairment during working memory state relative to resting state.Front. Aging Neurosci.201686010.3389/fnagi.2016.0006027047375
    [Google Scholar]
  41. SunD.M. ChenH.F. ZuoQ.L. SuF. BaiF. LiuC.F. Effect of PICALM rs3851179 polymorphism on the default mode network function in mild cognitive impairment.Behav. Brain Res.201733122523210.1016/j.bbr.2017.05.04328549650
    [Google Scholar]
  42. MamahD. BarchD.M. RepovšG. Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia.J. Affect. Disord.2013150260160910.1016/j.jad.2013.01.05123489402
    [Google Scholar]
  43. ChandG.B. WuJ. HajjarI. QiuD. Interactions of the salience network and its subsystems with the default-mode and the central-executive networks in normal aging and mild cognitive impairment.Brain Connect.20177740141210.1089/brain.2017.050928707959
    [Google Scholar]
  44. LiuZ. BaiL. DaiR. ZhongC. WangH. YouY. WeiW. TianJ. Exploring the effective connectivity of resting state networks in mild cognitive impairment: An fMRI study combining ICA and multivariate Granger causality analysis.Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.201220125454545723367163
    [Google Scholar]
  45. Farràs-PermanyerL. Mancho-ForaN. Montalà-FlaquerM. Gudayol-FerréE. Gallardo-MorenoG.B. Zarabozo-HurtadoD. Villuendas-GonzálezE. Peró-CebolleroM. Guàrdia-OlmosJ. Estimation of brain functional connectivity in patients with mild cognitive impairment.Brain Sci.201991235010.3390/brainsci912035031801260
    [Google Scholar]
  46. van den HeuvelM.P. Hulshoff PolH.E. Exploring the brain network: A review on resting-state fMRI functional connectivity.Eur. Neuropsychopharmacol.201020851953410.1016/j.euroneuro.2010.03.00820471808
    [Google Scholar]
  47. GreiciusM.D. KrasnowB. ReissA.L. MenonV. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis.Proc. Natl. Acad. Sci. USA2003100125325810.1073/pnas.013505810012506194
    [Google Scholar]
  48. ZhouB. DouX. WangW. YaoH. FengF. WangP. YangZ. AnN. LiuB. ZhangX. LiuY. Structural and functional connectivity abnormalities of the default mode network in patients with Alzheimer’s disease and mild cognitive impairment within two independent datasets.Methods2022205293810.1016/j.ymeth.2022.06.00135671900
    [Google Scholar]
  49. SomanS.M. RaghavanS. RajeshP.G. MohananN. ThomasB. KesavadasC. MenonR.N. Does resting state functional connectivity differ between mild cognitive impairment and early Alzheimer’s dementia?J. Neurol. Sci.202041811709310.1016/j.jns.2020.11709332827882
    [Google Scholar]
  50. KhazaeeA. EbrahimzadehA. Babajani-FeremiA. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease.Brain Imaging Behav.201610379981710.1007/s11682‑015‑9448‑726363784
    [Google Scholar]
  51. IbrahimB. SuppiahS. IbrahimN. MohamadM. HassanH.A. NasserN.S. SaripanM.I. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: A systematic review.Hum. Brain Mapp.20214292941296810.1002/hbm.2536933942449
    [Google Scholar]
  52. PanT. QuH. PanY. WangW. ZhaoY. Effective connectivity of default mode network subsystems in Parkinson’s disease with mild cognitive impairment based on spectral dynamic causal modeling.J. Integr. Neurosci.202423611010.31083/j.jin230611038940086
    [Google Scholar]
  53. YuanB. XieC. ShuH. LiaoW. WangZ. LiuD. ZhangZ. Differential effects of APOE genotypes on the anterior and posterior subnetworks of default mode network in amnestic mild cognitive impairment.J. Alzheimers Dis.20165441409142310.3233/JAD‑16035327589521
    [Google Scholar]
/content/journals/car/10.2174/0115672050352061250328055829
Loading
/content/journals/car/10.2174/0115672050352061250328055829
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test