Skip to content
2000
Volume 2, Issue 1
  • ISSN: 2950-3752
  • E-ISSN: 2950-3760

Abstract

The traditional drug discovery process is notoriously time-consuming, expensive, and damaged, with high failure rates. However, the recent surge in Artificial Intelligence (AI) has presented itself as a game-changer in this field. This comprehensive review delves into the profound impact of AI on various aspects of drug discovery, encompassing crucial stages like target identification, molecular analysis, compound screening, and even drug development. Machine learning algorithms are pivotal in analyzing vast datasets to predict important aspects of potential drug candidates. These predictions include their pharmacokinetic properties (how the body absorbs and eliminates them) and possible toxicity, effectively streamlining the process and reducing risks associated with further development. Additionally, AI facilitates the exploration of vast chemical spaces, enabling the design and synthesis of novel drug candidates with enhanced efficacy and specificity. The review highlights AI's transformative potential in drug discovery and acknowledges the existing challenges. Concerns surrounding data quality, interpretability of AI models, and ethical considerations are addressed, paving the way for responsible development and integration of AI within the pharmaceutical industry. Ultimately, this review underscores AI's massive potential in revolutionizing drug discovery, offering a path towards faster development of life-saving treatments and fostering healthcare advancements.

Loading

Article metrics loading...

/content/journals/cai/10.2174/0129503752322569241104114248
2024-11-08
2025-10-02
Loading full text...

Full text loading...

References

  1. SinghN. VayerP. TanwarS. PoyetJ-L. TsaiounK. VilloutreixB.O. Drug discovery and development: Introduction to the general public and patient groups.Front Drug Dis20233120141910.3389/fddsv.2023.1201419
    [Google Scholar]
  2. HughesJ.P. ReesS. KalindjianS.B. PhilpottK.L. Principles of early drug discovery.Br. J. Pharmacol.201116261239124910.1111/j.1476‑5381.2010.01127.x 21091654
    [Google Scholar]
  3. HardmanT.C. AitchisonR. ScaifeR. EdwardsJ. SlaterG. The future of clinical trials and drug development: 2050.Drugs Context20231211110.7573/dic.2023‑2‑2 37313038
    [Google Scholar]
  4. Garcia-RosaS. de Freitas BrenhaB. da RochaV.F. GoulartE. Silva AraujoB.H. Personalized medicine using cutting edge technologies for genetic epilepsies.Curr. Neuropharmacol.202119681383110.2174/1570159X18666200915151909 32933463
    [Google Scholar]
  5. SeyhanA.A. Lost in translation: The valley of death across preclinical and clinical divide – Identification of problems and overcoming obstacles.Transl. Med. Commun.2019411810.1186/s41231‑019‑0050‑7
    [Google Scholar]
  6. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑4 34393317
    [Google Scholar]
  7. DiasD.A. UrbanS. RoessnerU. A historical overview of natural products in drug discovery.Metabolites20122230333610.3390/metabo2020303 24957513
    [Google Scholar]
  8. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  9. AyonN.J. High-throughput screening of natural product and synthetic molecule libraries for antibacterial drug discovery.Metabolites202313562510.3390/metabo13050625 37233666
    [Google Scholar]
  10. HeilbronK. MozaffariS.V. VacicV. Advancing drug discovery using the power of the human genome.J. Pathol.2021254441842910.1002/path.5664 33748968
    [Google Scholar]
  11. LageO.M. RamosM.C. CalistoR. AlmeidaE. VasconcelosV. VicenteF. Current screening methodologies in drug discovery for selected human diseases.Mar. Drugs201816827910.3390/md16080279 30110923
    [Google Scholar]
  12. BatoolM. AhmadB. ChoiS. A structure-based drug discovery paradigm.Int. J. Mol. Sci.20192011278310.3390/ijms20112783 31174387
    [Google Scholar]
  13. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  14. LiontaE. SpyrouG. VassilatisD. CourniaZ. Structure-based virtual screening for drug discovery: Principles, applications and recent advances.Curr. Top. Med. Chem.201414161923193810.2174/1568026614666140929124445 25262799
    [Google Scholar]
  15. PunF.W. OzerovI.V. ZhavoronkovA. AI-powered therapeutic target discovery.Trends Pharmacol. Sci.202344956157210.1016/j.tips.2023.06.010 37479540
    [Google Scholar]
  16. SchidlitzkiA. BascuñanaP. SrivastavaP.K. Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy.Neurobiol. Dis.202013410466410.1016/j.nbd.2019.104664 31678583
    [Google Scholar]
  17. EmmerichC.H. GamboaL.M. HofmannM.C.J. Improving target assessment in biomedical research: The GOT-IT recommendations.Nat. Rev. Drug Discov.2021201648110.1038/s41573‑020‑0087‑3 33199880
    [Google Scholar]
  18. RahmanM. BilalM. ShahJ.A. KaushikA. TeissedreP.L. KujawskaM. CRISPR-Cas9-based technology and its relevance to gene editing in Parkinson’s disease.Pharmaceutics2022146125210.3390/pharmaceutics14061252 35745824
    [Google Scholar]
  19. AlghamdiS. RehmanS.U. SheshaN.T. FaidahH. KhurramM. RehmanS.U. Promising lead compounds in the development of potential clinical drug candidate for drug-resistant tuberculosis.Molecules20202523568510.3390/molecules25235685 33276545
    [Google Scholar]
  20. SzymańskiP. MarkowiczM. Mikiciuk-OlasikE. Adaptation of high-throughput screening in drug discovery-toxicological screening tests.Int. J. Mol. Sci.201113142745210.3390/ijms13010427 22312262
    [Google Scholar]
  21. KumarV. Chunchagatta LakshmanP.K. PrasadT.K. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening.Heliyon2024101e2386410.1016/j.heliyon.2023.e23864 38226204
    [Google Scholar]
  22. BokhariF.F. AlbukhariA. Design and implementation of high throughput screening assays for drug discoveries.High-throughput Screening for Drug Discovery. SaxenaS.K. London, UKIntechOpen2021
    [Google Scholar]
  23. TemmlV. KutilZ. Structure-based molecular modeling in SAR analysis and lead optimization.Comput. Struct. Biotechnol. J.2021191431144410.1016/j.csbj.2021.02.018 33777339
    [Google Scholar]
  24. HugginsD.J. ShermanW. TidorB. Rational approaches to improving selectivity in drug design.J. Med. Chem.20125541424144410.1021/jm2010332 22239221
    [Google Scholar]
  25. ChenJ. LuoX. QiuH. MackeyV. SunL. OuyangX. Drug discovery and drug marketing with the critical roles of modern administration.Am. J. Transl. Res.2018101243024312 30662672
    [Google Scholar]
  26. CuiM. ChengC. ZhangL. High-throughput proteomics: A methodological mini-review.Lab. Invest.2022102111170118110.1038/s41374‑022‑00830‑7 35922478
    [Google Scholar]
  27. DaiX. ShenL. Advances and trends in omics technology development.Front. Med. (Lausanne)2022991186110.3389/fmed.2022.911861 35860739
    [Google Scholar]
  28. LiY. KongX. WangZ. XuanL. Recent advances of transcriptomics and proteomics in triple‐negative breast cancer prognosis assessment.J. Cell. Mol. Med.20222651351136210.1111/jcmm.17124 35150062
    [Google Scholar]
  29. DuP. FanR. ZhangN. WuC. ZhangY. Advances in integrated multi-omics analysis for drug-target identification.Biomolecules202414669210.3390/biom14060692 38927095
    [Google Scholar]
  30. LynchC. SakamuruS. OokaM. High-throughput screening to advance in vitro toxicology: Accomplishments, challenges, and future directions.Annu. Rev. Pharmacol. Toxicol.202464119120910.1146/annurev‑pharmtox‑112122‑104310 37506331
    [Google Scholar]
  31. MennenS.M. AlhambraC. AllenC.L. The evolution of high-throughput experimentation in pharmaceutical development and perspectives on the future.Org. Process Res. Dev.20192361213124210.1021/acs.oprd.9b00140
    [Google Scholar]
  32. Martins LimaA. BraginaM.E. BurriO. An optimized and validated 384-well plate assay to test platelet function in a high-throughput screening format.Platelets201930556357110.1080/09537104.2018.1514106 30183501
    [Google Scholar]
  33. Ben-YakarA. High-content and high-throughput in vivo drug screening platforms using microfluidics.Assay Drug Dev. Technol.201917181310.1089/adt.2018.908 30657702
    [Google Scholar]
  34. WuX. ZhangQ. GuoY. Methods for the discovery and identification of small molecules targeting oxidative stress-related protein–protein interactions: An update.Antioxidants202211461910.3390/antiox11040619 35453304
    [Google Scholar]
  35. LomenickB. OlsenR.W. HuangJ. Identification of direct protein targets of small molecules.ACS Chem. Biol.201161344610.1021/cb100294v 21077692
    [Google Scholar]
  36. MayrL. BojanicD. Novel trends in high-throughput screening.Curr. Opin. Pharmacol.2009958058810.1016/j.coph.2009.08.004 19775937
    [Google Scholar]
  37. LiQ. Application of fragment-based drug discovery to versatile targets.Front. Mol. Biosci.2020718010.3389/fmolb.2020.00180 32850968
    [Google Scholar]
  38. de Souza NetoL.R. Moreira-FilhoJ.T. NevesB.J. In silico strategies to support fragment-to-lead optimization in drug discovery.Front Chem.202089310.3389/fchem.2020.00093 32133344
    [Google Scholar]
  39. BonM. BilslandA. BowerJ. McAulayK. Fragment‐based drug discovery - The importance of high‐quality molecule libraries.Mol. Oncol.202216213761377710.1002/1878‑0261.13277 35749608
    [Google Scholar]
  40. GuptaR. SrivastavaD. SahuM. TiwariS. AmbastaR.K. KumarP. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery.Mol. Divers.20212531315136010.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  41. VisanA.I. NegutI. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery.Life (Basel)202414223310.3390/life14020233 38398742
    [Google Scholar]
  42. MakhobaX.H. ViegasC. MosaR.A. ViegasF.P.D. PooeO.J. Potential impact of the multi-target drug approach in the treatment of some complex diseases.Drug Des. Devel. Ther.2020143235324910.2147/DDDT.S257494 32884235
    [Google Scholar]
  43. KirschP. HartmanA.M. HirschA.K.H. EmptingM. Concepts and core principles of fragment-based drug design.Molecules20192423430910.3390/molecules24234309 31779114
    [Google Scholar]
  44. CavasottoC.N. Di FilippoJ.I. Artificial intelligence in the early stages of drug discovery.Arch. Biochem. Biophys.202169810873010.1016/j.abb.2020.108730 33347838
    [Google Scholar]
  45. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals (Basel)202316689110.3390/ph16060891 37375838
    [Google Scholar]
  46. CaudaiC. GaliziaA. GeraciF. AI applications in functional genomics.Comput. Struct. Biotechnol. J.2021195762579010.1016/j.csbj.2021.10.009 34765093
    [Google Scholar]
  47. ZitnikM. NguyenF. WangB. LeskovecJ. GoldenbergA. HoffmanM.M. Machine learning for integrating data in biology and medicine: Principles, practice, and opportunities.Inf. Fusion201950719110.1016/j.inffus.2018.09.012 30467459
    [Google Scholar]
  48. QureshiR. IrfanM. GondalT.M. AI in drug discovery and its clinical relevance.Heliyon202397e1757510.1016/j.heliyon.2023.e17575 37396052
    [Google Scholar]
  49. AskrH. ElgeldawiE. Aboul EllaH. ElshaierY.A.M.M. GomaaM.M. HassanienA.E. Deep learning in drug discovery: An integrative review and future challenges.Artif. Intell. Rev.20235675975603710.1007/s10462‑022‑10306‑1 36415536
    [Google Scholar]
  50. CaiZ. PoulosR.C. LiuJ. ZhongQ. Machine learning for multi-omics data integration in cancer.iScience202225210379810.1016/j.isci.2022.103798 35169688
    [Google Scholar]
  51. ChenC. WangJ. PanD. Applications of multi-omics analysis in human diseases.MedComm202344e31510.1002/mco2.315
    [Google Scholar]
  52. NguyenL.P. TungD.D. NguyenD.T. The utilization of machine learning algorithms for assisting physicians in the diagnosis of diabetes.Diagnostics (Basel)20231312208710.3390/diagnostics13122087 37370981
    [Google Scholar]
  53. PaulD. SanapG. ShenoyS. KalyaneD. KaliaK. TekadeR.K. Artificial intelligence in drug discovery and development.Drug Discov. Today2021261809310.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  54. AkterS. DwivediY.K. SajibS. BiswasK. BandaraR.J. MichaelK. Algorithmic bias in machine learning-based marketing models.J. Bus. Res.202214420121610.1016/j.jbusres.2022.01.083
    [Google Scholar]
  55. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms20184574 31540192
    [Google Scholar]
  56. GuedesI.A. PereiraF.S.S. DardenneL.E. Empirical scoring functions for structure-based virtual screening: Applications, critical aspects, and challenges.Front. Pharmacol.20189108910.3389/fphar.2018.01089 30319422
    [Google Scholar]
  57. KinningsS.L. LiuN. TongeP.J. JacksonR.M. XieL. BourneP.E. A machine learning-based method to improve docking scoring functions and its application to drug repurposing.J. Chem. Inf. Model.201151240841910.1021/ci100369f 21291174
    [Google Scholar]
  58. WójcikowskiM. BallesterP.J. SiedleckiP. Performance of machine-learning scoring functions in structure-based virtual screening.Sci. Rep.2017714671010.1038/srep46710 28440302
    [Google Scholar]
  59. AbiodunO.I. JantanA. OmolaraA.E. DadaK.V. MohamedN.A. ArshadH. State-of-the-art in artificial neural network applications: A survey.Heliyon2018411e0093810.1016/j.heliyon.2018.e00938 30519653
    [Google Scholar]
  60. Stepniewska-DziubinskaM.M. ZielenkiewiczP. SiedleckiP. Development and evaluation of a deep learning model for protein–ligand binding affinity prediction.Bioinformatics201834213666367410.1093/bioinformatics/bty374 29757353
    [Google Scholar]
  61. Malandraki-MillerS. RileyP.R. Use of artificial intelligence to enhance phenotypic drug discovery.Drug Discov. Today202126488790110.1016/j.drudis.2021.01.013 33484947
    [Google Scholar]
  62. ShimaharaY. SugawaraK. KojoK.H. IMACEL: A cloud-based bioimage analysis platform for morphological analysis and image classification.PLoS One2019142e021261910.1371/journal.pone.0212619 30794647
    [Google Scholar]
  63. PushkaranA.C. ArabiA.A. From understanding diseases to drug design: Can artificial intelligence bridge the gap?Artif. Intell. Rev.20245748610.1007/s10462‑024‑10714‑5
    [Google Scholar]
  64. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  65. GimenoA. Ojeda-MontesM.J. Tomás-HernándezS. The light and dark sides of virtual screening: What is there to know?Int. J. Mol. Sci.2019206137510.3390/ijms20061375 30893780
    [Google Scholar]
  66. HanR. YoonH. KimG. LeeH. LeeY. Revolutionizing medicinal chemistry: The application of artificial intelligence (AI) in early drug discovery.Pharmaceuticals (Basel)2023169125910.3390/ph16091259 37765069
    [Google Scholar]
  67. NagS BaidyaATK MandalA Deep learning tools for advancing drug discovery and development. 3 Biotech 2022;12511010.1007/s13205‑022‑03165‑8
  68. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w 34159484
    [Google Scholar]
  69. SinghS. GuptaH. SharmaP. SahiS. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening.Artif Intell Chem20242110003910.1016/j.aichem.2023.100039
    [Google Scholar]
  70. NiaziS. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives.Drug Des. Devel. Ther.2023172691272510.2147/DDDT.S424991 37701048
    [Google Scholar]
  71. VidhyaK.S. SultanaA. M NK, Rangareddy H. Artificial intelligence’s impact on drug discovery and development from bench to bedside.Cureus20231510e4748610.7759/cureus.47486 37881323
    [Google Scholar]
  72. SinghS. KumarR. PayraS. SinghS.K. Artificial intelligence and machine learning in pharmacological research: Bridging the gap between data and drug discovery.Cureus2023158e4435910.7759/cureus.44359 37779744
    [Google Scholar]
  73. GuleriaV. Integrative computational approaches for discovery and evaluation of lead compound for drug design.
    [Google Scholar]
  74. Carracedo-ReboredoP. Liñares-BlancoJ. Rodríguez-FernándezN. A review on machine learning approaches and trends in drug discovery.Comput. Struct. Biotechnol. J.2021194538455810.1016/j.csbj.2021.08.011 34471498
    [Google Scholar]
  75. Abou HajalA. Al MeslamaniA.Z. Insights into artificial intelligence utilisation in drug discovery.J. Med. Econ.202427130430810.1080/13696998.2024.2315864 38385328
    [Google Scholar]
  76. YangS. KarS. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity.Artif Intell Chem20231210001110.1016/j.aichem.2023.100011
    [Google Scholar]
  77. StaszakM. StaszakK. WieszczyckaK. BajekA. RoszkowskiK. TylkowskiB. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022122e156810.1002/wcms.1568
    [Google Scholar]
  78. MicheelC.M. NassS.J. OmennG.S. Omics-based clinical discovery: Science, technology, and applications.Evolution of Translational Omics: Lessons Learned and the Path Forward. MicheelC.M. NassS.J. OmennG.S. Washington, DCNational Academies Press2012
    [Google Scholar]
  79. VilhekarR.S. RawekarA. Artificial intelligence in genetics.Cureus2024161e52035 38344556
    [Google Scholar]
  80. AliF. KhanA. MuhammadS.A. HassanS.S. Quantitative real-time analysis of differentially expressed genes in peripheral blood samples of hypertension patients.Genes (Basel)202213218710.3390/genes13020187 35205232
    [Google Scholar]
  81. SarkarC. DasB. RawatV.S. Artificial intelligence and machine learning technology driven modern drug discovery and development.Int. J. Mol. Sci.2023243202610.3390/ijms24032026 36768346
    [Google Scholar]
  82. RahmanM. SchellhornH.E. Metabolomics of infectious diseases in the era of personalized medicine.Front. Mol. Biosci.202310112037610.3389/fmolb.2023.1120376 37275959
    [Google Scholar]
  83. ZhangY. LuoM. WuP. WuS. LeeT.Y. BaiC. Application of computational biology and artificial intelligence in drug design.Int. J. Mol. Sci.202223211356810.3390/ijms232113568 36362355
    [Google Scholar]
  84. RaoV.S. SrinivasK. SujiniG.N. KumarG.N.S. Protein-protein interaction detection: Methods and analysis.Int. J. Proteomics2014201411210.1155/2014/147648 24693427
    [Google Scholar]
  85. PrasadK. KumarV. Artificial intelligence-driven drug repurposing and structural biology for SARS-CoV-2.Curr Res Pharmacol Drug Discov2021210004210.1016/j.crphar.2021.100042 34870150
    [Google Scholar]
  86. VermaS.K. NandiA. SimnaniF.Z. In silico nanotoxicology: The computational biology state of art for nanomaterial safety assessments.Mater. Des.202323511245210.1016/j.matdes.2023.112452
    [Google Scholar]
  87. NiaziS.K. MariamZ. Computer-aided drug design and drug discovery: A prospective analysis.Pharmaceuticals (Basel)20231712210.3390/ph17010022 38256856
    [Google Scholar]
  88. AldewachiH. Al-ZidanR.N. ConnerM.T. SalmanM.M. High-throughput screening platforms in the discovery of novel drugs for neurodegenerative diseases.Bioengineering (Basel)2021823010.3390/bioengineering8020030 33672148
    [Google Scholar]
  89. HosnyA. ParmarC. QuackenbushJ. SchwartzL.H. AertsH.J.W.L. Artificial intelligence in radiology.Nat. Rev. Cancer201818850051010.1038/s41568‑018‑0016‑5 29777175
    [Google Scholar]
  90. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.023 34838731
    [Google Scholar]
  91. LuM. YinJ. ZhuQ. Artificial intelligence in pharmaceutical sciences.Engineering (Beijing)202327376910.1016/j.eng.2023.01.014
    [Google Scholar]
  92. BhattamisraS.K. BanerjeeP. GuptaP. MayurenJ. PatraS. CandasamyM. Artificial intelligence in pharmaceutical and healthcare research.Big Data Cogn Comput2023711010.3390/bdcc7010010
    [Google Scholar]
  93. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  94. VatanseverS. SchlessingerA. WackerD. Artificial intelligence and machine learning‐aided drug discovery in central nervous system diseases: State‐of‐the‐arts and future directions.Med. Res. Rev.20214131427147310.1002/med.21764 33295676
    [Google Scholar]
  95. SantorsolaM. LescaiF. The promise of explainable deep learning for omics data analysis: Adding new discovery tools to AI.N. Biotechnol.20237711110.1016/j.nbt.2023.06.002 37329982
    [Google Scholar]
  96. AskinS. BurkhalterD. CaladoG. El DakrouniS. Artificial Intelligence applied to clinical trials: opportunities and challenges.Health Technol. (Berl.)202313220321310.1007/s12553‑023‑00738‑2 36923325
    [Google Scholar]
  97. IsmailA Al-ZoubiT El NaqaI SaeedH The role of artificial intelligence in hastening time to recruitment in clinical trials. BJR|Open 2023; 5(1): 20220023.10.1259/bjro.2022002337953865
    [Google Scholar]
  98. SchorkN.J. Artificial intelligence and personalized medicine.Cancer Treat Res20191782658310.1007/978‑3‑030‑16391‑4_11 31209850
    [Google Scholar]
  99. JohnsonK.B. WeiW.Q. WeeraratneD. Precision medicine, AI, and the future of personalized health care.Clin. Transl. Sci.2021141869310.1111/cts.12884 32961010
    [Google Scholar]
  100. AldoseriA. Al-KhalifaK.N. HamoudaA.M. Re-thinking data strategy and integration for artificial intelligence: Concepts, opportunities, and challenges.Appl. Sci. (Basel)20231312708210.3390/app13127082
    [Google Scholar]
  101. LinardatosP. PapastefanopoulosV. KotsiantisS. ExplainableA.I. A review of machine learning interpretability methods.Entropy (Basel)20202311810.3390/e23010018 33375658
    [Google Scholar]
  102. MurdochB. Privacy and artificial intelligence: Challenges for protecting health information in a new era.BMC Med. Ethics202122112210.1186/s12910‑021‑00687‑3 34525993
    [Google Scholar]
  103. TannaM. DunningW. Bias and discrimination.Artificial Intelligence. KerriganC. Edward Elgar Publishing202242244110.4337/9781800371729.00035
    [Google Scholar]
  104. DavenportT. KalakotaR. The potential for artificial intelligence in healthcare.Future Healthc. J.201962949810.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
/content/journals/cai/10.2174/0129503752322569241104114248
Loading
/content/journals/cai/10.2174/0129503752322569241104114248
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test