Skip to content
2000
image of Identification of Potential Phytochemical Inhibitors of DNMT1 through Virtual Screening and Molecular Dynamics Simulation to Promote Diabetic Wound Healing

Abstract

Introduction

DNA methyltransferase 1 (DNMT1) has recently emerged as a potential therapeutic target for diabetic wound healing (DWH) Studies have shown that inhibition of DNMT1 may be valuable in accelerating DWH

Method

Virtual screening of 3,646 phytochemicals derived from the IMPPAT database was performed against DNMT1. This was followed by exhaustive docking ADMET analysis and molecular dynamics simulation to identify potential phytochemical inhibitors of DNMT1

Results

Out of the 17967 phytochemicals present in the database 3646 of them were chosen for fast screening based on their drug-likeness properties. When compared with the reference compound over 2500 compounds exhibited lower binding energies. The top 972 compounds having binding energies ≤ 8.7 kcal/mol were chosen and 40 out of 972 compounds passed through the ADMET filters. These were then subjected to molecular docking and the compound with the least binding energy and favourable hydrogen bonding was then selected for molecular dynamics simulation. The stability of the Oroxindin-DNMT1 complex was further validated by molecular dynamics simulation studies

Discussion

Derived from the traditional Chinese remedy Huang-Qin Oroxindin has been shown to possess a range of pharmacological effects including anti-inflammatory antitumor and antioxidant properties. The wound-healing potential of Oroxindin has to be evaluated and for further validation

Conclusion

Oroxindin emerged as the ideal phytochemical among the 3,646 screened The ability of Oroxindin to accelerate DWH still needs to be evaluated and for further validation

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099425559251002115628
2025-10-21
2025-12-05
Loading full text...

Full text loading...

References

  1. Zhou P. Xie W. He S. Sun Y. Meng X. Sun G. Sun X. Ginsenoside Rb1 as an anti-diabetic agent and its underlying mechanism analysis. Cells 2019 8 3 204 10.3390/cells8030204 30823412
    [Google Scholar]
  2. Zhao Z. Wu W. Zhang Q. Xing T. Bai Y. Li S. Zhang D. Che H. Guo X. Mechanism and therapeutic potential of hippo signaling pathway in type 2 diabetes and its complications. Biomed. Pharmacother. 2025 183 117817 10.1016/j.biopha.2025.117817 39842269
    [Google Scholar]
  3. Salvatore T. Pafundi P.C. Galiero R. Albanese G. Di Martino A. Caturano A. Vetrano E. Rinaldi L. Sasso F.C. The diabetic cardiomyopathy: The contributing pathophysiological mechanisms. Front. Med. 2021 8 June 695792 10.3389/fmed.2021.695792 34277669
    [Google Scholar]
  4. Kaka A.S. Landsteiner A. Ensrud K.E. Logan B. Sowerby C. Ullman K. Yoon P. Wilt T.J. Sultan S. Risk prediction models for diabetic foot ulcer development or amputation: A review of reviews. J. Foot Ankle Res. 2023 16 1 13 10.1186/s13047‑023‑00610‑6 36922851
    [Google Scholar]
  5. Burgess J.L. Wyant W.A. Abujamra B.A. Kirsner R.S. Jozic I. Diabetic wound-healing science. Medicina (B. Aires) 2021 57 10 1072 10.3390/medicina57101072 34684109
    [Google Scholar]
  6. Ansari P. Tabasumma N. Snigdha N.N. Siam N.H. Panduru R.V.N.R.S. Azam S. Hannan J.M.A. Abdel-Wahab Y.H.A. Diabetic retinopathy: An overview on mechanisms, pathophysiology and pharmacotherapy. Diabetology 2022 3 1 159 175 10.3390/diabetology3010011
    [Google Scholar]
  7. Zhang S. Ge G. Qin Y. Li W. Dong J. Mei J. Ma R. Zhang X. Bai J. Zhu C. Zhang W. Geng D. Recent advances in responsive hydrogels for diabetic wound healing. Mater. Today Bio 2022 18 100508 10.1016/j.mtbio.2022.100508 36504542
    [Google Scholar]
  8. Raja J.M. Maturana M.A. Kayali S. Khouzam A. Efeovbokhan N. Diabetic foot ulcer: A comprehensive review of pathophysiology and management modalities. World J. Clin. Cases 2023 11 8 1684 1693 10.12998/wjcc.v11.i8.1684 36970004
    [Google Scholar]
  9. Freedman B.R. Hwang C. Talbot S. Hibler B. Matoori S. Mooney D.J. Breakthrough treatments for accelerated wound healing. Sci. Adv. 2023 9 20 eade7007 10.1126/sciadv.ade7007 37196080
    [Google Scholar]
  10. Cui J. Shi J. Liu Y. Shi X. Sun J. He Z. Luo C. Zhang S. Engineered hydrogel platform for diabetic wound healing. Chem. Eng. J. 2025 507 January 160379 10.1016/j.cej.2025.160379
    [Google Scholar]
  11. Aquib M. Sharma T. Giri V.P. Rao A. Peptides in chronic wound healing: Fighting infections and facilitating diabetic wound management. J. Drug Deliv. Sci. Technol. 2025 105 106599 10.1016/j.jddst.2025.106599
    [Google Scholar]
  12. Ishihara J. Ishihara A. Fukunaga K. Sasaki K. White M.J.V. Briquez P.S. Hubbell J.A. Laminin heparin-binding peptides bind to several growth factors and enhance diabetic wound healing. Nat. Commun. 2018 9 1 2163 10.1038/s41467‑018‑04525‑w 29867149
    [Google Scholar]
  13. Dubey R. Prabhakar P.K. Gupta J. Epigenetics: Key to improve delayed wound healing in type 2 diabetes. Mol. Cell. Biochem. 2022 477 2 371 383 10.1007/s11010‑021‑04285‑0 34739665
    [Google Scholar]
  14. Song J. Wu Y. Chen Y. Sun X. Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing.(Review) Mol. Med. Rep. 2025 31 1 1 20 10.3892/mmr.2025.13534 39422035
    [Google Scholar]
  15. Ju C.C. Liu X.X. Liu L. Guo N. Guan L. Wu J. Liu D.W. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024 10 6 28086 10.1016/j.heliyon.2024.e28086 38533007
    [Google Scholar]
  16. Wu Y.L. Lin Z.J. Li C.C. Lin X. Shan S.K. Guo B. Zheng M.H. Li F. Yuan L.Q. Li Z. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023 8 1 98 10.1038/s41392‑023‑01333‑7 36864020
    [Google Scholar]
  17. Wang X. Yu D. Chen L. Antimicrobial resistance and mechanisms of epigenetic regulation. Front. Cell. Infect. Microbiol. 2023 13 June 1199646 10.3389/fcimb.2023.1199646 37389209
    [Google Scholar]
  18. Mohammed F.H. Cemic F. Hemberger J. Giri S. Biological skin regeneration using epigenetic targets. Drug Discov. Today 2023 28 4 103495 10.1016/j.drudis.2023.103495 36681237
    [Google Scholar]
  19. Medina-Franco J.L. Caulfield T. Advances in the computational development of DNA methyltransferase inhibitors. Drug Discov. Today 2011 16 9-10 418 425 10.1016/j.drudis.2011.02.003 21315180
    [Google Scholar]
  20. Jeltsch A. Adam S. Dukatz M. Emperle M. Bashtrykov P. Deep enzymology studies on DNA methyltransferases reveal novel connections between flanking sequences and enzyme activity. J. Mol. Biol. 2021 433 19 167186 10.1016/j.jmb.2021.167186 34375615
    [Google Scholar]
  21. Jia D. Jurkowska R.Z. Zhang X. Jeltsch A. Cheng X. Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 2007 449 7159 248 251 10.1038/nature06146 17713477
    [Google Scholar]
  22. Deplus R. Brenner C. Burgers W.A. Putmans P. Kouzarides T. de Launoit Y. Fuks F. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res. 2002 30 17 3831 3838 10.1093/nar/gkf509 12202768
    [Google Scholar]
  23. Saravanaraman P. Selvam M. Ashok C. Srijyothi L. Baluchamy S. De novo methyltransferases: Potential players in diseases and new directions for targeted therapy. Biochimie 2020 176 85 102 10.1016/j.biochi.2020.07.004 32659446
    [Google Scholar]
  24. Medina-Franco J.L. Méndez-Lucio O. Dueñas-González A. Yoo J. Discovery and development of DNA methyltransferase inhibitors using in silico approaches. Drug Discov. Today 2015 20 5 569 577 10.1016/j.drudis.2014.12.007 25526932
    [Google Scholar]
  25. Woo M.N. Jeon S.M. Kim H.J. Lee M.K. Shin S.K. Shin Y.C. Park Y.B. Choi M.S. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice. Chem. Biol. Interact. 2010 186 3 316 322 10.1016/j.cbi.2010.05.006 20519145
    [Google Scholar]
  26. Du W. Wang N. Li F. Jia K. An J. Liu Y. Wang Y. Zhu L. Zhao S. Hao J. STAT3 phosphorylation mediates high glucose—impaired cell autophagy in an HDAC1‐dependent and ‐independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J. 2019 33 7 8008 8021 10.1096/fj.201900127R 30913399
    [Google Scholar]
  27. Krause C. Geißler C. Tackenberg H. El Gammal A.T. Wolter S. Spranger J. Mann O. Lehnert H. Kirchner H. Multi-layered epigenetic regulation of IRS2 expression in the liver of obese individuals with type 2 diabetes. Diabetologia 2020 63 10 2182 2193 10.1007/s00125‑020‑05212‑6 32710190
    [Google Scholar]
  28. Juvinao-Quintero D.L. Marioni R.E. Ochoa-Rosales C. Russ T.C. Deary I.J. van Meurs J.B.J. Voortman T. Hivert M.F. Sharp G.C. Relton C.L. Elliott H.R. DNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts. Clin. Epigenetics 2021 13 1 40 10.1186/s13148‑021‑01027‑3 33622391
    [Google Scholar]
  29. Zhang L. Sheng C. Zhou F. Zhu K. Wang S. Liu Q. Yuan M. Xu Z. Liu Y. Lu J. Liu J. Zhou L. Wang X. CBP/p300 HAT maintains the gene network critical for β cell identity and functional maturity. Cell Death Dis. 2021 12 5 476 10.1038/s41419‑021‑03761‑1 33980820
    [Google Scholar]
  30. Zhao C. Yang Q. Tang R. Li W. Wang J. Yang F. Zhao J. Zhu J. Pang W. Li N. Zhang X. Tian X.Y. Yao W. Zhou J. DNA methyltransferase 1 deficiency improves macrophage motility and wound healing by ameliorating cholesterol accumulation. NPJ Regen. Med. 2023 8 1 29 10.1038/s41536‑023‑00306‑2 37291182
    [Google Scholar]
  31. Zhao J. Yang S. Shu B. Chen L. Yang R. Xu Y. Xie J. Liu X. Qi S. Transient high glucose causes persistent vascular dysfunction and delayed wound healing by the DNMT1-mediated Ang-1/NF-κB pathway. J. Invest. Dermatol. 2021 141 6 1573 1584 10.1016/j.jid.2020.10.023 33259831
    [Google Scholar]
  32. He Y. Dan Y. Gao X. Huang L. Lv H. Chen J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab. 2021 320 3 E598 E608 10.1152/ajpendo.00089.2020 33284093
    [Google Scholar]
  33. Yan J. Tie G. Wang S. Tutto A. DeMarco N. Khair L. Fazzio T.G. Messina L.M. Diabetes impairs wound healing by Dnmt1-dependent dysregulation of hematopoietic stem cells differentiation towards macrophages. Nat. Commun. 2018 9 1 33 10.1038/s41467‑017‑02425‑z 29295997
    [Google Scholar]
  34. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  35. Grigalunas M. Brakmann S. Waldmann H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 2022 144 8 3314 3329 10.1021/jacs.1c11270 35188375
    [Google Scholar]
  36. Ahmad S. Zahiruddin S. Parveen B. Basist P. Parveen A. Gaurav; Parveen, R.; Ahmad, M. Indian medicinal plants and formulations and their potential against COVID-19–Preclinical and clinical research. Front. Pharmacol. 2021 11 March 578970 10.3389/fphar.2020.578970 33737875
    [Google Scholar]
  37. Mukherjee P.K. Rai S. Kumar V. Mukherjee K. Hylands P.J. Hider R.C. Plants of Indian origin in drug discovery. Expert Opin. Drug Discov. 2007 2 5 633 657 10.1517/17460441.2.5.633 23488955
    [Google Scholar]
  38. Chen Y. Kirchmair J. Cheminformatics in natural product‐based drug discovery. Mol. Inform. 2020 39 12 2000171 10.1002/minf.202000171 32725781
    [Google Scholar]
  39. Saldívar-González F.I. Aldas-Bulos V.D. Medina-Franco J.L. Plisson F. Natural product drug discovery in the artificial intelligence era. Chem. Sci. 2022 13 6 1526 1546 10.1039/D1SC04471K 35282622
    [Google Scholar]
  40. Vivek-Ananth R.P. Mohanraj K. Sahoo A.K. Samal A. IMPPAT 2.0: An enhanced and expanded phytochemical atlas of indian medicinal plants. ACS Omega 2023 8 9 8827 8845 10.1021/acsomega.3c00156 36910986
    [Google Scholar]
  41. Istiqomah I.N. Alkaff A.H. Saragih M. Natalia A.H. Tambunan U.S.F. Virtual screening of natural products as an inhibitor of DNA methyltransferase 1 enzyme for breast cancer disease. IOP Conf Ser Mater. Sci. Eng. 2019 509 012052 10.1088/1757‑899X/509/1/012052
    [Google Scholar]
  42. Karunakaran K. Muniyan R. Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Mol. Divers. 2023 27 6 2803 2822 10.1007/s11030‑022‑10582‑7 36522517
    [Google Scholar]
  43. Mohanraj K. Karthikeyan B.S. Vivek-Ananth R.P. Chand R.P.B. Aparna S.R. Mangalapandi P. Samal A. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018 8 1 4329 10.1038/s41598‑018‑22631‑z 29531263
    [Google Scholar]
  44. Roshni J. Vaishali R. Ganesh K.S. Dharani N. Alzahrani K.J. Banjer H.J. Alghamdi A.H. Theyab A. Ahmed S.S.S.J. Patil S. Multi-target potential of Indian phytochemicals against SARS-CoV-2: A docking, molecular dynamics and MM-GBSA approach extended to Omicron B.1.1.529. J. Infect. Public Health 2022 15 6 662 669 10.1016/j.jiph.2022.05.002 35617830
    [Google Scholar]
  45. Yoo J. Kim J.H. Robertson K.D. Medina-Franco J.L. Molecular modeling of inhibitors of human DNA methyltransferase with a crystal structure: Discovery of a novel DNMT1 inhibitor. Adv. Protein Chem. Struct. Biol. 2012 87 219 247 10.1016/B978‑0‑12‑398312‑1.00008‑1 22607757
    [Google Scholar]
  46. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  47. Valathoor M.N. Venugopal S. Molecular docking and dynamic simulation approach to target penicillin- binding protein 1B (LpoB) of Salmonella typhimurium with flavonoids. Curr. Pharm. Anal. 2024 20 8 849 862 10.2174/0115734129335204240919071902
    [Google Scholar]
  48. Deepasree K. Subhashree V. Molecular docking and dynamic simulation studies of terpenoid compounds against phosphatidylinositol-specific phospholipase C from Listeria monocytogenes. Inform. Med. Unlocked 2023 39 March 101252 10.1016/j.imu.2023.101252
    [Google Scholar]
  49. Hess B. Kutzner C. van der Spoel D. Lindahl E. GRGMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  50. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  51. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  52. Kumari R. Kumar V. Dhankhar P. Dalal V. Promising antivirals for PLpro of SARS-CoV-2 using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn. 2023 41 10 4650 4666 10.1080/07391102.2022.2071340 35510600
    [Google Scholar]
  53. Rathi R. Kumari R. Pathak S.R. Dalal V. Promising antibacterials for LLM of Staphylococcus aureus using virtual screening, molecular docking, dynamics, and MMPBSA. J. Biomol. Struct. Dyn. 2023 41 15 7277 7289 10.1080/07391102.2022.2119278 36073371
    [Google Scholar]
  54. Kumari R. Kumar R. Lynn A. g_mmpbsa--A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  55. Van Putte L. De Schrijver S. Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: A systematic review. Scars. Burn. Heal. 2016 2 2059513116676828 10.1177/2059513116676828 29799552
    [Google Scholar]
  56. Guo Y. Lin C. Xu P. Wu S. Fu X. Xia W. Yao M. AGEs induced autophagy impairs cutaneous wound healing via stimulating macrophage polarization to M1 in diabetes. Sci. Rep. 2016 6 1 36416 10.1038/srep36416 27805071
    [Google Scholar]
  57. Qing C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol. 2017 20 4 189 193 10.1016/j.cjtee.2017.06.001 28712679
    [Google Scholar]
  58. Ferguson M.W.J. Herrick S.E. Spencer M.J. Shaw J.E. Boulton A.J.M. Sloan P. The histology of diabetic foot ulcers. Diabet. Med. 1996 13 S1 S30 S33 10.1002/dme.1996.13.s1.30 8741826
    [Google Scholar]
  59. Blakytny R. Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet. Med. 2006 23 6 594 608 10.1111/j.1464‑5491.2006.01773.x 16759300
    [Google Scholar]
  60. Delamaire M. Maugendre D. Moreno M. Le Goff M-C. Allannic H. Genetet B. Impaired leucocyte functions in diabetic patients. Diabet. Med. 1997 14 1 29 34 10.1002/(SICI)1096‑9136(199701)14:1<29:AID‑DIA300>3.0.CO;2‑V 9017350
    [Google Scholar]
  61. Barrero M.J. Boué S. Izpisúa Belmonte J.C. Epigenetic mechanisms that regulate cell identity. Cell Stem Cell 2010 7 5 565 570 10.1016/j.stem.2010.10.009 21040898
    [Google Scholar]
  62. Ishii M. Wen H. Corsa C.A.S. Liu T. Coelho A.L. Allen R.M. Carson W.F. Cavassani K.A. Li X. Lukacs N.W. Hogaboam C.M. Dou Y. Kunkel S.L. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 2009 114 15 3244 3254 10.1182/blood‑2009‑04‑217620 19567879
    [Google Scholar]
  63. Xia M. Liu J. Wu X. Liu S. Li G. Han C. Song L. Li Z. Wang Q. Wang J. Xu T. Cao X. Histone methyltransferase Ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 2013 39 3 470 481 10.1016/j.immuni.2013.08.016 24012418
    [Google Scholar]
  64. den Dekker A. Davis F.M. Kunkel S.L. Gallagher K.A. Targeting epigenetic mechanisms in diabetic wound healing. Transl. Res. 2019 204 39 50 10.1016/j.trsl.2018.10.001 30392877
    [Google Scholar]
  65. Wang X. Cao Q. Yu L. Shi H. Xue B. Shi H. Epigenetic regulation of macrophage polarization and inflammation by DNA methylation in obesity. JCI Insight 2016 1 19 87748 10.1172/jci.insight.87748 27882346
    [Google Scholar]
  66. Kikuchi A. Onoda H. Yamaguchi K. Kori S. Matsuzawa S. Chiba Y. Tanimoto S. Yoshimi S. Sato H. Yamagata A. Shirouzu M. Adachi N. Sharif J. Koseki H. Nishiyama A. Nakanishi M. Defossez P.A. Arita K. Structural basis for activation of DNMT1. Nat. Commun. 2022 13 1 7130 10.1038/s41467‑022‑34779‑4 36414620
    [Google Scholar]
  67. Rountree M.R. Bachman K.E. Baylin S.B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 2000 25 3 269 277 10.1038/77023 10888872
    [Google Scholar]
  68. Jurkowska R.Z. Jurkowski T.P. Jeltsch A. Structure and function of mammalian DNA methyltransferases. ChemBioChem 2011 12 2 206 222 10.1002/cbic.201000195 21243710
    [Google Scholar]
  69. Kar S. Deb M. Sengupta D. Shilpi A. Parbin S. Torrisani J. Pradhan S. Patra S.K. An insight into the various regulatory mechanisms modulating human DNA methyltransferase 1 stability and function. Epigenetics 2012 7 9 994 1007 10.4161/epi.21568 22894906
    [Google Scholar]
  70. Fellinger K. Rothbauer U. Felle M. Längst G. Leonhardt H. Dimerization of DNA methyltransferase 1 is mediated by its regulatory domain. J. Cell. Biochem. 2009 106 4 521 528 10.1002/jcb.22071 19173286
    [Google Scholar]
  71. Pradhan M. Estève P.O. Chin H.G. Samaranayke M. Kim G.D. Pradhan S. CXXC domain of human DNMT1 is essential for enzymatic activity. Biochemistry 2008 47 38 10000 10009 10.1021/bi8011725 18754681
    [Google Scholar]
  72. Dhe-Paganon S. Syeda F. Park L. DNA methyl transferase 1: Regulatory mechanisms and implications in health and disease. Int. J. Biochem. Mol. Biol. 2011 2 1 58 66 21969122
    [Google Scholar]
  73. Xu F. Mao C. Ding Y. Rui C. Wu L. Shi A. Zhang H. Zhang L. Xu Z. Molecular and enzymatic profiles of mammalian DNA methyltransferases: Structures and targets for drugs. Curr. Med. Chem. 2012 17 33 4052 4071 10.2174/092986710793205372 20939822
    [Google Scholar]
  74. Liu Q. Zuo R. Wang K. Nong F. Fu Y. Huang S. Pan Z. Zhang Y. Luo X. Deng X. Zhang X. Zhou L. Chen Y. Oroxindin inhibits macrophage NLRP3 inflammasome activation in DSS-induced ulcerative colitis in mice via suppressing TXNIP-dependent NF-κB pathway. Acta Pharmacol. Sin. 2020 41 6 771 781 10.1038/s41401‑019‑0335‑4 31937929
    [Google Scholar]
  75. Fong P. Hao C. Io C. Sin P. Meng L. In silico and in vitro anti-Helicobacter pylori effects of combinations of phytochemicals and antibiotics. Molecules 2019 24 19 3608 10.3390/molecules24193608 31591315
    [Google Scholar]
  76. Ahmed S.S. Rahman M.O. Alqahtani A.S. Sultana N. Almarfadi O.M. Ali M.A. Lee J. Anticancer potential of phytochemicals from Oroxylum indicum targeting lactate dehydrogenase A through bioinformatic approach. Toxicol. Rep. 2022 10 56 75 10.1016/j.toxrep.2022.12.007 36583135
    [Google Scholar]
/content/journals/cad/10.2174/0115734099425559251002115628
Loading
/content/journals/cad/10.2174/0115734099425559251002115628
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test