Skip to content
2000
image of Unveiling Active Natural Products for the Therapy of Inflammatory Bowel Disease through Single-cell, Transcriptome, and Reverse Network Pharmacology

Abstract

Introduction

Inflammatory bowel disease (IBD) poses a major threat to human health. Current pharmacological therapies primarily manage symptoms and are often associated with adverse effects.

Objective

To develop targeted natural drugs with fewer side effects for IBD therapy by identifying potential agents from medicinal and edible Chinese herbs (MECHs) and clarifying their underlying molecular mechanisms.

Methods

An integrated approach was employed, combining single-cell analysis, transcriptomics, reverse network pharmacology, immunological infiltration assessment, molecular docking, ADMET evaluation, and molecular dynamics (MD) simulations.

Results

Multi-omic integration identified nine differentially infiltrating immune cell types and a CXCL8-CXCR2-driven neutrophil communication axis. Frequent intercellular communication was observed among neutrophils, epithelial cells, monocytes, B cells, and T cells. Topological screening yielded 15 hub targets and identified MMP2 and PTGS2 as key targets. Molecular docking, ADMET analyses, and 100-ns MD simulations converged on the natural product (NP) MOL009551 (isoprincepin) as a high-affinity, stable MMP2 binder (ΔG = -11.0 kcal/mol), supporting MMP2-directed isoprincepin as a novel therapeutic candidate for IBD.

Discussion

Bioinformatic analyses suggest that MMP2 may play an important role in IBD, and isoprincepin, identified from MECHs, may serve as a potential therapeutic agent by modulating MMP2 activity. However, experimental validation of their direct interaction and therapeutic efficacy remains necessary, along with further mechanistic and preclinical studies to clarify their potential for IBD treatment.

Conclusion

This study provides a comprehensive understanding of the molecular mechanisms underlying IBD, identifies MMP2 as a key target, and highlights isoprincepin as a promising natural product for IBD therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099420555251125065850
2026-01-08
2026-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099420555251125065850/BMS-CCADD-2025-HT22-7106-2.html?itemId=/content/journals/cad/10.2174/0115734099420555251125065850&mimeType=html&fmt=ahah

References

  1. Ng S.C. Shi H.Y. Hamidi N. Underwood F.E. Tang W. Benchimol E.I. Panaccione R. Ghosh S. Wu J.C.Y. Chan F.K.L. Sung J.J.Y. Kaplan G.G. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: A systematic review of population-based studies. Lancet 2017 390 10114 2769 2778 10.1016/S0140‑6736(17)32448‑0 29050646
    [Google Scholar]
  2. Banerjee R. Pal P. Hilmi I. Ghoshal U.C. Desai D.C. Rahman M.M. Dutta U. Mohiuddin S.A. Al Mohannadi M. Philip M. Ramesh G.N. Niriella M.A. De Silva A.P. de Silva H.J. Pisespongsa P. Limsrivilai J. Aniwan S. Nawarathne M. Fernandopulle N. Aye T.T. Ni N. Al Awadhi S. Joshi N. Ngoc P.T.V. Kieu T.V. Nguyen A.D. Abdullah M. Ali E. Zeid A. Sollano J.D. Saberi B. Omar M. Mohsin M.N. Aftab H. Wai T.M. Shastri Y.M. Chaudhuri S. Ahmed F. Bhatia S.J. Travis S.P.L. Emerging inflammatory bowel disease demographics, phenotype, and treatment in south asia, south-east asia, and middle east: Preliminary findings from the inflammatory bowel disease-emerging nations’ consortium. J. Gastroenterol. Hepatol. 2022 37 6 1004 1015 10.1111/jgh.15801 35178742
    [Google Scholar]
  3. Kaplan G.G. Windsor J.W. The four epidemiological stages in the global evolution of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021 18 1 56 66 10.1038/s41575‑020‑00360‑x 33033392
    [Google Scholar]
  4. Hracs L. Windsor J.W. Gorospe J. Cummings M. Coward S. Buie M.J. Quan J. Goddard Q. Caplan L. Markovinović A. Williamson T. Abbey Y. Abdullah M. Abreu M.T. Ahuja V. Raja Ali R.A. Altuwaijri M. Balderramo D. Banerjee R. Benchimol E.I. Bernstein C.N. Brunet-Mas E. Burisch J. Chong V.H. Dotan I. Dutta U. El Ouali S. Forbes A. Forss A. Gearry R. Dao V.H. Hartono J.L. Hilmi I. Hodges P. Jones G.R. Juliao-Baños F. Kaibullayeva J. Kelly P. Kobayashi T. Kotze P.G. Lakatos P.L. Lees C.W. Limsrivilai J. Lo B. Loftus E.V. Ludvigsson J.F. Mak J.W.Y. Miao Y. Ng K.K. Okabayashi S. Olén O. Panaccione R. Paudel M.S. Quaresma A.B. Rubin D.T. Simadibrata M. Sun Y. Suzuki H. Toro M. Turner D. Iade B. Wei S.C. Yamamoto-Furusho J.K. Yang S.K. Ng S.C. Kaplan G.G. Global evolution of inflammatory bowel disease across epidemiologic stages. Nature 2025 642 8067 458 466 10.1038/s41586‑025‑08940‑0 40307548
    [Google Scholar]
  5. Kaplan G.G. The global burden of inflammatory bowel disease: From 2025 to 2045. Nat. Rev. Gastroenterol. Hepatol. 2025 10.1038/s41575‑025‑01097‑1 40681759
    [Google Scholar]
  6. Alatab S. Sepanlou S.G. Ikuta K. Vahedi H. Bisignano C. Safiri S. Sadeghi A. Nixon M.R. Abdoli A. Abolhassani H. Alipour V. Almadi M.A.H. Almasi-Hashiani A. Anushiravani A. Arabloo J. Atique S. Awasthi A. Badawi A. Baig A.A.A. Bhala N. Bijani A. Biondi A. Borzì A.M. Burke K.E. Carvalho F. Daryani A. Dubey M. Eftekhari A. Fernandes E. Fernandes J.C. Fischer F. Haj-Mirzaian A. Haj-Mirzaian A. Hasanzadeh A. Hashemian M. Hay S.I. Hoang C.L. Househ M. Ilesanmi O.S. Jafari Balalami N. James S.L. Kengne A.P. Malekzadeh M.M. Merat S. Meretoja T.J. Mestrovic T. Mirrakhimov E.M. Mirzaei H. Mohammad K.A. Mokdad A.H. Monasta L. Negoi I. Nguyen T.H. Nguyen C.T. Pourshams A. Poustchi H. Rabiee M. Rabiee N. Ramezanzadeh K. Rawaf D.L. Rawaf S. Rezaei N. Robinson S.R. Ronfani L. Saxena S. Sepehrimanesh M. Shaikh M.A. Sharafi Z. Sharif M. Siabani S. Sima A.R. Singh J.A. Soheili A. Sotoudehmanesh R. Suleria H.A.R. Tesfay B.E. Tran B. Tsoi D. Vacante M. Wondmieneh A.B. Zarghi A. Zhang Z-J. Dirac M. Malekzadeh R. Naghavi M. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020 5 1 17 30 10.1016/S2468‑1253(19)30333‑4 31648971
    [Google Scholar]
  7. Windsor J.W. Kuenzig M.E. Murthy S.K. Bitton A. Bernstein C.N. Jones J.L. Lee K. Targownik L.E. Peña-Sánchez J.N. Rohatinsky N. Ghandeharian S. Im, J.H.B.; Davis, T.; Weinstein, J.; Goddard, Q.; Gorospe, J.; Benchimol, E.I.; Kaplan, G.G. The 2023 impact of inflammatory bowel disease in canada: Executive summary. J. Can. Assoc. Gastroenterol. 2023 6 Suppl. 2 S1 S8 10.1093/jcag/gwad003 37674500
    [Google Scholar]
  8. Crosby M. Tadrous M. Gomes T. Potential cost implications of mandatory non-medical switching policies for biologics for rheumatic conditions and inflammatory bowel disease in canada. Clin. Pharmacol. Ther. 2021 109 3 739 745 10.1002/cpt.2042 32909249
    [Google Scholar]
  9. Nasef N.A. Mehta S. Role of inflammation in pathophysiology of colonic disease: An update. Int. J. Mol. Sci. 2020 21 13 4748 10.3390/ijms21134748 32635383
    [Google Scholar]
  10. Le Berre C. Honap S. Peyrin-Biroulet L. Ulcerative colitis. Lancet 2023 402 10401 571 584 10.1016/S0140‑6736(23)00966‑2 37573077
    [Google Scholar]
  11. Pierre N. Salée C. Vieujean S. Bequet E. Merli A.M. Siegmund B. Meuwis M.A. Louis E. Review article: Distinctions between ileal and colonic Crohn’s disease: From physiology to pathology. Aliment. Pharmacol. Ther. 2021 54 6 779 791 10.1111/apt.16536 34297423
    [Google Scholar]
  12. Dane B. Dillman J.R. Fidler J. Anupindi S.A. Fulmer C.G. Gordon I.O. Bruining D.H. Deepak P. Abualruz A.R. Al-Hawary M. Altinmakas E. Guglielmo F.F. Jaffe T. Rimola J. Bettenworth D. Rieder F. Fletcher J.G. Baker M.E. Sar consensus recommendations for defining small bowel crohn disease strictures at ct and mr enterography. Radiology 2025 316 1 243123 10.1148/radiol.243123 40662968
    [Google Scholar]
  13. D’Haens G. Rieder F. Feagan B.G. Higgins P.D.R. Panés J. Maaser C. Rogler G. Löwenberg M. van der Voort R. Pinzani M. Peyrin-Biroulet L. Danese S. Allocca M. De Hertogh G. Denton C. Distler J. McCarrier K. McGovern D. Radstake T. Serrano D. Stoker J. Challenges in the pathophysiology, diagnosis, and management of intestinal fibrosis in inflammatory bowel disease. Gastroenterology 2022 162 1 26 31 10.1053/j.gastro.2019.05.072 31254502
    [Google Scholar]
  14. Lee H.S. Lobbestael E. Vermeire S. Sabino J. Cleynen I. Inflammatory bowel disease and Parkinson’s disease: Common pathophysiological links. Gut 2021 70 2 408 417 10.1136/gutjnl‑2020‑322429 33067333
    [Google Scholar]
  15. Rudbaek J.J. Agrawal M. Torres J. Mehandru S. Colombel J.F. Jess T. Deciphering the different phases of preclinical inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2024 21 2 86 100 10.1038/s41575‑023‑00854‑4 37950021
    [Google Scholar]
  16. Bronze S. Agrawal M. Colombel J.F. Torres J. Ungaro R.C. Review article: Prevention of inflammatory bowel disease—The path forward. Aliment. Pharmacol. Ther. 2024 60 9 1166 1175 10.1111/apt.18263 39403049
    [Google Scholar]
  17. Li M. Yu L. Zhai Q. Liu B. Zhao J. Chen W. Tian F. Ganoderma lucidum ethanol extraction promotes dextran sulphate sodium induced colitis recovery and modulation in microbiota. Foods 2022 11 24 4023 10.3390/foods11244023 36553765
    [Google Scholar]
  18. Wei F. Li D. Chen X. Li Y. Zeng Y. Cai Y. Zeng Y. Chen Y. Ma X. Zeng J. Therapeutic effects of epigallocatechin-3-gallate for inflammatory bowel disease: A preclinical meta-analysis. Phytomedicine 2024 128 155408 10.1016/j.phymed.2024.155408 38503153
    [Google Scholar]
  19. Yuan S. Li Y. Li J. Xue J.C. Wang Q. Hou X.T. Meng H. Nan J.X. Zhang Q.G. Traditional chinese medicine and natural products: Potential approaches for inflammatory bowel disease. Front. Pharmacol. 2022 13 892790 10.3389/fphar.2022.892790 35873579
    [Google Scholar]
  20. Wang X. Xie L. Long J. Liu K. Lu J. Liang Y. Cao Y. Dai X. Li X. Therapeutic effect of baicalin on inflammatory bowel disease: A review. J. Ethnopharmacol. 2022 283 114749 10.1016/j.jep.2021.114749 34666140
    [Google Scholar]
  21. Li N. Wang M. Lyu Z. Shan K. Chen Z. Chen B. Chen Y. Hu X. Dou B. Zhang J. Wang L. Zhao T. Li H. Medicinal plant-based drug delivery system for inflammatory bowel disease. Front. Pharmacol. 2023 14 1158945 10.3389/fphar.2023.1158945 37033644
    [Google Scholar]
  22. Zhang S. Li Y. Chen G. Wang X. Wu B. Sarcandra glabra (Thunb.) Nakai alleviates DSS-induced ulcerative colitis by promoting restitution, restoring barrier function, and modulating IL-17/Notch1/FoxP3 pathway in intestinal cells. J. Ethnopharmacol. 2024 328 118131 10.1016/j.jep.2024.118131 38565408
    [Google Scholar]
  23. Li Y. Liu X.J. Su S.L. Yan H. Guo S. Qian D.W. Duan J.A. Evaluation of anti-inflammatory and antioxidant effectsof chrysanthemum stem and leaf extract on zebrafish inflammatory bowel disease model. Molecules 2022 27 7 2114 10.3390/molecules27072114 35408512
    [Google Scholar]
  24. Li L. Xie J. Zhang Z. Xia B. Li Y. Lin Y. Li M. Wu P. Lin L. Recent advances in medicinal and edible homologous plant polysaccharides: Preparation, structure and prevention and treatment of diabetes. Int. J. Biol. Macromol. 2024 258 Pt 2 128873 10.1016/j.ijbiomac.2023.128873 38141704
    [Google Scholar]
  25. Xiao L.J. Tao R. Traditional chinese medicine (tcm) therapy. Adv. Exp. Med. Biol. 2017 1010 261 280 10.1007/978‑981‑10‑5562‑1_13 29098677
    [Google Scholar]
  26. Nardone O.M. Zammarchi I. Santacroce G. Ghosh S. Iacucci M. Inflammation-driven colorectal cancer associated with colitis: From pathogenesis to changing therapy. Cancers 2023 15 8 2389 10.3390/cancers15082389 37190315
    [Google Scholar]
  27. Peruhova M. Miteva D. Kokudeva M. Banova S. Velikova T. Cytokine signatures in inflamed mucosa of ibd patients: State-of-the-art. Gastroenterol. Insights 2024 15 2 471 485 10.3390/gastroent15020034
    [Google Scholar]
  28. Martin J.C. Chang C. Boschetti G. Ungaro R. Giri M. Grout J.A. Gettler K. Chuang L. Nayar S. Greenstein A.J. Dubinsky M. Walker L. Leader A. Fine J.S. Whitehurst C.E. Mbow M.L. Kugathasan S. Denson L.A. Hyams J.S. Friedman J.R. Desai P.T. Ko H.M. Laface I. Akturk G. Schadt E.E. Salmon H. Gnjatic S. Rahman A.H. Merad M. Cho J.H. Kenigsberg E. Single-cell analysis of crohn’s disease lesions identifies a pathogenic cellular module associated with resistance to anti-tnf therapy. Cell 2019 178 6 1493 1508.e20 10.1016/j.cell.2019.08.008 31474370
    [Google Scholar]
  29. Zheng H.B. Application of single-cell omics in inflammatory bowel disease. World J. Gastroenterol. 2023 29 28 4397 4404 10.3748/wjg.v29.i28.4397 37576705
    [Google Scholar]
  30. Lv H. Mu Y. Zhang C. Zhao M. Jiang P. Xiao S. Sun H. Wu N. Sun D. Jin Y. Comparative analysis of single-cell transcriptome reveals heterogeneity and commonality in the immune microenvironment of colorectal cancer and inflammatory bowel disease. Front. Immunol. 2024 15 1356075 10.3389/fimmu.2024.1356075 38529274
    [Google Scholar]
  31. Stolfi C. De Simone V. Pallone F. Monteleone G. Mechanisms of action of non-steroidal anti-inflammatory drugs (NSAIDs) and mesalazine in the chemoprevention of colorectal cancer. Int. J. Mol. Sci. 2013 14 9 17972 17985 10.3390/ijms140917972 24005861
    [Google Scholar]
  32. Marchetti G. Dessì A. Dallocchio R. Tsamesidis I. Pau M.C. Turrini F.M. Pantaleo A. Syk inhibitors: New computational insights into their intraerythrocytic action in plasmodium falciparum malaria. Int. J. Mol. Sci. 2020 21 19 7009 10.3390/ijms21197009 32977621
    [Google Scholar]
  33. Liu N. Xu Z. Using ledock as a docking tool for computational drug design, 2019-1-1. IOP Publishing 2019 2019 12143
    [Google Scholar]
  34. Vancamelbeke M. Vanuytsel T. Farré R. Verstockt S. Ferrante M. Van Assche G. Rutgeerts P. Schuit F. Vermeire S. Arijs I. Cleynen I. Genetic and transcriptomic bases of intestinal epithelial barrier dysfunction in inflammatory bowel disease. Inflamm. Bowel Dis. 2017 23 10 1718 1729 10.1097/MIB.0000000000001246 28885228
    [Google Scholar]
  35. Garrido-Trigo A. Corraliza A.M. Veny M. Dotti I. Melón-Ardanaz E. Rill A. Crowell H.L. Corbí Á. Gudiño V. Esteller M. Álvarez-Teubel I. Aguilar D. Masamunt M.C. Killingbeck E. Kim Y. Leon M. Visvanathan S. Marchese D. Caratù G. Martin-Cardona A. Esteve M. Ordás I. Panés J. Ricart E. Mereu E. Heyn H. Salas A. Macrophage and neutrophil heterogeneity at single-cell spatial resolution in human inflammatory bowel disease. Nat. Commun. 2023 14 1 4506 10.1038/s41467‑023‑40156‑6 37495570
    [Google Scholar]
  36. Clough E. Barrett T. The gene expression omnibus database. Methods Mol. Biol. 2016 1418 93 110 10.1007/978‑1‑4939‑3578‑9_5 27008011
    [Google Scholar]
  37. Bisht A. Tewari D. Kumar S. Chandra S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol. Divers. 2024 28 3 1743 1763 10.1007/s11030‑023‑10684‑w 37439907
    [Google Scholar]
  38. Li S. Nie H. Huo Z. Yan X. Transcriptomic signatures related to the immune priming of Ruditapes philippinarum in response to the re-infection of Vibrio anguillarum. Fish Shellfish Immunol. 2025 161 110263 10.1016/j.fsi.2025.110263 40064211
    [Google Scholar]
  39. Qiu Q. Tong X. Zhu M. Liu Z. Pang H. Li L. Feng Y. Hu X. Gong C. Changes in gene expression levels caused by H3K9me3/H3K9ac modifications are associated with BmCPV infection in Bombyx mori. Virulence 2025 16 1 2510535 10.1080/21505594.2025.2510535 40418637
    [Google Scholar]
  40. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  41. Yu Z. Wang R. Dai T. Guo Y. Tian Z. Zhu Y. Chen J. Yu Y. Identification of hub genes and key pathways in arsenic-treated rice (Oryza sativa L.) based on 9 topological analysis methods of CytoHubba. Environ. Health Prev. Med. 2024 29 0 41 10.1265/ehpm.24‑00095 39111872
    [Google Scholar]
  42. Ashburner M. Ball C.A. Blake J.A. Botstein D. Butler H. Cherry J.M. Davis A.P. Dolinski K. Dwight S.S. Eppig J.T. Harris M.A. Hill D.P. Issel-Tarver L. Kasarskis A. Lewis S. Matese J.C. Richardson J.E. Ringwald M. Rubin G.M. Sherlock G. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000 25 1 25 29 10.1038/75556 10802651
    [Google Scholar]
  43. Ogata H. Goto S. Sato K. Fujibuchi W. Bono H. Kanehisa M. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999 27 1 29 34 10.1093/nar/27.1.29 9847135
    [Google Scholar]
  44. Reimand J. Isserlin R. Voisin V. Kucera M. Tannus-Lopes C. Rostamianfar A. Wadi L. Meyer M. Wong J. Xu C. Merico D. Bader G.D. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 2019 14 2 482 517 10.1038/s41596‑018‑0103‑9 30664679
    [Google Scholar]
  45. Hu Y. Wang Y. Zhi L. Yu L. Hu X. Shen Y. Du W. SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning. Int. J. Biol. Macromol. 2024 283 Pt 2 137789 10.1016/j.ijbiomac.2024.137789 39557273
    [Google Scholar]
  46. Wang J. Li H. Xue Y. Zhang Y. Ma X. Zhou C. Rong L. Zhang Y. Wang Y. Fang Y. Cell communication pathway prognostic model identified detrimental neurodevelopmental pathways in neuroblastoma. Neoplasia 2024 52 100997 10.1016/j.neo.2024.100997 38669760
    [Google Scholar]
  47. Pires D.E.V. Blundell T.L. Ascher D.B. Pkcsm: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  48. Zhang L. Ai H. Chen W. Yin Z. Hu H. Zhu J. Zhao J. Zhao Q. Liu H. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Sci. Rep. 2017 7 1 2118 10.1038/s41598‑017‑02365‑0 28522849
    [Google Scholar]
  49. Lucido M.J. Orlando B.J. Vecchio A.J. Malkowski M.G. Crystal structure of aspirin-acetylated human cyclooxygenase-2: Insight into the formation of products with reversed stereochemistry. Biochemistry 2016 55 8 1226 1238 10.1021/acs.biochem.5b01378 26859324
    [Google Scholar]
  50. Orlando B.J. Malkowski M.G. Substrate-selective inhibition of cyclooxygeanse-2 by fenamic acid derivatives is dependent on peroxide tone. J. Biol. Chem. 2016 291 29 15069 15081 10.1074/jbc.M116.725713 27226593
    [Google Scholar]
  51. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. Autodock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  52. Maia E.H.B. Campos V.A. dos Reis Santos B. Costa M.S. Lima I.G. Greco S.J. Ribeiro R.I.M.A. Munayer F.M. da Silva A.M. Taranto A.G. Octopus: A platform for the virtual high-throughput screening of a pool of compounds against a set of molecular targets. J. Mol. Model. 2017 23 1 26 10.1007/s00894‑016‑3184‑9 28064377
    [Google Scholar]
  53. Laskowski R.A. Swindells M.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 2011 51 10 2778 2786 10.1021/ci200227u 21919503
    [Google Scholar]
  54. Zhou J. Hu J. Liu J. Zhang W. Elucidating the gastroprotective mechanisms of Imperata cylindrica Beauv.var. major (Nees) C.E.Hubb through UHPLC-MS/MS and systems network pharmacology. Sci. Rep. 2024 14 1 27815 10.1038/s41598‑024‑79483‑z 39537788
    [Google Scholar]
  55. Kristanti A.N. Aminaha N.S. Siswanto I. Wardana A.P. Abdjan M.I. Khoirunisak A.R. Noviana E. Synthesis, pharmacokinetic, molecular docking, and molecular dynamics simulation of 2-styrylchromone derivatives as potential inhibitor of human kinesin eg5. Engineered Science 2024 30 1168 10.30919/es1168
    [Google Scholar]
  56. Parigi T.L. D’Amico F. Abreu M.T. Dignass A. Dotan I. Magro F. Griffiths A.M. Jairath V. Iacucci M. Mantzaris G.J. O’Morain C. Reinisch W. Sachar D.B. Turner D. Yamamoto T. Rubin D.T. Peyrin-Biroulet L. Ghosh S. Danese S. Difficult-to-treat inflammatory bowel disease: Results from an international consensus meeting. Lancet Gastroenterol. Hepatol. 2023 8 9 853 859 10.1016/S2468‑1253(23)00154‑1 37423233
    [Google Scholar]
  57. Kelsen J.R. Russo P. Sullivan K.E. Early-onset inflammatory bowel disease. Immunol. Allergy Clin. North Am. 2019 39 1 63 79 10.1016/j.iac.2018.08.008 30466773
    [Google Scholar]
  58. Neurath M.F. Strategies for targeting cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 2024 24 8 559 576 10.1038/s41577‑024‑01008‑6 38486124
    [Google Scholar]
  59. Kotla N.G. Rochev Y. IBD disease-modifying therapies: Insights from emerging therapeutics. Trends Mol. Med. 2023 29 3 241 253 10.1016/j.molmed.2023.01.001 36720660
    [Google Scholar]
  60. Kang Q. He L. Zhang Y. Zhong Z. Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. Phytomedicine 2024 130 155684 10.1016/j.phymed.2024.155684 38788391
    [Google Scholar]
  61. Frank D.N. St Amand A.L. Feldman R.A. Boedeker E.C. Harpaz N. Pace N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007 104 34 13780 13785 10.1073/pnas.0706625104 17699621
    [Google Scholar]
  62. Bharti S. Bharti M. The business of t cell subsets and cytokines in the immunopathogenesis of inflammatory bowel disease. Cureus 2022 14 7 27290 10.7759/cureus.27290 36039239
    [Google Scholar]
  63. Cambier S. Gouwy M. Proost P. The chemokines CXCL8 and CXCL12: Molecular and functional properties, role in disease and efforts towards pharmacological intervention. Cell. Mol. Immunol. 2023 20 3 217 251 10.1038/s41423‑023‑00974‑6 36725964
    [Google Scholar]
  64. Li T. Wang C. Liu Y. Li B. Zhang W. Wang L. Yu M. Zhao X. Du J. Zhang J. Dong Z. Jiang T. Xie R. Ma R. Fang S. Zhou J. Shi J. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J. Crohn’s Colitis 2020 14 2 240 253 10.1093/ecco‑jcc/jjz132 31325355
    [Google Scholar]
  65. Tao S. Duanmu Y. Dong H. Tian J. Ni Y. Zhao R. A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Vet. Res. 2014 10 1 235 10.1186/s12917‑014‑0235‑2 25256013
    [Google Scholar]
  66. Zhou G. Yu L. Fang L. Yang W. Yu T. Miao Y. Chen M. Wu K. Chen F. Cong Y. Liu Z. CD177 + neutrophils as functionally activated neutrophils negatively regulate IBD. Gut 2018 67 6 1052 1063 10.1136/gutjnl‑2016‑313535 28468761
    [Google Scholar]
  67. Banerjee A. Bizzaro D. Burra P. Di Liddo R. Pathak S. Arcidiacono D. Cappon A. Bo P. Conconi M.T. Crescenzi M. Pinna C.M.A. Parnigotto P.P. Alison M.R. Sturniolo G.C. D’Incà R. Russo F.P. Umbilical cord mesenchymal stem cells modulate dextran sulfate sodium induced acute colitis in immunodeficient mice. Stem Cell Res. Ther. 2015 6 1 79 10.1186/s13287‑015‑0073‑6 25890182
    [Google Scholar]
  68. Ónody A. Veres-Székely A. Pap D. Rokonay R. Szebeni B. Sziksz E. Oswald F. Veres G. Cseh Á. Szabó A.J. Vannay Á. Interleukin-24 regulates mucosal remodeling in inflammatory bowel diseases. J. Transl. Med. 2021 19 1 237 10.1186/s12967‑021‑02890‑7 34078403
    [Google Scholar]
  69. Huang R. Wang W. Chen Z. Chai J. Qi Q. Zheng H. Chen B. Wu H. Liu H. Identifying immune cell infiltration and effective diagnostic biomarkers in Crohn’s disease by bioinformatics analysis. Front. Immunol. 2023 14 1162473 10.3389/fimmu.2023.1162473 37622114
    [Google Scholar]
  70. Kamiya K. Tanaka Y. Endang H. Umar M. Satake T. Chemical constituents of Morinda citrifolia fruits inhibit copper-induced low-density lipoprotein oxidation. J. Agric. Food Chem. 2004 52 19 5843 5848 10.1021/jf040114k 15366830
    [Google Scholar]
  71. Vochyánová Z. Pokorná M. Rotrekl D. Smékal V. Fictum P. Suchý P. Gajdziok J. Šmejkal K. Hošek J. Prenylated flavonoid morusin protects against TNBS-induced colitis in rats. PLoS One 2017 12 8 0182464 10.1371/journal.pone.0182464 28797051
    [Google Scholar]
  72. Widsten P. Liiti T. Immonen K. Borrega M. Tamminen T. Potential of lignin as antioxidant for thermoplastics and other materials. Lignin 2020 1 11 19
    [Google Scholar]
  73. Gilliland A. Chan J.J. De Wolfe T.J. Yang H. Vallance B.A. Pathobionts in inflammatory bowel disease: Origins, underlying mechanisms, and implications for clinical care. Gastroenterology 2024 166 1 44 58 10.1053/j.gastro.2023.09.019 37734419
    [Google Scholar]
  74. Foppa C. Rizkala T. Repici A. Hassan C. Spinelli A. Microbiota and IBD: Current knowledge and future perspectives. Dig. Liver Dis. 2024 56 6 911 922 10.1016/j.dld.2023.11.015 38008696
    [Google Scholar]
/content/journals/cad/10.2174/0115734099420555251125065850
Loading
/content/journals/cad/10.2174/0115734099420555251125065850
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test