Skip to content
2000
image of Exploring the Mechanism of Qigesan in Treating Esophageal Carcinoma Based on Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation

Abstract

Background

Qigesan (QGS) is a traditional Chinese herbal medicine used for the treatment of esophageal carcinoma (EC) and possesses anti-cancer properties. However, the mechanism of QGS in the treatment of EC remains unclear.

Objectives

This study aimed to investigate the molecular basis of QGS in the treatment of EC and establish a scientific foundation for its application.

Methods

This study employed a multifaceted approach-including network pharmacology, molecular docking, and molecular dynamics simulations-to investigate the therapeutic mechanisms of QGS in EC. By leveraging a comprehensive array of databases such as TCMSP, HERB, TTD, OMIM, GeneCards, and DrugBank, we systematically identified potential bioactive components and their corresponding targets related to QGS, as well as targets associated with EC.

Results

271 overlapping targets of QGS and EC were obtained. Network pharmacology analysis identified eight hub targets (TP53, AKT1, IL6, STAT3, TNF, IL1B, EGFR, and CTNNB1) mediating the effects of QGS through dysregulated pathways, including PI3K-Akt signaling, apoptosis regulation, AGE-RAGE, and IL-17 signaling. Molecular docking revealed that three QGS-derived compounds-peimisine, salvianolic acid J, and songbeinone- exhibited high binding affinities for multiple hub targets. These compounds concomitantly inhibit the MAPK/NF-κB pathways while activating cell cycle regulation, DNA repair, and apoptosis, suggesting a multi-target therapeutic mechanism against esophageal carcinoma.

Discussion

QGS, a TCM formulation, has been extensively applied in the clinical treatment of EC for a long time and has been demonstrated to relieve esophageal obstruction. Nevertheless, the exact active components within QGS and their underlying molecular mechanisms remain elusive. In this study, network pharmacology, molecular docking, and MD simulation were employed to investigate the potential molecular mechanisms by which QGS exerts its therapeutic effects in the treatment of EC.

Conclusion

These findings provide a comprehensive elucidation of the multi-component, multi-target therapeutic strategy employed by QGS in the treatment of EC, laying a solid theoretical foundation for subsequent pharmacological development and clinical validation.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099414317251126094602
2026-01-12
2026-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099414317251126094602/BMS-CCADD-2025-126.html?itemId=/content/journals/cad/10.2174/0115734099414317251126094602&mimeType=html&fmt=ahah

References

  1. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 10.3322/caac.21871 39817679
    [Google Scholar]
  2. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  3. Arnold M. Ferlay J. van Berge Henegouwen M.I. Soerjomataram I. Global burden of oesophageal and gastric cancer by histology and subsite in 2018. Gut 2020 69 9 1564 1571 10.1136/gutjnl‑2020‑321600 32606208
    [Google Scholar]
  4. Arnold M. Rutherford M.J. Bardot A. Ferlay J. Andersson T.M.L. Myklebust T.Å. Tervonen H. Thursfield V. Ransom D. Shack L. Woods R.R. Turner D. Leonfellner S. Ryan S. Saint-Jacques N. De P. McClure C. Ramanakumar A.V. Stuart-Panko H. Engholm G. Walsh P.M. Jackson C. Vernon S. Morgan E. Gavin A. Morrison D.S. Huws D.W. Porter G. Butler J. Bryant H. Currow D.C. Hiom S. Parkin D.M. Sasieni P. Lambert P.C. Møller B. Soerjomataram I. Bray F. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019 20 11 1493 1505 10.1016/S1470‑2045(19)30456‑5 31521509
    [Google Scholar]
  5. Wang Y. Yang W. Wang Q. Zhou Y. Mechanisms of esophageal cancer metastasis and treatment progress. Front. Immunol. 2023 14 1206504 10.3389/fimmu.2023.1206504 37359527
    [Google Scholar]
  6. Baba Y. Tajima K. Yoshimura K. Intestinal and esophageal microbiota in esophageal cancer development and treatment. Gut Microbes 2025 17 1 2505118 10.1080/19490976.2025.2505118 40376843
    [Google Scholar]
  7. Chen X. Cheng G. Zhu L. Liu T. Yang X. Liu R. Ou Z. Zhang S. Tan W. Lin D. Wu C. Alarmin S100A8 imparts chemoresistance of esophageal cancer by reprogramming cancer-associated fibroblasts. Cell Rep. Med. 2024 5 6 101576 10.1016/j.xcrm.2024.101576 38776909
    [Google Scholar]
  8. Morgan E. Soerjomataram I. Rumgay H. Coleman H.G. Thrift A.P. Vignat J. Laversanne M. Ferlay J. Arnold M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New Estimates From GLOBOCAN 2020. Gastroenterology 2022 163 3 649 658.e2 10.1053/j.gastro.2022.05.054 35671803
    [Google Scholar]
  9. Xie Y.Q. Yan F.N. Yu L.H. Yan H.W. Kong Y.X. Yang Z.Y. Mechanism of Shashen-Maidong herb pair in treating hepatocellular carcinoma using network pharmacology and experimental validation. J. Ethnopharmacol. 2025 337 Pt 3 118954 10.1016/j.jep.2024.118954 39419302
    [Google Scholar]
  10. Jiang Y.L. Xun Y. Molecular mechanism of Salvia miltiorrhiza in the treatment of colorectal cancer based on network pharmacology and molecular docking technology. Drug Des. Devel. Ther. 2024 18 425 441 10.2147/DDDT.S443102 38370566
    [Google Scholar]
  11. Qin L. Huang D. Huang J. Qin F. Huang H. Integrated analysis and finding reveal anti–liver cancer targets and mechanisms of pachyman (Poria cocos Polysaccharides). Front. Pharmacol. 2021 12 742349 10.3389/fphar.2021.742349 34603055
    [Google Scholar]
  12. Li R. Xiao M. Li J. Zhao Q. Wang M. Zhu Z. Transcriptome analysis of CYP450 family members in Fritillaria cirrhosa D. Don and profiling of key CYP450s related to isosteroidal alkaloid biosynthesis. Genes 2023 14 1 219 10.3390/genes14010219 36672960
    [Google Scholar]
  13. Liu F. Liang Y. Sun R. Yang W. Liang Z. Gu J. Zhao F. Tang D. Astragalus mongholicus Bunge and Curcuma aromatica Salisb. inhibits liver metastasis of colon cancer by regulating EMT via the CXCL8/CXCR2 axis and PI3K/AKT/mTOR signaling pathway. Chin. Med. 2022 17 1 91 10.1186/s13020‑022‑00641‑4 35922850
    [Google Scholar]
  14. Feng L. Wang Z. Lei Z. Zhang X. Zhai B. Sun J. Guo D. Wang D. Luan F. Zou J. Shi Y. Amomum villosum Lour.: An insight into ethnopharmacological, phytochemical, and pharmacological overview. J. Ethnopharmacol. 2024 335 118615 10.1016/j.jep.2024.118615 39069030
    [Google Scholar]
  15. Zheng H. Han L. Shi W. Fang X. Hong Y. Cao Y. Research advances in lotus leaf as chinese dietary herbal medicine. Am. J. Chin. Med. 2022 50 6 1423 1445 10.1142/S0192415X22500616 35770727
    [Google Scholar]
  16. Kong L. Wu Z. Zhao Y. Lu X. Shi H. Liu S. Li J. Qigesan reduces the motility of esophageal cancer cells via inhibiting Gas6/Axl and NF-κB expression. Biosci. Rep. 2019 39 6 BSR20190850 10.1042/BSR20190850 31110076
    [Google Scholar]
  17. Shi H. Shi D. Wu Y. Shen Q. Li J. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett. 2016 380 1 184 190 10.1016/j.canlet.2016.06.015 27345741
    [Google Scholar]
  18. Zhang Y.S. Shen Q. Li, J Traditional Chinese medicine targeting apoptotic mechanisms for esophageal cancer therapy. Acta Pharmacol. Sin. 2016 37 3 295 302 10.1038/aps.2015.116 26707140
    [Google Scholar]
  19. Kong L. Lu X. Chen X. Wu Y. Zhang Y. Shi H. Li J. Qigesan inhibits esophageal cancer cell invasion and migration by inhibiting Gas6/Axl-induced epithelial-mesenchymal transition. Aging 2020 12 10 9714 9725 10.18632/aging.103238 32432570
    [Google Scholar]
  20. Shi H. Deng L. Zhou Y. Yu H. Huang X. Chen M. Lei Y. Dong J. Network pharmacology and experiments in vivo and in vitro reveal that the Jia-Wei-Bu-Shen-Yi-Qi formula (JWBSYQF) and its active ingredient baicalein ameliorate BLM-induced lung fibrosis in mice via PI3K/Akt signaling pathway. J. Ethnopharmacol. 2023 315 116691 10.1016/j.jep.2023.116691 37247682
    [Google Scholar]
  21. Zheng M. Zhang R. Yang X. Wang F. Guo X. Li L. Wang J. Shi Y. Miao S. Quan W. Ma S. Shi X. Integrating network pharmacology, molecular docking, and bioinformatics to explore the mechanism of sparganii rhizoma in the treatment of laryngeal cancer. Mol. Divers. 2025 10.1007/s11030‑025‑11142‑5 40009149
    [Google Scholar]
  22. Riaz R. Parveen S. Shafiq N. Ali A. Rashid M. Virtual screening, ADME prediction, drug-likeness, and molecular docking analysis of Fagonia indica chemical constituents against antidiabetic targets. Mol. Divers. 2025 29 2 1139 1160 10.1007/s11030‑024‑10897‑7 39012565
    [Google Scholar]
  23. Hasan R. Alshammari A. Albekairi N.A. Bhuia M.S. Afroz M. Chowdhury R. Khan M.A. Ansari S.A. Ansari I.A. Mubarak M.S. Islam M.T. Antiemetic activity of abietic acid possibly through the 5HT3 and muscarinic receptors interaction pathways. Sci. Rep. 2024 14 1 6642 10.1038/s41598‑024‑57173‑0 38503897
    [Google Scholar]
  24. Jiang W. Zhang B. Xu J. Xue L. Wang L. Current status and perspectives of esophageal cancer: A comprehensive review. Cancer Commun. 2025 45 3 281 331 10.1002/cac2.12645 39723635
    [Google Scholar]
  25. Zhang X. Wang Y. Meng L. Comparative genomic analysis of esophageal squamous cell carcinoma and adenocarcinoma: New opportunities towards molecularly targeted therapy. Acta Pharm. Sin. B 2022 12 3 1054 1067 10.1016/j.apsb.2021.09.028 35530133
    [Google Scholar]
  26. Luo Q. Du R. Liu W. Huang G. Dong Z. Li X. PI3K/Akt/mTOR signaling pathway: Role in esophageal squamous cell carcinoma, regulatory mechanisms and opportunities for targeted therapy. Front. Oncol. 2022 12 852383 10.3389/fonc.2022.852383 35392233
    [Google Scholar]
  27. Chen M.F. Chen P.T. Lu M.S. Lin P.Y. Chen W.C. Lee K.D. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol. Cancer 2013 12 1 26 10.1186/1476‑4598‑12‑26 23561329
    [Google Scholar]
  28. Voronov E. Carmi Y. Apte R.N. The role IL-1 in tumor-mediated angiogenesis. Front. Physiol. 2014 5 114 10.3389/fphys.2014.00114 24734023
    [Google Scholar]
  29. Zhou J. Zheng S. Liu T. Liu Q. Chen Y. Tan D. Ma R. Lu X. IL‐1β from M2 macrophages promotes migration and invasion of ESCC cells enhancing epithelial‐mesenchymal transition and activating NF‐κB signaling pathway. J. Cell. Biochem. 2018 119 8 7040 7052 10.1002/jcb.26918 29737564
    [Google Scholar]
  30. Forkasiewicz A. Stach W. Wierzbicki J. Stach K. Tabola R. Hryniewicz-Jankowska A. Augoff K. Effect of LDHA inhibition on TNF-α-induced cell migration in esophageal cancers. Int. J. Mol. Sci. 2022 23 24 16062 10.3390/ijms232416062 36555705
    [Google Scholar]
  31. Xie C. Jing Z. Luo H. Jiang W. Ma L. Hu W. Zheng A. Li D. Ding L. Zhang H. Xie C. Lian X. Du D. Chen M. Bian X. Tan B. Xia B. Xie R. Liu Q. Wang L. Wu S. Chemoradiotherapy with extended nodal irradiation and/or erlotinib in locally advanced oesophageal squamous cell cancer: Long-term update of a randomised phase 3 trial. Br. J. Cancer 2020 123 11 1616 1624 10.1038/s41416‑020‑01054‑6 32958820
    [Google Scholar]
  32. Fatehi Hassanabad A. Chehade R. Breadner D. Raphael J. Esophageal carcinoma: Towards targeted therapies. Cell. Oncol. 2020 43 2 195 209 10.1007/s13402‑019‑00488‑2 31848929
    [Google Scholar]
  33. Jhansirani N. Devappa V. Sangeetha C.G. Sridhara S. Shankarappa K.S. Mohanraj M. Identification of potential phytochemical/antimicrobial agents against Pseudoperonospora cubensis causing downy mildew in cucumber through in-silico docking. Plants 2023 12 11 2202 10.3390/plants12112202 37299181
    [Google Scholar]
  34. Hsin K.Y. Ghosh S. Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 2013 8 12 83922 10.1371/journal.pone.0083922 24391846
    [Google Scholar]
  35. Jiang M. Li C. Mao C. Yu H. Zhou Y. Pu S. Li R. Liao Y. Zhang D. Yang P. Li M. Li M. The MAPK/ERK signaling pathway involved in Raddeanin A induces apoptosis via the mitochondrial pathway and G2 phase arrest in multiple myeloma. Sci. Rep. 2024 14 1 29061 10.1038/s41598‑024‑76465‑z 39580496
    [Google Scholar]
  36. Xiao F. Yang M. Xu Y. Vongsangnak W. Comparisons of prostate cancer inhibitors abiraterone and TOK-001 binding with CYP17A1 through molecular dynamics. Comput. Struct. Biotechnol. J. 2015 13 520 527 10.1016/j.csbj.2015.10.001 26682016
    [Google Scholar]
  37. Ghate S.D. Pinto L. Alva S. Srinivasa M.G. Vangala R.K. Naik P. Revanasiddappa B.C. Rao R.S.P. In silico identification of potential phytochemical inhibitors for mpox virus: Molecular docking, MD simulation, and ADMET studies. Mol. Divers. 2024 28 6 4067 4086 10.1007/s11030‑023‑10797‑2 38519803
    [Google Scholar]
  38. Walum E. Acute oral toxicity. Environ. Health Perspect. 1998 106 Suppl. 2 497 503 10.1289/ehp.98106497 9599698
    [Google Scholar]
  39. Guo H. Wang J. Peng G. Li P. Zhu M. A data mining-based study on medication rules of Chinese herbs to treat heart failure with preserved ejection fraction. Chin. J. Integr. Med. 2022 28 9 847 854 10.1007/s11655‑022‑2892‑5 35829954
    [Google Scholar]
  40. Chen Y. Jin H. Wen W. Xu Y. Zhang X. Yang J. Wang Y. Targeting RhoA expression with formononetin and salvianolic acid B to mitigate pancreatic cancer-associated endothelial cells changes. J. Ethnopharmacol. 2025 336 118711 10.1016/j.jep.2024.118711 39181286
    [Google Scholar]
  41. Ye Q.M. Ji X. Wang B. Yu M. Cai J. Zeng W. Chen W. Han F. Huang G. Zheng C. Construction and screening of fractional library of Salviae Miltiorrhizae Radix et Rhizoma for the rapid identification of active compounds against prostate cancer. J. Oncol. 2022 2022 1 9 10.1155/2022/9955834 35251179
    [Google Scholar]
  42. Yu S. Guo L. Yan B. Yuan Q. Shan L. Zhou L. Efferth T. Tanshinol suppresses osteosarcoma by specifically inducing apoptosis of U2-OS cells through p53-mediated mechanism. J. Ethnopharmacol. 2022 292 115214 10.1016/j.jep.2022.115214 35331874
    [Google Scholar]
  43. Wang X. Yang Y. Liu X. Gao X. Pharmacological properties of tanshinones, the natural products from Salvia miltiorrhiza. Adv. Pharmacol. 2020 87 43 70 10.1016/bs.apha.2019.10.001 32089238
    [Google Scholar]
  44. Li C.X. Xu Q. Jiang S.T. Liu D. Tang C. Yang W.L. Anticancer effects of salvianolic acid A through multiple signaling pathways (Review). Mol. Med. Rep. 2025 32 1 1 11 10.3892/mmr.2025.13541 40280109
    [Google Scholar]
  45. Guo S.S. Wang Z.G. Salvianolic acid B from Salvia miltiorrhiza bunge: A potential antitumor agent. Front. Pharmacol. 2022 13 1042745 10.3389/fphar.2022.1042745 36386172
    [Google Scholar]
  46. Chen T. Zhong F. Yao C. Chen J. Xiang Y. Dong J. Yan Z. Ma Y. A systematic review on traditional uses, sources, phytochemistry, pharmacology, pharmacokinetics, and toxicity of fritillariae cirrhosae bulbus. Evid. Based Complement. Alternat. Med. 2020 2020 1 1536534 10.1155/2020/1536534 33273948
    [Google Scholar]
  47. Li H.J. Jiang Y. Li P. Chemistry, bioactivity and geographical diversity of steroidal alkaloids from the Liliaceae family. Nat. Prod. Rep. 2006 23 5 735 752 10.1039/b609306j 17003907
    [Google Scholar]
  48. Wu Z. Li M. Hong Y. Chen L. Xu C. Zhong Q. Liang H. Fang W.T. Zhang X. Mai C. Zhang E. YiQiChuTan formula (YQCTF) inhibit the progression of non-small cell lung cancer via down-regulating EGFR/ITGB2 signaling: Triangulated evidence from network pharmacology, proteomic profiling, and experimental validation. Phytomedicine 2025 144 156950 10.1016/j.phymed.2025.156950 40505482
    [Google Scholar]
  49. Zhou A. Li X. Zou J. Wu L. Cheng B. Wang J. Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking. Mol. Divers. 2024 28 2 787 804 10.1007/s11030‑023‑10620‑y 36843054
    [Google Scholar]
  50. Levine A.J. p53: 800 million years of evolution and 40 years of discovery. Nat. Rev. Cancer 2020 20 8 471 480 10.1038/s41568‑020‑0262‑1 32404993
    [Google Scholar]
  51. Zhong L. Li H. Chang W. Ao Y. Wen Z. Chen Y. TP53 Mutations in Esophageal Squamous Cell Carcinoma. Front. Biosci. 2023 28 9 219 10.31083/j.fbl2809219 37796679
    [Google Scholar]
  52. Weh K.M. Howard C.L. Zhang Y. Tripp B.A. Clarke J.L. Howell A.B. Rubenstein J.H. Abrams J.A. Westerhoff M. Kresty L.A. Prebiotic proanthocyanidins inhibit bile reflux-induced esophageal adenocarcinoma through reshaping the gut microbiome and esophageal metabolome. JCI Insight 2024 9 6 168112 10.1172/jci.insight.168112 38329812
    [Google Scholar]
  53. Feng R. Yin Y. Wei Y. Li Y. Li L. Zhu R. Yu X. Liu Y. Zhao Y. Liu Z. Mutant p53 activates hnRNPA2B1-AGAP1-mediated exosome formation to promote esophageal squamous cell carcinoma progression. Cancer Lett. 2023 562 216154 10.1016/j.canlet.2023.216154 37030635
    [Google Scholar]
  54. Liebl M.C. Hofmann T.G. The role of p53 signaling in colorectal cancer. Cancers 2021 13 9 2125 10.3390/cancers13092125 33924934
    [Google Scholar]
  55. Hu Z. Sui Q. Jin X. Shan G. Huang Y. Yi Y. Zeng D. Zhao M. Zhan C. Wang Q. Lin Z. Lu T. Chen Z. IL6-STAT3-C/EBPβ-IL6 positive feedback loop in tumor-associated macrophages promotes the EMT and metastasis of lung adenocarcinoma. J. Exp. Clin. Cancer Res. 2024 43 1 63 10.1186/s13046‑024‑02989‑x 38424624
    [Google Scholar]
  56. Soler M.F. Abaurrea A. Azcoaga P. Araujo A.M. Caffarel M.M. New perspectives in cancer immunotherapy: Targeting IL-6 cytokine family. J. Immunother. Cancer 2023 11 11 007530 10.1136/jitc‑2023‑007530 37945321
    [Google Scholar]
  57. Xie C. Chen X. Chen Y. Wang X. Zuo J. Zheng A. Luo Z. Cheng X. Zhong S. Jiang J. Du J. Zhao Y. Jiang P. Zhang W. Chen D. Pan H. Shen L. Zhu B. Zhou Q. Xu Y. Tang K.F. Mutual communication between radiosensitive and radioresistant esophageal cancer cells modulates their radiosensitivity. Cell Death Dis. 2023 14 12 846 10.1038/s41419‑023‑06307‑9 38114473
    [Google Scholar]
  58. Qiao Y. Zhang C. Li A. Wang D. Luo Z. Ping Y. Zhou B. Liu S. Li H. Yue D. Zhang Z. Chen X. Shen Z. Lian J. Li Y. Wang S. Li F. Huang L. Wang L. Zhang B. Yu J. Qin Z. Zhang Y. Correction: IL6 derived from cancer-associated fibroblasts promotes chemoresistance via CXCR7 in esophageal squamous cell carcinoma. Oncogene 2023 42 44 3287 3288 10.1038/s41388‑023‑02822‑3 37723312
    [Google Scholar]
  59. Yang D. Sun X. Wang H. Wistuba I.I. Wang H. Maitra A. Chen Y. TREM2 depletion in pancreatic cancer elicits pathogenic inflammation and accelerates tumor progression via enriching IL-1β+ macrophages. Gastroenterology 2025 168 6 1153 1169 10.1053/j.gastro.2025.01.244 39956331
    [Google Scholar]
  60. Rébé C. Ghiringhelli F. Interleukin-1β and cancer. Cancers 2020 12 7 1791 10.3390/cancers12071791 32635472
    [Google Scholar]
  61. Fang H.Y. Münch N.S. Schottelius M. Ingermann J. Liu H. Schauer M. Stangl S. Multhoff G. Steiger K. Gerngroß C. Jesinghaus M. Weichert W. Kühl A.A. Sepulveda A.R. Wester H.J. Wang T.C. Quante M. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s Dysplasia and Esophageal Adenocarcinoma. Clin. Cancer Res. 2018 24 5 1048 1061 10.1158/1078‑0432.CCR‑17‑1756 29208671
    [Google Scholar]
  62. Levantini E. Maroni G. Del Re M. Tenen D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 2022 85 253 275 10.1016/j.semcancer.2022.04.002 35427766
    [Google Scholar]
  63. Zhou J. Ji Q. Li Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: Underlying mechanisms and reversal strategies. J. Exp. Clin. Cancer Res. 2021 40 1 328 10.1186/s13046‑021‑02130‑2 34663410
    [Google Scholar]
  64. Tan L. Zhang J. Wang Y. Wang X. Wang Y. Zhang Z. Shuai W. Wang G. Chen J. Wang C. Ouyang L. Li W. Development of dual inhibitors targeting epidermal growth factor receptor in cancer therapy. J. Med. Chem. 2022 65 7 5149 5183 10.1021/acs.jmedchem.1c01714 35311289
    [Google Scholar]
  65. Moehler M. Maderer A. Thuss-Patience P.C. Brenner B. Meiler J. Ettrich T.J. Hofheinz R.D. Al-Batran S.E. Vogel A. Mueller L. Lutz M.P. Lordick F. Alsina M. Borchert K. Greil R. Eisterer W. Schad A. Slotta-Huspenina J. Van Cutsem E. Lorenzen S. Cisplatin and 5-fluorouracil with or without epidermal growth factor receptor inhibition panitumumab for patients with non-resectable, advanced or metastatic oesophageal squamous cell cancer: A prospective, open-label, randomised phase III AIO/EORTC trial (POWER). Ann. Oncol. 2020 31 2 228 235 10.1016/j.annonc.2019.10.018 31959339
    [Google Scholar]
  66. Bai M. Wang M. Deng T. Bai Y. Zang K. Miao Z. Gai W. Xie L. Ba Y. Safety and efficacy of anti-EGFR monoclonal antibody (SCT200) as second-line therapy in advanced esophageal squamous cell carcinoma. Cancer Biol. Med. 2022 19 1 1 10.20892/j.issn.2095‑3941.2021.0388 35014769
    [Google Scholar]
  67. Wang W. Ye L. Li H. Mao W. Xu X. Targeting esophageal carcinoma: Molecular mechanisms and clinical studies. MedComm 2024 5 11 10.1002/mco2.782 39415846
    [Google Scholar]
  68. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  69. Yu F. Yu C. Li F. Zuo Y. Wang Y. Yao L. Wu C. Wang C. Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 2021 6 1 307 10.1038/s41392‑021‑00701‑5 34456337
    [Google Scholar]
  70. Wang W. Shao F. Yang X. Wang J. Zhu R. Yang Y. Zhao G. Guo D. Sun Y. Wang J. Xue Q. Gao S. Gao Y. He J. Lu Z. Author Correction: METTL3 promotes tumour development by decreasing APC expression mediated by APC mRNA N6-methyladenosine-dependent YTHDF binding. Nat. Commun. 2021 12 1 4529 10.1038/s41467‑021‑24860‑9 34285242
    [Google Scholar]
  71. Wu D. He X. Wang W. Hu X. Wang K. Wang M. Long noncoding RNA SNHG12 induces proliferation, migration, epithelial–mesenchymal transition, and stemness of esophageal squamous cell carcinoma cells via post‐transcriptional regulation of BMI1 and CTNNB1. Mol. Oncol. 2020 14 9 2332 2351 10.1002/1878‑0261.12683 32239639
    [Google Scholar]
  72. Wang X. Gao Z. Liao J. Shang M. Li X. Yin L. Pu Y. Liu R. lncRNA UCA1 inhibits esophageal squamous-cell carcinoma growth by regulating the Wnt signaling pathway. J. Toxicol. Environ. Health A 2016 79 9-10 407 418 10.1080/15287394.2016.1176617 27267823
    [Google Scholar]
  73. Li S.J. Liang Z.R. Liu Z.C. Luo X.P. Li J.Y. Yu X.M. Huang X.Z. He Y. Xu T.Y. Xu J.J. Peng S.C. Song Y.X. He Y. Zhuang X.W. Zheng C.C. Zhang F. Lam A.K.Y. Dai W. He M.L. Liu B. Zhao Q. Lu G.L. Liu J.B. Wang Z.N. Li Z.G. Liu Z.X. Xu W.W. Li B. LIMK1 as a novel kinase of β‐Catenin promotes esophageal cancer metastasis by cooperating with CDK5. Adv. Sci. 2025 12 29 03223 10.1002/advs.202503223 40476449
    [Google Scholar]
  74. Ledinek Ž. Sobočan M. Knez J. The role of CTNNB1 in endometrial cancer. Dis. Markers 2022 2022 1 9 10.1155/2022/1442441 35531470
    [Google Scholar]
  75. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 10.19852/j.cnki.jtcm.20220408.003 35610020
    [Google Scholar]
/content/journals/cad/10.2174/0115734099414317251126094602
Loading
/content/journals/cad/10.2174/0115734099414317251126094602
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test