Skip to content
2000
image of A Comprehensive Strategy for Component Screening and Mechanism Determination of Paris Polyphylla Var. Yunnanensis in Anti-liver Cancer

Abstract

Introduction

Paris Polyphylla var. Yunnanensis (PY) is an anti-liver cancer TCM used in clinical practice, but its core components and anti-liver cancer mechanism remain unclear. This study combines animal experiments, network pharmacology, molecular docking, and cell verification to explore the core components and mechanisms of PY in combating liver cancer.

Methods

The blood-entry components of PY were obtained through UPLC-QE-MS. Subsequently, network pharmacology was employed to predict the core components of anti-liver cancer and their potential targets. Molecular docking was then used to verify binding between the core components and the targets. Finally, by calculating the inhibitory rate and value of the core ingredient on HepG2 cells, the anti-liver cancer activity of the core ingredient was evaluated.

Results

A total of 103 compounds were identified in the drug-containing serum of rats. Seven ingredients were obtained after screening. The components, targets, and pathways of PY's anti-liver cancer effect were predicted. 20-Hydroxyecdysone, parisyunnanoside B, paris saponin II, and dichotomin are considered the core components of PY's anti-liver cancer activity. The activity assay of the core components demonstrated that paris saponin II exhibited a high inhibitory effect on HepG2 cell proliferation in a concentration-dependent manner.

Discussion

This study reveals PY's anti-hepatocellular carcinoma mechanisms, informing clinical applications and future research on its constituents.

Conclusion

This study initially demonstrated that PY exerts therapeutic effects on liver cancer through multiple components, targets, and mechanisms, and elucidated its pharmacological basis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099413050251129115507
2026-01-12
2026-01-27
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099413050251129115507/BMS-CCADD-2025-123.html?itemId=/content/journals/cad/10.2174/0115734099413050251129115507&mimeType=html&fmt=ahah

References

  1. Taniguchi H. Liver cancer 2.0. Int. J. Mol. Sci. 2023 24 24 17275 10.3390/ijms242417275 38139103
    [Google Scholar]
  2. Galle P.R. Extended abstract: Management of liver cancer. Dig. Dis. 2016 34 4 438 439 10.1159/000444559 27170399
    [Google Scholar]
  3. Zhao W. Zheng X.D. Tang P.Y.Z. Li H.M. Liu X. Zhong J.J. Tang Y.J. Advances of antitumor drug discovery in traditional Chinese medicine and natural active products by using multi‐active components combination. Med. Res. Rev. 2023 43 5 1778 1808 10.1002/med.21963 37183170
    [Google Scholar]
  4. Rawat J.M. Pandey S. Rawat B. Rai N. Preeti P. Thakur A. Butola J.S. Bachheti R.K. Traditional uses, active ingredients, and biological activities of paris polyphylla smith: A comprehensive review of an important himalayan medicinal plant. J. Chem. 2023 2023 1 1 18 10.1155/2023/7947224
    [Google Scholar]
  5. Li J. Jia J. Zhu W. Chen J. Zheng Q. Li D. Therapeutic effects on cancer of the active ingredients in rhizoma paridis. Front. Pharmacol. 2023 14 1095786 10.3389/fphar.2023.1095786 36895945
    [Google Scholar]
  6. Ke F. Zhang R. Chen R. Guo X. Song C. Gao X. Zeng F. Liu Q. The role of Rhizoma Paridis saponins on anti-cancer: The potential mechanism and molecular targets. Heliyon 2024 10 17 e37323 10.1016/j.heliyon.2024.e37323 39296108
    [Google Scholar]
  7. Yang R. Gao W. Wang Z. Jian H. Peng L. Yu X. Xue P. Peng W. Li K. Zeng P. Polyphyllin I induced ferroptosis to suppress the progression of hepatocellular carcinoma through activation of the mitochondrial dysfunction via Nrf2/HO-1/GPX4 axis. Phytomedicine 2024 122 155135 10.1016/j.phymed.2023.155135 37856990
    [Google Scholar]
  8. Pang D. Yang C. Li C. Zou Y. Feng B. Li L. Polyphyllin II inhibits liver cancer cell proliferation, migration and invasion through downregulated cofilin activity and the AKT/NF-κB pathway Biol. Open 2020 9 2 bio.046854 10.1242/bio.046854
    [Google Scholar]
  9. Wang E. Wang M. Gao M. Probe substrates assay estimates the effect of polyphyllin H on the activity of cytochrome P450 enzymes in human liver microsomes. Pharmacol. Res. Perspect. 2024 12 5 e70002 10.1002/prp2.70002 39210686
    [Google Scholar]
  10. Li Q. He Z. Liu J. Wu J. Tan G. Jiang J. Su Z. Cao M. Paris polyphylla 26 triggers G2/M phase arrest and induces apoptosis in HepG2 cells via inhibition of the Akt signaling pathway. J. Int. Med. Res. 2019 47 4 1685 1695 10.1177/0300060519826823 30819018
    [Google Scholar]
  11. Li X. Liu Z. Liao J. Chen Q. Lu X. Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin. J. Nat. Med. 2023 21 5 323 332 10.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  12. Le Breton C. Coulouarn C. The molecular mechanisms underlying onset and progression of liver cancers. Cancers 2023 15 17 4383 10.3390/cancers15174383 37686658
    [Google Scholar]
  13. Zhao M. Xia W. Zhang P. Xie Q. Mu W. Tang L. Liu Z. Han L. Peng D. Ultra‐performance liquid chromatography‐quadrupole time‐of‐flight mass combined with UNIFI to study the mechanism of Tao Hong Si Wu Decoction in the treatment of postpartum blood stasis. J. Sep. Sci. 2024 47 5 2300871 10.1002/jssc.202300871 38471978
    [Google Scholar]
  14. Thakur U. Shashni S. Thakur N. Rana S.K. Singh A. A review on Paris polyphylla Smith: A vulnerable medicinal plant species of a global significance. J. Appl. Res. Med. Aromat. Plants 2023 33 100447 10.1016/j.jarmap.2022.100447
    [Google Scholar]
  15. Wu D.R. Yang X.W. Zhao Q. Wang L.X. Guo K. Ye X. Niu X.M. Li S.H. Liu Y. Exploration of the profiles of steroidal saponins from Rhizoma Paridis and their metabolites in rats by UPLC‐Q‐TOF‐MS/MS. Phytochem. Anal. 2024 35 4 621 633 10.1002/pca.3317 38191170
    [Google Scholar]
  16. Zhang Y. Hao R. Chen J. Li S. Huang K. Cao H. Farag M.A. Battino M. Daglia M. Capanoglu E. Zhang F. Sun Q. Xiao J. Sun Z. Guan X. Health benefits of saponins and its mechanisms: Perspectives from absorption, metabolism, and interaction with gut. Crit. Rev. Food Sci. Nutr. 2024 64 25 9311 9332 10.1080/10408398.2023.2212063 37216483
    [Google Scholar]
  17. Liu X. Kuang Y. Bian C. Hu S. Xie Y. Zhao B. Jin Y. Exploring the mechanism of action of herbal compounding in the treatment of myasthenia gravis based on network pharmacology. Biotechnol. Genet. Eng. Rev. 2024 40 2 1164 1179 10.1080/02648725.2023.2193048 36951554
    [Google Scholar]
  18. Shuvalov O. Kirdeeva Y. Fefilova E. Netsvetay S. Zorin M. Vlasova Y. Fedorova O. Daks A. Parfenyev S. Barlev N. 20-Hydroxyecdysone confers antioxidant and antineoplastic properties in human non-small cell lung cancer cells. Metabolites 2023 13 5 656 10.3390/metabo13050656 37233697
    [Google Scholar]
  19. Shuvalov O. Kirdeeva Y. Fefilova E. Daks A. Fedorova O. Parfenyev S. Nazarov A. Vlasova Y. Krasnov G.S. Barlev N.A. 20-Hydroxyecdysone boosts energy production and biosynthetic processes in non-transformed mouse cells. Antioxidants 2024 13 11 1349 10.3390/antiox13111349 39594491
    [Google Scholar]
  20. Li Z. Du X. Research progress and quality marker prediction analysis of Paris polyphylla var. yunnanensis. Chin. Tradit. Herbal Drugs 2023 54 09 3032 3048 10.7501/j.issn.0253‑2670.2023.09.035
    [Google Scholar]
  21. Liu D. Chen Y. Zhang M. Tian Y. Li Z. Yu D. Study on biotransformation of endophytic fungus to enhance saponins content and antitumour activity of Paridis Rhizoma. Chin. Tradit. Herbal Drugs 2022 53 14 4486 4492 10.7501/j.issn.0253‑2670.2022.14.027
    [Google Scholar]
  22. Pang D. Yang C. Li C. Zou Y. Feng B. Li L. Correction: Polyphyllin II inhibits liver cancer cell proliferation, migration and invasion through downregulated cofilin activity and the AKT/NF-κB pathway Biol. Open 2020 9 2 bio.046854 10.1242/bio.046854
    [Google Scholar]
  23. Beyazit Y. Kekilli M. Kurt M. Sayilir A. Tas A. Onal Í.K. Role of IL‐6 activated STAT3 and TNF expression in obesity‐associated hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2010 32 2 304 305 10.1111/j.1365‑2036.2010.04332.x 20636625
    [Google Scholar]
  24. Sun Y. Wu M. Sun S. Xie M. Jiang Z. Li W. Exploration on the mechanism of xiao’ai jiedu recipe for inhibiting tumor growth of hepatoma mice through IL-6/TNF-α/STAT3 pathway based on proteomics. Zhongyao Xinyao Yu Linchuang Yaoli 2023 34 11 1505 1513 10.19378/j.issn.1003‑9783.2023.11.003
    [Google Scholar]
  25. Redman-Rivera L.N. Shaver T.M. Jin H. Marshall C.B. Schafer J.M. Sheng Q. Hongo R.A. Beckermann K.E. Wheeler F.C. Lehmann B.D. Pietenpol J.A. Acquisition of aneuploidy drives mutant p53-associated gain-of-function phenotypes. Nat. Commun. 2021 12 1 5184 10.1038/s41467‑021‑25359‑z 34465782
    [Google Scholar]
  26. Dong Y. Lou C. Chen X. Wei W. Tao C. Han Q. Exploring the mechanism of Marsdenia tenacissima in the treatment of hepatocellular carcinoma based on network pharmacology. Journal of Pharmaceutical and Service 2023 41 10 600 609 10.12206/j.issn.2097‑2024.202212049
    [Google Scholar]
  27. Wang L. Cui M. Cheng D. Qu F. Yu J. Wei Y. Cheng L. Wu X. Liu X. miR-9-5p facilitates hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. Mol. Cell. Biochem. 2021 476 2 575 583 10.1007/s11010‑020‑03927‑z 33106914
    [Google Scholar]
  28. Baldissera V.D. Alves A.F. Almeida S. Porawski M. Giovenardi M. Hepatocellular carcinoma and estrogen receptors: Polymorphisms and isoforms relations and implications. Med. Hypotheses 2016 86 67 70 10.1016/j.mehy.2015.11.030 26804600
    [Google Scholar]
  29. Colombo F. Trombetta E. Cetrangolo P. Maggioni M. Razini P. De Santis F. Torrente Y. Prati D. Torresani E. Porretti L. Giant lysosomes as a chemotherapy resistance mechanism in hepatocellular carcinoma cells. PLoS One 2014 9 12 e114787 10.1371/journal.pone.0114787 25493932
    [Google Scholar]
  30. Ringelhan M. McKeating J.A. Protzer U. Viral hepatitis and liver cancer. Philos. Trans R Soc. Lond B Biol. Sci. 2017 372 1732 20170339 10.1098/rstb.2017.0339
    [Google Scholar]
  31. Jia J. Zhou X. Chu Q. Mechanisms and therapeutic prospect of the JAK-STAT signaling pathway in liver cancer. Mol. Cell. Biochem. 2025 480 1 1 17 10.1007/s11010‑024‑04983‑5 38519710
    [Google Scholar]
  32. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat. Rev. Cancer 2018 18 1 33 50 10.1038/nrc.2017.96 29147025
    [Google Scholar]
/content/journals/cad/10.2174/0115734099413050251129115507
Loading
/content/journals/cad/10.2174/0115734099413050251129115507
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test