Skip to content
2000
image of TOP-BIOCom: A Feature Fusion-based Prediction of Protein Complexes from PPI Networks

Abstract

Introduction

Protein-Protein Interactions (PPI) are crucial for cellular functions. Computational prediction of protein complexes from PPI networks is essential, yet traditional methods relying solely on network topology often lack biological features. Integrating topological and biological features can enhance prediction accuracy.

Methods

We proposed TOP-BIOCom, a machine learning-based approach that integrates feature fusion of novel topological, structural, and sequence-based features with the Embedding Lookup technique. The benchmark dataset was CYC2008, while the PPI network datasets were DIP and BioGrid. The performance evaluation measures precision, recall, and F-1 score were carried out to assess the efficiency of the TOP-BIOcom model and compared with the reported models.

Results

Our result with a novel feature fusion approach, demonstrated that the BioGrid PPI network dataset with Random Forest yielded an accuracy of 0.99, precision of 0.96, recall of 0.97, and an F1-score of 0.96. The model's validation accuracy was 0.99 and completed the task in 3.85 seconds. DIP dataset with LightGBM model achieved an accuracy of 0.95, with a precision of 0.88, a recall of 0.91, and an F1-score of 0.89. The validation accuracy matched the accuracy at 0.95.

Discussion

These results highlight the robustness of the proposed TOP-BIOcom model in predicting protein complexes from PPI networks with higher accuracy and faster execution. The proposed approach demonstrates superiority over existing methods, showing its effectiveness across different datasets and machine learning models.

Conclusion

These findings suggest that integrating topological and biological features can provide a holistic view of protein complexes enhancing prediction accuracy and aiding in drug discovery and understanding cellular mechanisms.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099408938251017040557
2025-10-31
2025-12-07
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099408938251017040557/BMS-CCADD-2025-HT19-6695-7.html?itemId=/content/journals/cad/10.2174/0115734099408938251017040557&mimeType=html&fmt=ahah

References

  1. Zahiri J. Emamjomeh A. Bagheri S. Ivazeh A. Mahdevar G. Sepasi Tehrani H. Mirzaie M. Fakheri B.A. Mohammad-Noori M. Protein complex prediction: A survey. Genomics 2020 112 1 174 183 10.1016/j.ygeno.2019.01.011 30660789
    [Google Scholar]
  2. Steinkamp R. Tsitsiridis G. Brauner B. Montrone C. Fobo G. Frishman G. Avram S. Oprea T.I. Ruepp A. CORUM in 2024: Protein complexes as drug targets. Nucleic Acids Res. 2025 53 D1 D651 D657 10.1093/nar/gkae1033 39526397
    [Google Scholar]
  3. Martino E. Chiarugi S. Margheriti F. Garau G. Mapping, structure and modulation of PPI. Front Chem. 2021 9 718405 10.3389/fchem.2021.718405 34692637
    [Google Scholar]
  4. Wei Y. Watada J. Wang Z. Topology unveiled: A new horizon for economic and financial modeling. Mathematics 2025 13 2 325 10.3390/math13020325
    [Google Scholar]
  5. Perez J.J. Perez R.A. Perez A. Computational modeling as a tool to investigate PPI: From drug design to tissue engineering. Front. Mol. Biosci. 2021 8 681617 10.3389/fmolb.2021.681617 34095231
    [Google Scholar]
  6. Rehman A.U. Khurshid B. Ali Y. Rasheed S. Wadood A. Ng H.L. Chen H.F. Wei Z. Luo R. Zhang J. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opin. Drug Discov. 2023 18 3 315 333 10.1080/17460441.2023.2171396 36715303
    [Google Scholar]
  7. Qiu Y. Li X. He X. Pu J. Zhang J. Lu S. Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur. J. Med. Chem. 2020 207 112764 10.1016/j.ejmech.2020.112764 32871340
    [Google Scholar]
  8. Nada H. Choi Y. Kim S. Jeong K.S. Meanwell N.A. Lee K. New insights into protein–protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct. Target. Ther. 2024 9 1 341 10.1038/s41392‑024‑02036‑3 39638817
    [Google Scholar]
  9. Rao V.S. Srinivas K. Sujini G.N. Kumar G.N.S. Protein-protein interaction detection: Methods and analysis. Int. J. Proteomics 2014 2014 1 1 12 10.1155/2014/147648 24693427
    [Google Scholar]
  10. Peng X. Wang J. Peng W. Wu F.X. Pan Y. Protein–protein interactions: Detection, reliability assessment and applications. Brief. Bioinform. 2016 18 5 bbw066 10.1093/bib/bbw066 27444371
    [Google Scholar]
  11. Bader G.D. Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003 4 1 2 10.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  12. Yuan Q. Chen J. Zhao H. Zhou Y. Yang Y. Structure-aware protein–protein interaction site prediction using deep graph convolutional network. Bioinformatics 2021 38 1 125 132 10.1093/bioinformatics/btab643 34498061
    [Google Scholar]
  13. Wang X. Zhang N. Zhao Y. Wang J. A new method for recognizing protein complexes based on protein interaction networks and GO terms. Front. Genet. 2021 12 792265 10.3389/fgene.2021.792265 34966415
    [Google Scholar]
  14. Shirmohammady N. Izadkhah H. Isazadeh A. PPI‐GA: A novel clustering algorithm to identify protein complexes within protein‐protein interaction networks using genetic algorithm. Complexity 2021 2021 1 2132516 10.1155/2021/2132516
    [Google Scholar]
  15. Zaki N. Singh H. Mohamed E.A. Identifying protein complexes in protein-protein interaction data using graph convolutional network. IEEE Access 2021 9 123717 123726 10.1109/ACCESS.2021.3110845
    [Google Scholar]
  16. Wang X. Zhang Y. Zhou P. Liu X. A supervised protein complex prediction method with network representation learning and gene ontology knowledge. BMC Bioinformatics 2022 23 1 300 10.1186/s12859‑022‑04850‑4 35879648
    [Google Scholar]
  17. You Z.H. Chan K.C.C. Hu P. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. PLoS One 2015 10 5 e0125811 10.1371/journal.pone.0125811 25946106
    [Google Scholar]
  18. Ding Y. Tang J. Guo F. Identification of protein–protein interactions via a novel matrix-based sequence representation model with amino acid contact information. Int. J. Mol. Sci. 2016 17 10 1623 10.3390/ijms17101623 27669239
    [Google Scholar]
  19. Kouhsar M. Zare-Mirakabad F. Jamali Y. WCOACH: Protein complex prediction in weighted PPI networks. Genes Genet. Syst. 2015 90 5 317 324 10.1266/ggs.15‑00032 26781082
    [Google Scholar]
  20. Dilmaghani S. Brust M.R. Ribeiro C.H.C. Kieffer E. Danoy G. Bouvry P. From communities to protein complexes: A local community detection algorithm on PPI networks. PLoS One 2022 17 1 e0260484 10.1371/journal.pone.0260484 35085263
    [Google Scholar]
  21. Omranian S. Nikoloski Z. CUBCO+: prediction of protein complexes based on min-cut network partitioning into biclique spanned subgraphs. Appl. Netw. Sci. 2022 7 1 71 10.1007/s41109‑022‑00508‑5
    [Google Scholar]
  22. Wang R. Liu G. Wang C. Identifying protein complexes based on an edge weight algorithm and core-attachment structure. BMC Bioinformatics 2019 20 1 471 10.1186/s12859‑019‑3007‑y 31521132
    [Google Scholar]
  23. Yong C. Maruyama O. Wong L. Discovery of small protein complexes from PPI networks with size-specific supervised weighting. BMC Syst. Biol. 2014 8 Suppl 5 S3.(Suppl. 5) 10.1186/1752‑0509‑8‑S5‑S3 25559663
    [Google Scholar]
  24. Bao W. Liu Y. Chen B. Oral_voting_transfer: Classification of oral microorganisms’ function proteins with voting transfer model. Front. Microbiol. 2024 14 1277121 10.3389/fmicb.2023.1277121 38384719
    [Google Scholar]
  25. Yuan R. Zhang J. Zhou J. Cong Q. Recent progress and future challenges in structure-based protein-protein interaction prediction. Mol. Ther. 2025 33 5 2252 2268 10.1016/j.ymthe.2025.04.003 40195117
    [Google Scholar]
  26. Xenarios I. Salwínski L. Duan X.J. Higney P. Kim S.M. Eisenberg D. DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002 30 1 303 305 10.1093/nar/30.1.303 11752321
    [Google Scholar]
  27. Oughtred R. Stark C. Breitkreutz B.J. Rust J. Boucher L. Chang C. Kolas N. O’Donnell L. Leung G. McAdam R. Zhang F. Dolma S. Willems A. Coulombe-Huntington J. Chatr-aryamontri A. Dolinski K. Tyers M. The BioGRID interaction database: 2019 update. Nucleic Acids Res. 2019 47 D1 D529 D541 10.1093/nar/gky1079 30476227
    [Google Scholar]
  28. Giurgiu M. Reinhard J. Brauner B. Dunger-Kaltenbach I. Fobo G. Frishman G. Montrone C. Ruepp A. CORUM: The comprehensive resource of mammalian protein complexes—2019. Nucleic Acids Res. 2019 47 D1 D559 D563 10.1093/nar/gky973 30357367
    [Google Scholar]
  29. Pu S. Wong J. Turner B. Cho E. Wodak S.J. Up-to-date catalogues of yeast protein complexes. Nucleic Acids Res. 2009 37 3 825 831 10.1093/nar/gkn1005 19095691
    [Google Scholar]
  30. Pagel P. Kovac S. Oesterheld M. Brauner B. Dunger-Kaltenbach I. Frishman G. Montrone C. Mark P. Stümpflen V. Mewes H.W. Ruepp A. Frishman D. The MIPS mammalian protein–protein interaction database. Bioinformatics 2005 21 6 832 834 10.1093/bioinformatics/bti115 15531608
    [Google Scholar]
  31. Keshava Prasad T.S. Goel R. Kandasamy K. Keerthikumar S. Kumar S. Mathivanan S. Telikicherla D. Raju R. Shafreen B. Venugopal A. Balakrishnan L. Marimuthu A. Banerjee S. Somanathan D.S. Sebastian A. Rani S. Ray S. Harrys Kishore C.J. Kanth S. Ahmed M. Kashyap M.K. Mohmood R. Ramachandra Y.L. Krishna V. Rahiman B.A. Mohan S. Ranganathan P. Ramabadran S. Chaerkady R. Pandey A. Human Protein reference database--2009 update. Nucleic Acids Res. 2009 37 Database D767 D772 10.1093/nar/gkn892 18988627
    [Google Scholar]
  32. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  33. Liu S. Xiang X. Gao X. Liu H. Neighborhood preference of amino acids in protein structures and its applications in protein structure assessment. Sci. Rep. 2020 10 1 4371 10.1038/s41598‑020‑61205‑w 32152349
    [Google Scholar]
  34. Kulmanov M. Guzmán-Vega F.J. Duek Roggli P. Lane L. Arold S.T. Hoehndorf R. Protein function prediction as approximate semantic entailment. Nat. Mach. Intell. 2024 6 2 220 228 10.1038/s42256‑024‑00795‑w
    [Google Scholar]
  35. Parvathy J. Yazhini A. Srinivasan N. Sowdhamini R. Interfacial residues in protein–protein complexes are in the eyes of the beholder. Proteins 2024 92 4 509 528 10.1002/prot.26628 37982321
    [Google Scholar]
  36. Ban X. Lahiri P. Dhoble A.S. Li D. Gu Z. Li C. Cheng L. Hong Y. Li Z. Kaustubh B. Evolutionary stability of salt bridges hints its contribution to stability of proteins. Comput. Struct. Biotechnol. J. 2019 17 895 903 10.1016/j.csbj.2019.06.022 31333816
    [Google Scholar]
  37. Grassmann G. Di Rienzo L. Gosti G. Leonetti M. Ruocco G. Miotto M. Milanetti E. Electrostatic complementarity at the interface drives transient protein-protein interactions. Sci. Rep. 2023 13 1 10207 10.1038/s41598‑023‑37130‑z 37353566
    [Google Scholar]
  38. Wiedemann C. Kumar A. Lang A. Ohlenschläger O. Cysteines and disulfide bonds as structure-forming units: Insights from different domains of life and the potential for characterization by NMR. Front Chem. 2020 8 280 10.3389/fchem.2020.00280 32391319
    [Google Scholar]
  39. Liu T. Wang Y. Luo X. Li J. Reed S.A. Xiao H. Young T.S. Schultz P.G. Enhancing protein stability with extended disulfide bonds. Proc. Natl. Acad. Sci. USA 2016 113 21 5910 5915 10.1073/pnas.1605363113 27162342
    [Google Scholar]
  40. Kienlein M. Zacharias M. Reif M.M. Efficient and accurate calculation of proline cis/trans isomerization free energies from Hamiltonian replica exchange molecular dynamics simulations. Structure 2023 31 11 1473 1484.e6 10.1016/j.str.2023.08.008 37657438
    [Google Scholar]
  41. Sikdar S. Banerjee M. Vemparala S. Role of disulphide bonds in membrane partitioning of a viral peptide. J. Membr. Biol. 2022 255 2-3 129 142 10.1007/s00232‑022‑00218‑0 35218393
    [Google Scholar]
  42. Chen L. Fan Z. Chang J. Yang R. Hou H. Guo H. Zhang Y. Yang T. Zhou C. Sui Q. Chen Z. Zheng C. Hao X. Zhang K. Cui R. Zhang Z. Ma H. Ding Y. Zhang N. Lu X. Luo X. Jiang H. Zhang S. Zheng M. Sequence-based drug design as a concept in computational drug design. Nat. Commun. 2023 14 1 4217 10.1038/s41467‑023‑39856‑w 37452028
    [Google Scholar]
  43. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2017 45 D1 D158 D169 10.1093/nar/gkw1099 27899622
    [Google Scholar]
  44. Fornito A. Zalesky A. Bullmore E. Fundamentals of brain network analysis. San Diego Academic Press 2016 115 136 10.1016/C2012‑0‑06036‑X
    [Google Scholar]
  45. Iñiguez G. Battiston F. Karsai M. Bridging the gap between graphs and networks. Commun. Phys. 2020 3 1 88 10.1038/s42005‑020‑0359‑6
    [Google Scholar]
  46. Kaufmann M. Klemz B. Knorr K. Reddy M.M. Schröder F. Ueckerdt T. The density formula: One lemma to bound them all. arXiv 2023
    [Google Scholar]
  47. Watts A. Ferdous F. Diaz Moore K. Burns J.M. Neighborhood integration and connectivity predict cognitive performance and decline. Gerontol. Geriatr. Med. 2015 1 2333721415599141 10.1177/2333721415599141 26504889
    [Google Scholar]
  48. Jha K. Saha S. Amalgamation of 3D structure and sequence information for protein–protein interaction prediction. Sci. Rep. 2020 10 1 19171 10.1038/s41598‑020‑75467‑x 33154416
    [Google Scholar]
  49. Vendruscolo M. Fuxreiter M. Sequence determinants of the aggregation of proteins within condensates generated by liquid-liquid phase separation. J. Mol. Biol. 2022 434 1 167201 10.1016/j.jmb.2021.167201 34391803
    [Google Scholar]
  50. Li T. Hendrix E. He Y. Simple and effective conformational sampling strategy for intrinsically disordered proteins using the UNRES web server. J. Phys. Chem. B 2023 127 10 2177 2186 10.1021/acs.jpcb.2c08945 36827446
    [Google Scholar]
  51. Rohmer M. Freudenberg J. Binder W.H. Secondary structures in synthetic Poly(Amino Acids): Homo‐ and Copolymers of Poly(Aib), Poly(Glu), and Poly(Asp). Macromol. Biosci. 2023 23 4 2200344 10.1002/mabi.202200344 36377468
    [Google Scholar]
  52. Krylov D. Mikhailenko I. Vinson C. A thermodynamic scale for leucine zipper stability and dimerization specificity: E and g interhelical interactions. EMBO J. 1994 13 12 2849 2861 10.1002/j.1460‑2075.1994.tb06579.x 8026470
    [Google Scholar]
  53. Yi C.H. Taylor M.L. Ziebarth J. Wang Y. Predictive Models and impact of interfacial contacts and amino acids on protein–protein binding affinity. ACS Omega 2024 9 3 acsomega.3c06996 10.1021/acsomega.3c06996 38284090
    [Google Scholar]
  54. Negi I. Jangra R. Gharu A. Trant J.F. Sharma P. Guanidinium–amino acid hydrogen-bonding interactions in protein crystal structures: implications for guanidinium-induced protein denaturation. Phys. Chem. Chem. Phys. 2022 25 1 857 869 10.1039/D2CP04943K 36512335
    [Google Scholar]
  55. Pancotti C. Benevenuta S. Repetto V. Birolo G. Capriotti E. Sanavia T. Fariselli P. A deep-learning sequence-based method to predict protein stability changes upon genetic variations. Genes 2021 12 6 911 10.3390/genes12060911 34204764
    [Google Scholar]
  56. Sun Z. Wang G. Li P. Wang H. Zhang M. Liang X. An improved random forest based on the classification accuracy and correlation measurement of decision trees. Expert Syst. Appl. 2024 237 121549 10.1016/j.eswa.2023.121549
    [Google Scholar]
  57. Bentéjac C. Csörgő A. Martínez-Muñoz G. A comparative analysis of gradient boosting algorithms. Artif. Intell. Rev. 2021 54 3 1937 1967 10.1007/s10462‑020‑09896‑5
    [Google Scholar]
  58. Chen C. Zhang Q. Ma Q. Yu B. LightGBM-PPI: Predicting protein-protein interactions through LightGBM with multi-information fusion. Chemom. Intell. Lab. Syst. 2019 191 54 64 10.1016/j.chemolab.2019.06.003
    [Google Scholar]
  59. Hancock J.T. Khoshgoftaar T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020 7 1 94 10.1186/s40537‑020‑00369‑8 33169094
    [Google Scholar]
  60. Bukowski M. Kurek J. Świderski B. Jegorowa A. Custom loss functions in XGBoost Algorithm for enhanced critical error mitigation in drill-wear analysis of melamine-faced chipboard. Sensors 2024 24 4 1092 10.3390/s24041092 38400250
    [Google Scholar]
  61. Raghuram S. Bharadwaj A.S. Deepika S.K. Khadabadi M.S. Jayaprakash A. Digital implementation of the Softmax activation function and the inverse Softmax function. Proceedings of the 2022 4th International Conference on Circuits, Control, Communication and Computing (I4C) 2022 21-23 December 2022, Bengaluru, India, pp. 80-83 10.1109/I4C57141.2022.10057747
    [Google Scholar]
  62. Ivazeh A. Zahiri J. Rahgozar M. Srihari S. Performance evaluation measures for protein complex prediction. Genomics 2019 111 6 1483 1492 10.1016/j.ygeno.2018.10.003 30312661
    [Google Scholar]
  63. Bhopatkar A.A. Uversky V.N. Rangachari V. Disorder and cysteines in proteins: A design for orchestration of conformational see-saw and modulatory functions. Prog. Mol. Biol. Transl. Sci. 2020 174 331 373 10.1016/bs.pmbts.2020.06.001 32828470
    [Google Scholar]
  64. Umumararungu T. Gahamanyi N. Mukiza J. Habarurema G. Katandula J. Rugamba A. Kagisha V. Proline, a unique amino acid whose polymer, polyproline II helix, and its analogues are involved in many biological processes: A review. Amino Acids 2024 56 1 50 10.1007/s00726‑024‑03410‑9 39182198
    [Google Scholar]
  65. Almeida F.C.L. Sanches K. Pinheiro-Aguiar R. Almeida V.S. Caruso I.P. Protein surface interactions—theoretical and experimental studies. Front. Mol. Biosci. 2021 8 706002 10.3389/fmolb.2021.706002 34307462
    [Google Scholar]
  66. Chen B. Li N. Bao W. CLPr_in_ML: Cleft lip and palate reconstructed features with machine learning. Curr. Bioinform. 2025 20 2 179 193 10.2174/0115748936330499240909082529
    [Google Scholar]
  67. Meng X. Xiang J. Zheng R. Wu F.X. Li M. DPCMNE: Detecting protein complexes from protein-protein interaction networks via multi-level network embedding. EEE/ACM Transact Computat Biol. Bioinform. 2022 19 3 1592 10.1109/TCBB.2021.3050102
    [Google Scholar]
  68. Li B. Liao B. Protein complexes prediction method based on core-attachment structure and functional annotations. Int. J. Mol. Sci. 2017 18 9 1910 10.3390/ijms18091910 28878201
    [Google Scholar]
  69. Chakravarty D. Guharoy M. Robert C.H. Chakrabarti P. Janin J. Reassessing buried surface areas in protein–protein complexes. Protein Sci. 2013 22 10 1453 1457 10.1002/pro.2330 23934783
    [Google Scholar]
  70. Heiles S. Cooper R.J. Berden G. Oomens J. Williams E.R. Hydrogen bond mediated stabilization of the salt bridge structure for the glycine dimer anion. Phys. Chem. Chem. Phys. 2015 17 45 30642 30647 10.1039/C5CP06120B 26524433
    [Google Scholar]
  71. Bauer M.R. Mackey M.D. Electrostatic complementarity as a fast and effective tool to optimize binding and selectivity of protein–ligand complexes. J. Med. Chem. 2019 62 6 3036 3050 10.1021/acs.jmedchem.8b01925 30807144
    [Google Scholar]
  72. Ferenczy G.G. Kellermayer M. Contribution of hydrophobic interactions to protein mechanical stability. Comput. Struct. Biotechnol. J. 2022 20 1946 1956 10.1016/j.csbj.2022.04.025 35521554
    [Google Scholar]
  73. Mei K. Guo W. The exocyst complex. Curr. Biol. 2018 28 17 R922 R925 10.1016/j.cub.2018.06.042 30205058
    [Google Scholar]
  74. Pereira C. Stalder D. Anderson G.S.F. Shun-Shion A.S. Houghton J. Antrobus R. Chapman M.A. Fazakerley D.J. Gershlick D.C. The exocyst complex is an essential component of the mammalian constitutive secretory pathway. J. Cell Biol. 2023 222 5 e202205137 10.1083/jcb.202205137 36920342
    [Google Scholar]
  75. Van Bergen N.J. Ahmed S.M. Collins F. Cowley M. Vetro A. Dale R.C. Hock D.H. de Caestecker C. Menezes M. Massey S. Ho G. Pisano T. Glover S. Gusman J. Stroud D.A. Dinger M. Guerrini R. Macara I.G. Christodoulou J. Mutations in the exocyst component EXOC2 cause severe defects in human brain development. J. Exp. Med. 2020 217 10 e20192040 10.1084/jem.20192040 32639540
    [Google Scholar]
  76. Thomas T. Salcedo-Tacuma D. Smith D.M. Structure, function, and allosteric regulation of the 20s proteasome by the 11S/PA28 family of proteasome activators. Biomolecules 2023 13 9 1326 10.3390/biom13091326 37759726
    [Google Scholar]
/content/journals/cad/10.2174/0115734099408938251017040557
Loading
/content/journals/cad/10.2174/0115734099408938251017040557
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: Protein complex prediction ; TOP-BIOcom ; LightGBM ; PPI networks ; feature fusion ; random forest
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test