Skip to content
2000
image of Machine Learning-driven ADHD Classification: Exploring Medication Effects with VMD Sub-band Analysis

Abstract

Introduction

There has been increasing interest in neuroimaging studies in recent years, and computer-aided approaches have gained prominence in improving diagnostic accuracy. Attention Deficit Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder characterized by inattention, impulsivity, and hyperactivity. Traditional diagnostic approaches often rely on subjective assessments, highlighting the need for more objective, data-driven methods. This study aims to classify ADHD subtypes and assess medication effects by converting resting-state fMRI images into one-dimensional (1D) signals and extracting statistical features using Variational Mode Decomposition (VMD).

Methods

Resting-state fMRI data from the ADHD-200 dataset, including 41 healthy controls (HC), 41 medicated ADHD-Combined (ADHD-C) individuals, and 41 non-medicated ADHD-C individuals, were analyzed. The 1D fMRI signals were decomposed into nine sub-bands using VMD. Statistical features were extracted from each sub-band and classified using Support Vector Machines (SVM), Linear Discriminant Analysis (LDA), and Artificial Neural Networks (ANN).

Results

VMD-derived features substantially improved classification performance. The highest binary classification accuracy was achieved by LDA: 96.34% distinguishing non-medicated ADHD from controls and 88.41% for medicated ADHD controls. The classification between medicated and non-medicated ADHD yielded 79.63% accuracy. Ternary classification across all groups reached 69.51% accuracy.

Discussion

These findings show that the VMD-based approach improves the classification of ADHD subtypes and helps evaluate medication effects. However, the lower performance in multi-class classification reflects the complexity of ADHD neuroimaging data.

Conclusion

The VMD-based approach improves classification accuracy, especially in distinguishing ADHD subtypes and medication effects, supporting its potential as an objective tool for diagnosis and treatment planning.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099400072251022043532
2026-01-12
2026-01-19
Loading full text...

Full text loading...

References

  1. Moffitt T.E. Houts R. Asherson P. Belsky D.W. Corcoran D.L. Hammerle M. Harrington H. Hogan S. Meier M.H. Polanczyk G.V. Poulton R. Ramrakha S. Sugden K. Williams B. Rohde L.A. Caspi A. Is adult ADHD a childhood-onset neurodevelopmental disorder? evidence from a four-decade longitudinal cohort study. Am. J. Psychiatry 2015 172 10 967 977 10.1176/appi.ajp.2015.14101266 25998281
    [Google Scholar]
  2. Antolini G. Colizzi M. Where do neurodevelopmental disorders go? Casting the eye away from childhood towards adulthood. Healthcare 2023 11 7 1015 10.3390/healthcare11071015 37046942
    [Google Scholar]
  3. Diagnostic and Statistical Manual of Mental Disorders DSM-5. 5th ed Washington American psychiatric association 2013 10.1176/appi.books.9780890425596
    [Google Scholar]
  4. Caye A. Spadini A.V. Karam R.G. Grevet E.H. Rovaris D.L. Bau C.H.D. Rohde L.A. Kieling C. Predictors of persistence of ADHD into adulthood: A systematic review of the literature and meta-analysis. Eur. Child Adolesc. Psychiatry 2016 25 11 1151 1159 10.1007/s00787‑016‑0831‑8 27021056
    [Google Scholar]
  5. Caye A. Rocha T.B.M. Anselmi L. Murray J. Menezes A.M.B. Barros F.C. Gonçalves H. Wehrmeister F. Jensen C.M. Steinhausen H.C. Swanson J.M. Kieling C. Rohde L.A. Attention-Deficit/Hyperactivity Disorder trajectories from childhood to young adulthood: Evidence from a birth cohort supporting a late-onset syndrome. JAMA Psychiatry 2016 73 7 705 712 10.1001/jamapsychiatry.2016.0383 27192050
    [Google Scholar]
  6. Salari N. Ghasemi H. Abdoli N. Rahmani A. Shiri M.H. Hashemian A.H. Akbari H. Mohammadi M. The global prevalence of ADHD in children and adolescents: A systematic review and meta-analysis. Ital. J. Pediatr. 2023 49 1 48 10.1186/s13052‑023‑01456‑1 37081447
    [Google Scholar]
  7. Rostami M. Khosrowabadi R. Albrecht B. Pouretemad H. Rothenberger A. ADHD subtypes: Do they hold beyond core symptoms? A multilevel testing of an additive model. Appl. Neuropsychol. Child 2022 11 3 280 290 10.1080/21622965.2020.1806067 32853044
    [Google Scholar]
  8. Gadow K.D. Drabick D.A.G. Loney J. Sprafkin J. Salisbury H. Azizian A. Schwartz J. Comparison of ADHD symptom subtypes as source‐specific syndromes. J. Child Psychol. Psychiatry 2004 45 6 1135 1149 10.1111/j.1469‑7610.2004.00306.x 15257670
    [Google Scholar]
  9. Conzelmann A. Mucha R.F. Jacob C.P. Weyers P. Romanos J. Gerdes A.B.M. Baehne C.G. Boreatti-Hümmer A. Heine M. Alpers G.W. Warnke A. Fallgatter A.J. Lesch K.P. Pauli P. Abnormal affective responsiveness in attention-deficit/] hyperactivity disorder: Subtype differences. Biol. Psychiatry 2009 65 7 578 585 10.1016/j.biopsych.2008.10.038 19100967
    [Google Scholar]
  10. Drechsler R. Brem S. Brandeis D. Grünblatt E. Berger G. Walitza S. ADHD: Current concepts and treatments in children and adolescents. Neuropediatrics 2020 51 5 315 335 10.1055/s‑0040‑1701658 32559806
    [Google Scholar]
  11. Cao M. Martin E. Li X. Machine learning in attention-deficit/hyperactivity disorder: New approaches toward understanding the neural mechanisms. Transl. Psychiatry 2023 13 1 236 10.1038/s41398‑023‑02536‑w 37391419
    [Google Scholar]
  12. Chauhan N. Choi B.J. Regional contribution in electrophysiological-based classifications of Attention Deficit Hyperactive Disorder (ADHD) using machine learning. Computation 2023 11 9 180 10.3390/computation11090180
    [Google Scholar]
  13. Gupta M. Kumar R. Abraham A. Adversarial network-based classification for Alzheimer’s Disease using multimodal brain images: A critical analysis. IEEE Access 2024 12 48366 48378 10.1109/ACCESS.2024.3381956
    [Google Scholar]
  14. Hamed A.M. Kauer A.J. Stevens H.E. Why the diagnosis of attention deficit hyperactivity disorder matters. Front. Psychiatry 2015 6 168 10.3389/fpsyt.2015.00168 26635643
    [Google Scholar]
  15. Musullulu H. Evaluating attention deficit and hyperactivity disorder (ADHD): A review of current methods and issues. Front. Psychol. 2025 16 1466088 10.3389/fpsyg.2025.1466088 40066184
    [Google Scholar]
  16. Wolff N. Kohls G. Mack J.T. Vahid A. Elster E.M. Stroth S. Poustka L. Kuepper C. Roepke S. Kamp-Becker I. Roessner V. A data driven machine learning approach to differentiate between autism spectrum disorder and attention-deficit/] hyperactivity disorder based on the best-practice diagnostic instruments for autism. Sci. Rep. 2022 12 1 18744 10.1038/s41598‑022‑21719‑x 36335178
    [Google Scholar]
  17. Taspinar G. Ozkurt N. A review of ADHD detection studies with machine learning methods using rsfMRI data. NMR Biomed. 2024 37 8 e5138 10.1002/nbm.5138 38472163
    [Google Scholar]
  18. Tian L. Zheng H. Zhang K. Qiu J. Song X. Li S. Zeng Z. Ran B. Deng X. Cai J. Structural or/and functional MRI-based machine learning techniques for attention-deficit/hyperactivity disorder diagnosis: A systematic review and meta-analysis. J. Affect. Disord. 2024 355 459 469 10.1016/j.jad.2024.03.111 38580035
    [Google Scholar]
  19. Baruah A. Kaur A. Predicting ADHD subtypes using machine learning on brain imaging data. 2024 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES) Chennai, India 13 December 2024 1 6 10.1109/ICSES63760.2024.10910772
    [Google Scholar]
  20. Schmüser L. Sebastian A. Mobascher A. Lieb K. Feige B. Tüscher O. Data‐driven analysis of simultaneous EEG/fMRI reveals neurophysiological phenotypes of impulse control. Hum. Brain Mapp. 2016 37 9 3114 3136 10.1002/hbm.23230 27133468
    [Google Scholar]
  21. De Silva S. Dayarathna S. Ariyarathne G. Meedeniya D. Jayarathna S. A survey of Attention Deficit Hyperactivity Disorder identification using psychophysiological data. Int. J. Online Biomed. Eng. 2019 15 13 61 76 10.3991/ijoe.v15i13.10744
    [Google Scholar]
  22. Santarrosa-López I. Alor-Hernández G. Bustos-López M. Hernández-Capistrán J. Sánchez-Morales L.N. Sánchez-Cervantes J.L. Marín-Vega H. DETEC-ADHD: A data-driven web app for early ADHD detection using machine learning and electroencephalography. Big Data and Cognitive Computing 2024 9 1 3 10.3390/bdcc9010003
    [Google Scholar]
  23. Swanson J. Baler R.D. Volkow N.D. Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: A decade of progress. Neuropsychopharmacology 2011 36 1 207 226 10.1038/npp.2010.160 20881946
    [Google Scholar]
  24. Johnson M. Åsberg Johnels J. Östlund S. Cedergren K. Omanovic Z. Hjalmarsson K. Jakobsson K. Högstedt J. Billstedt E. Long-term medication for ADHD and development of cognitive functions in children and adolescents. J. Psychiatr. Res. 2021 142 204 209 10.1016/j.jpsychires.2021.07.055 34375772
    [Google Scholar]
  25. Hsieh T.H. Shaw F.Z. Kung C.C. Liang S.F. Seed correlation analysis based on brain region activation for ADHD diagnosis in a large-scale resting state data set. Front. Hum. Neurosci. 2023 17 1082722 10.3389/fnhum.2023.1082722 37767136
    [Google Scholar]
  26. Agarwal S. Raj A. Chowdhury A. Aich G. Chatterjee R. Ghosh K. Investigating the impact of standard brain atlases and connectivity measures on the accuracy of ADHD detection from fMRI data using deep learning. Multimedia Tools Appl. 2024 83 25 67023 67057 10.1007/s11042‑023‑17962‑7
    [Google Scholar]
  27. Aydın S. Çetin F.H. Uytun M.Ç. Babadag̃í Z. Güven A.S. Işık Y. Comparison of domain specific connectivity metrics for estimation brain network indices in boys with ADHD-C. Biomed. Signal Process. Control 2022 76 103626 10.1016/j.bspc.2022.103626
    [Google Scholar]
  28. Liang S-F. Hsieh T-H. Chen P-T. Wu M-L. Kung C-C. Lin C-Y. Shaw F-Z. Differentiation between resting-State fMRI data from ADHD and normal subjects: Based on functional connectivity and machine learning. International conference on Fuzzy Theory and Its Applications (iFUZZY2012) Taichung, Taiwan, 18 November 2012 294 298 10.1109/iFUZZY.2012.6409719
    [Google Scholar]
  29. Ghiassian S. Greiner R. Jin P. Brown M. R. G. Learning to classify psychiatric disorders based on fMR images: Autism vs Healthy and ADHD vs Healthy.
    [Google Scholar]
  30. Du J. Wang L. Jie B. Zhang D. Network-based classification of ADHD patients using discriminative subnetwork selection and graph kernel PCA. Comput. Med. Imaging Graph. 2016 52 82 88 10.1016/j.compmedimag.2016.04.004 27166430
    [Google Scholar]
  31. Riaz A. Asad M. Alonso E. Slabaugh G. Fusion of fMRI and non-imaging data for ADHD classification. Comput. Med. Imaging Graph. 2018 65 115 128 10.1016/j.compmedimag.2017.10.002 29137838
    [Google Scholar]
  32. Miao B. Zhang Y. A Feature selection method for classification of ADHD. 4th International Conference on Information, Cybernetics and Computational Social Systems (ICCSS) Dalian, China 26 July 2017 21 25 10.1109/ICCSS.2017.8091376
    [Google Scholar]
  33. Shao L. Xu Y. Fu D. Classification of ADHD with bi-objective optimization. J. Biomed. Inform. 2018 84 164 170 10.1016/j.jbi.2018.07.011 30009990
    [Google Scholar]
  34. Zhang Y. Tang Y. Chen Y. Zhou L. Wang C. ADHD classification by feature space separation with sparse representation. IEEE 23rd International Conference on Digital Signal. Processing (DSP) Shanghai, China, 21 November 2018 1 5 10.1109/ICDSP.2018.8631658
    [Google Scholar]
  35. Khan N.A. Waheeb S.A. Riaz A. Shang X. A novel knowledge distillation-based feature selection for the classification of ADHD. Biomolecules 2021 11 8 1093 10.3390/biom11081093 34439759
    [Google Scholar]
  36. Deshpande G. Wang P. Rangaprakash D. Wilamowski B. Fully connected cascade artificial neural network architecture for attention deficit hyperactivity disorder classification from functional magnetic resonance imaging data. IEEE Trans. Cybern. 2015 45 12 2668 2679 10.1109/TCYB.2014.2379621 25576588
    [Google Scholar]
  37. Qiang N. Dong Q. Sun Y. Ge B. Liu T. Deep variational autoencoder for modeling functional brain networks and ADHD identification. IEEE 17th International Symposium on Biomedical Imaging (ISBI) Iowa City, IA, USA, 07 April 2020 554 557 10.1109/ISBI45749.2020.9098480
    [Google Scholar]
  38. Chen Y. Tang Y. Wang C. Liu X. Zhao L. Wang Z. ADHD classification by dual subspace learning using resting-state functional connectivity. Artif. Intell. Med. 2020 103 101786 10.1016/j.artmed.2019.101786 32143793
    [Google Scholar]
  39. Wang Z. Zhou X. Gui Y. Liu M. Lu H. Multiple measurement analysis of resting-state fMRI for ADHD classification in adolescent brain from the ABCD study. Transl. Psychiatry 2023 13 1 45 10.1038/s41398‑023‑02309‑5 36746929
    [Google Scholar]
  40. Firouzi M. Kazemi K. Ahmadi M. Helfroush M.S. Aarabi A. Enhanced ADHD classification through deep learning and dynamic resting state fMRI analysis. Sci. Rep. 2024 14 1 24473 10.1038/s41598‑024‑74282‑y 39424632
    [Google Scholar]
  41. Pei S. Wang C. Cao S. Lv Z. Data augmentation for fMRI-based functional connectivity and its application to cross-site ADHD classification. IEEE Trans. Instrum. Meas. 2022 1 1 10.1109/TIM.2022.3232670
    [Google Scholar]
  42. Riaz A. Asad M. Alonso E. Slabaugh G. DeepFMRI: End-to-end deep learning for functional connectivity and classification of ADHD using fMRI. J. Neurosci. Methods 2020 335 108506 10.1016/j.jneumeth.2019.108506 32001294
    [Google Scholar]
  43. Ariyarathne G. De Silva S. Dayarathna S. Meedeniya D. Jayarathne S. ADHD identification using convolutional neural network with seed-based approach for fMRI data. Proceedings of the 2020 9th International Conference on Software and Computer Applications Langkawi Malaysia,17 April s 2020 31 35 10.1145/3384544.3384552
    [Google Scholar]
  44. Liu T. Luo Z. Huang J. Yan S. A Comparative study of four kinds of adaptive decomposition algorithms and their applications. Sensors 2018 18 7 2120 10.3390/s18072120 30004429
    [Google Scholar]
  45. Brown M.R.G. Sidhu G.S. Greiner R. Asgarian N. Bastani M. Silverstone P.H. Greenshaw A.J. Dursun S.M. ADHD-200 Global Competition: Diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 2012 6 69 10.3389/fnsys.2012.00069 23060754
    [Google Scholar]
  46. Human Brain Mapping. 2025 Available from:https://onlinelibrary.wiley.com/doi/full/10.1002/hbm.10062
  47. Jenkinson M. Bannister P. Brady M. Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 2002 17 2 825 841 10.1006/nimg.2002.1132 12377157
    [Google Scholar]
  48. Chen Z. Calhoun V. Effect of spatial smoothing on task fMRI ICA and functional connectivity. Front. Neurosci. 2018 12 15 10.3389/fnins.2018.00015 29456485
    [Google Scholar]
  49. Smith S.M. Jenkinson M. Woolrich M.W. Beckmann C.F. Behrens T.E.J. Johansen-Berg H. Bannister P.R. De Luca M. Drobnjak I. Flitney D.E. Niazy R.K. Saunders J. Vickers J. Zhang Y. De Stefano N. Brady J.M. Matthews P.M. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 2004 23 S208 S219 (Suppl. 1) 10.1016/j.neuroimage.2004.07.051 15501092
    [Google Scholar]
  50. FNIRT 2025 Available from:https://fsl.fmrib.ox.ac.uk/fsl/oldwiki/FNIRT.html
  51. Dragomiretskiy K. Zosso D. Variational mode decomposition. IEEE Trans. Signal Process. 2014 62 3 531 544 10.1109/TSP.2013.2288675
    [Google Scholar]
  52. Wang Y. Liu F. Jiang Z. He S. Mo Q. Complex variational mode decomposition for signal processing applications. Mech. Syst. Signal Process. 2017 86 75 85 10.1016/j.ymssp.2016.09.032
    [Google Scholar]
  53. Hestenes M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969 4 5 303 320 10.1007/BF00927673
    [Google Scholar]
  54. Rockafellar R.T. A dual approach to solving nonlinear programming problems by unconstrained optimization. Math. Program. 1973 5 1 354 373 10.1007/BF01580138
    [Google Scholar]
  55. Li H. Wu X. Liu T. Li S. Zhang B. Zhou G. Huang T. Composite fault diagnosis for rolling bearing based on parameter-optimized VMD. Measurement 2022 201 111637 10.1016/j.measurement.2022.111637
    [Google Scholar]
  56. Li Y. Li Y. Chen X. Yu J. Denoising and feature extraction algorithms using NPE combined with VMD and their applications in ship-radiated noise. Symmetry 2017 9 11 256 10.3390/sym9110256
    [Google Scholar]
  57. Gengeç Benli̇ Ş. Ak Z. A novel method for breast cancer classification: A signal processing-based approach in ultrasound images. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi 2023 10.54365/adyumbd.1378982
    [Google Scholar]
  58. Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B Stat. Methodol. 1996 58 1 267 288 10.1111/j.2517‑6161.1996.tb02080.x
    [Google Scholar]
  59. Féraud R. Clérot F. A methodology to explain neural network classification. Neural Netw. 2002 15 2 237 246 10.1016/S0893‑6080(01)00127‑7 12022511
    [Google Scholar]
  60. Wang S-C. Artificial neural network. Interdisciplinary Computing in Java Programming. Boston, MA Springer US 2003 81 100 10.1007/978‑1‑4615‑0377‑4_5
    [Google Scholar]
  61. Cristianini N. Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge Cambridge University Press 2000 10.1017/CBO9780511801389
    [Google Scholar]
  62. Hearst M.A. Dumais S.T. Osuna E. Platt J. Scholkopf B. Support vector machines. IEEE Intell. Syst. Their Appl. 1998 13 4 18 28 10.1109/5254.708428
    [Google Scholar]
  63. Zheng G. Qian Z. Yang Q. Wei C. Xie L. Zhu Y. Li Y. The combination approach of SVM and ECOC for powerful identification and classification of transcription factor. BMC Bioinformatics 2008 9 1 282 10.1186/1471‑2105‑9‑282 18554421
    [Google Scholar]
  64. Kong E.B. Dietterich T.G. Error-correcting output coding corrects bias and variance. Machine Learning Proceedings 1995. Elsevier 1995 313 321 10.1016/B978‑1‑55860‑377‑6.50046‑3
    [Google Scholar]
  65. Balakrishnama S. Ganapathiraju A. Linear discriminant analysis - a brief tutorial. Institute for Signal. and Information Processing 1998 18 1 8
    [Google Scholar]
  66. Tang Y. Li X. Chen Y. Zhong Y. Jiang A. Liu X. Highaccuracy classification of Attention Deficit Hyperactivity Disorder with L2,1 -Norm linear discriminant analysis. IEEE International Conference on Acoustics, Speech. and Signal. Processing (ICASSP), Barcelona, Spain, 2020 1170 81174 10.1109/ICASSP40776.2020.9053391
    [Google Scholar]
  67. Qureshi M.N.I. Min B. Jo H.J. Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: Structural MRI study. PLoS One 2016 11 8 e0160697 10.1371/journal.pone.0160697 27500640
    [Google Scholar]
  68. Sajid N.A. Rahman A. Ahmad M. Musleh D. Basheer Ahmed M.I. Alassaf R. Chabani S. Ahmed M.S. Salam A.A. AlKhulaifi D. Single vs. Multi-Label: The issues, challenges and insights of contemporary classification schemes. Appl. Sci. 2023 13 11 6804 10.3390/app13116804
    [Google Scholar]
  69. Elkhodary H.O. Youssef S.M. An improved model for the diagnosis of Attention Deficit/Hyperactivity Disorder (ADHD) using resting-state fMRI data. 2024 International Conference on Machine Intelligence and Smart Innovation (ICMISI) Alexandria, Egypt 14 May 2024 60 63 10.1109/ICMISI61517.2024.10580368
    [Google Scholar]
  70. Lohani D.C. Rana B. ADHD diagnosis using structural brain MRI and personal characteristic data with machine learning framework. Psychiatry Res. Neuroimaging 2023 334 111689 10.1016/j.pscychresns.2023.111689 37536046
    [Google Scholar]
  71. Balasubramanian S. Karthikeyan S. Karthikeyan M. Optimized machine learning model for identifying and predicting Attention Deficit Hyperactivity Disorder(ADHD). In 2023 14th International Conference on Computing Communication and Networking Technologies (ICCCNT); Delhi, India, 08 July 2023 1 6 10.1109/ICCCNT56998.2023.10307486
    [Google Scholar]
  72. Wang Q. Zhao C. Qiu J. Lu W. Two neurosubtypes of ADHD different from the clinical phenotypes. Psychiatry Res. 2023 328 115453 10.1016/j.psychres.2023.115453 37660582
    [Google Scholar]
  73. De Silva S. Dayarathna S.U. Ariyarathne G. Meedeniya D. Jayarathna S. fMRI feature extraction model for ADHD classification using convolutional neural network. Int. J. E-Health Med. Commun. 2021 12 1 81 105 10.4018/IJEHMC.2021010106
    [Google Scholar]
  74. Tang Y. Wang C. Chen Y. Sun N. Jiang A. Wang Z. Identifying ADHD individuals from resting-state functional connectivity using subspace clustering and binary hypothesis testing. J. Atten. Disord. 2021 25 5 736 748 10.1177/1087054719837749 30938224
    [Google Scholar]
  75. Zou L. Zheng J. Miao C. Mckeown M.J. Wang Z.J. 3D CNN based automatic diagnosis of Attention Deficit Hyperactivity Disorder using functional and structural MRI. IEEE Access 2017 5 23626 23636 10.1109/ACCESS.2017.2762703
    [Google Scholar]
  76. Qu L. Pei Y. A comprehensive review on discriminant analysis for addressing challenges of class-level limitations, small sample size, and robustness. Processes 2024 12 7 1382 10.3390/pr12071382
    [Google Scholar]
/content/journals/cad/10.2174/0115734099400072251022043532
Loading
/content/journals/cad/10.2174/0115734099400072251022043532
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test