Skip to content
2000
image of Mechanism of Coptisine in Rotator Cuff Injury: PI3K/Akt/mTOR-inflammation Crosstalk Uncovered by Network Pharmacology and Experimental Validation

Abstract

Introduction

This study aimed to investigate the therapeutic mechanism of coptisine in rotator cuff injury (RCI) through network pharmacology and experimental validation. This is the first study to examine the role of coptisine in rotator cuff injury (RCI), revealing a novel mechanism by which coptisine inhibits the PI3K/Akt/mTOR pathway, thereby coordinating inflammation resolution and tendon repair.

Methods

Network pharmacology was used to identify potential coptisine and RCI targets, which were then analyzed functionally to indicate critical pathways. A rat RCI model (right supraspinatus tendon transection) was used to validate the mechanism by detecting pathological changes, inflammatory factors, and mRNA expression related to the PI3K/Akt/mTOR pathway.

Results and Discussion

Network pharmacology identified 29 overlapping coptisine and RCI targets, with an emphasis on the PI3K/Akt/mTOR pathway. Coptisine reduced tendon atrophy and inflammation in RCI rats, lowered blood TNF-α and IL-6 levels, elevated IL-10, and decreased PI3K, Akt, and mTOR mRNA expression in tendon tissues. These findings align with the pathway-target connection predicted by network pharmacology-specifically, core targets like PIK3CA and PIK3CB (key components of the PI3K/Akt/mTOR pathway) were confirmed to be regulated by coptisine, suggesting the alkaloid exerts anti-inflammatory and tendon-protective effects by suppressing this pathway, which is known to mediate inflammation and protein metabolism in injured tendons.

Conclusion

Coptisine improved RCI in rats by decreasing inflammation and the PI3K/Akt/mTOR pathway, suggesting a possible therapeutic target for RCI.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099394549251014152637
2025-10-31
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099394549251014152637/BMS-CCADD-2025-53.html?itemId=/content/journals/cad/10.2174/0115734099394549251014152637&mimeType=html&fmt=ahah

References

  1. Oh J.H. Park M.S. Rhee S.M. Treatment strategy for irreparable rotator cuff tears. Clin. Orthop. Surg. 2018 10 119 134 10.4055/cios.2018.10.2.119
    [Google Scholar]
  2. Kjær B.H. Cools A.M. Johannsen F.E. Trøstrup J. Bieler T. Siersma V. Magnusson P.S. To allow or avoid pain during shoulder rehabilitation exercises for patients with chronic rotator cuff tendinopathy-Study protocol for a randomized controlled trial (the PASE trial). Trials 2024 25 1 135 10.1186/s13063‑024‑07973‑6 38383459
    [Google Scholar]
  3. Chen S. Yang D. Sun Q. Guan Z. Tan P. Zhang K. Mao X. Effect of pectoralis minor relaxation on the prognosis of rotator cuff injury under arthroscopy. Ann. Palliat. Med. 2022 11 1 77 84 10.21037/apm‑21‑3959 35144400
    [Google Scholar]
  4. Zhang B. Fang Z. Nian K. Sun B. Ji B. The effects of telemedicine on Rotator cuff-related shoulder function and pain symptoms: A meta-analysis of randomized clinical trials. J. Orthop. Surg. Res. 2024 19 1 478 10.1186/s13018‑024‑04986‑4 39143625
    [Google Scholar]
  5. Hao L. Chen J. Shang X. Chen S. Surface modification of the simvastatin factor-loaded silk fibroin promotes the healing of rotator cuff injury through β-catenin signaling. J. Biomater. Appl. 2021 36 2 210 218 10.1177/0885328221995926 33779364
    [Google Scholar]
  6. Abraham A.C. Shah S.A. Golman M. Song L. Li X. Kurtaliaj I. Akbar M. Millar N.L. Abu-Amer Y. Galatz L.M. Thomopoulos S. Targeting the NF-κB signaling pathway in chronic tendon disease. Sci. Transl. Med. 2019 11 481 eaav4319 10.1126/scitranslmed.aav4319 30814338
    [Google Scholar]
  7. Ryösä A. Laimi K. Äärimaa V. Lehtimäki K. Kukkonen J. Saltychev M. Surgery or conservative treatment for rotator cuff tear: A meta-analysis. Disabil. Rehabil. 2017 39 14 1357 1363 10.1080/09638288.2016.1198431 27385156
    [Google Scholar]
  8. Sciarretta F.V. Moya D. List K. Current trends in rehabilitation of rotator cuff injuries. SICOT J. 2023 9 14 10.1051/sicotj/2023011 37222530
    [Google Scholar]
  9. Greenspoon J.A. Petri M. Warth R.J. Millett P.J. Massive rotator cuff tears: Pathomechanics, current treatment options, and clinical outcomes. J. Shoulder Elbow Surg. 2015 24 9 1493 1505 10.1016/j.jse.2015.04.005 26129871
    [Google Scholar]
  10. Patel M. Amini M.H. Management of acute rotator cuff tears. Orthop. Clin. North Am. 2022 53 1 69 76 10.1016/j.ocl.2021.08.003 34799024
    [Google Scholar]
  11. Schmidt C.C. Jarrett C.D. Brown B.T. Management of rotator cuff tears. J. Hand Surg. Am. 2015 40 2 399 408 10.1016/j.jhsa.2014.06.122 25557775
    [Google Scholar]
  12. Qian Y. Huang H. Wan R. Zhou Y. Feng X. Xu F. Luo Z. Wang Q. Progress in studying the impact of hyperlipidemia and statins on rotator cuff injury and repair. Front. Public Health 2023 11 1279118 10.3389/fpubh.2023.1279118 37965515
    [Google Scholar]
  13. Li C. Deng L. Pu M. Ye X. Lu Q. Coptisine alleviates colitis through modulating gut microbiota and inhibiting TXNIP/NLRP3 inflammasome. J. Ethnopharmacol. 2024 335 118680 10.1016/j.jep.2024.118680 39117021
    [Google Scholar]
  14. Lu Q. Tang Y. Luo S. Gong Q. Li C. Coptisine, the characteristic constituent from coptis chinensis, exhibits significant therapeutic potential in treating cancers, metabolic and inflammatory diseases. Am. J. Chin. Med. 2023 51 8 2121 2156 10.1142/S0192415X2350091X 37930333
    [Google Scholar]
  15. Wu J. Luo Y. Deng D. Su S. Li S. Xiang L. Hu Y. Wang P. Meng X. Coptisine from Coptis chinensis exerts diverse beneficial properties: A concise review. J. Cell. Mol. Med. 2019 23 12 7946 7960 10.1111/jcmm.14725 31622015
    [Google Scholar]
  16. Xu F. Shen C. Zhang S. Liu Y. Liu D. Kuang Y. Li R. Wang C. Cai X. Shi M. Xiao Y. Coptisine inhibits aggressive and proliferative actions of fibroblast like synoviocytes and exerts a therapeutic potential for rheumatoid arthritis. Int. Immunopharmacol. 2024 128 111433 10.1016/j.intimp.2023.111433 38181676
    [Google Scholar]
  17. Zhang H. Song G. Zhang Z. Song H. Tang X. Deng A. Wang W. Wu L. Qin H. Colitis Is Effectively Ameliorated by (±)-8-Acetonyl-dihydrocoptisine via the XBP1-NF-κB Pathway. Front. Pharmacol. 2017 8 619 10.3389/fphar.2017.00619 28928666
    [Google Scholar]
  18. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  19. Cheng Q. Chen M. Liu M. Chen X. Zhu L. Xu J. Xue J. Wu H. Du Y. Semaphorin 5A suppresses ferroptosis through activation of PI3K-AKT-mTOR signaling in rheumatoid arthritis. Cell Death Dis. 2022 13 7 608 10.1038/s41419‑022‑05065‑4 35835748
    [Google Scholar]
  20. Ma W. Li C. Enhancing postmenopausal osteoporosis: a study of KLF2 transcription factor secretion and PI3K-Akt signaling pathway activation by PIK3CA in bone marrow mesenchymal stem cells. Arch. Med. Sci. 2024 20 3 918 937 10.5114/aoms/171785 39050179
    [Google Scholar]
  21. Wang K.C. Lau J. Garcia S.M. Wague A. Sharma S. Liu X. Feeley B.T. The influence of age on cellular senescence in injured versus healthy muscle and its implications on rotator cuff injuries. J. Shoulder Elbow Surg. 2025 34 6 S117 S126 10.1016/j.jse.2025.02.008 40057173
    [Google Scholar]
  22. Wang Z. Liu X. Jiang K. Kim H. Kajimura S. Feeley B.T. Intramuscular brown fat activation decreases muscle atrophy and fatty infiltration and improves gait after delayed rotator cuff repair in mice. Am. J. Sports Med. 2020 48 7 1590 1600 10.1177/0363546520910421 32282238
    [Google Scholar]
  23. Dickinson R.N. Kuhn J.E. Nonoperative treatment of rotator cuff tears. Phys. Med. Rehabil. Clin. N. Am. 2023 34 2 335 355 10.1016/j.pmr.2022.12.002 37003656
    [Google Scholar]
  24. Maman E. Yehuda C. Pritsch T. Morag G. Brosh T. Sharfman Z. Dolkart O. Detrimental effect of repeated and single subacromial corticosteroid injections on the intact and injured rotator cuff. Am. J. Sports Med. 2016 44 1 177 182 10.1177/0363546515591266 26216105
    [Google Scholar]
  25. Thomopoulos S. Parks W.C. Rifkin D.B. Derwin K.A. Mechanisms of tendon injury and repair. J. Orthop. Res. 2015 33 6 832 839 10.1002/jor.22806 25641114
    [Google Scholar]
  26. Hawthorne B.C. Engel S. McCarthy M.B.R. Cote M.C. Mazzocca A.D. Coyner K.J. Biologic adjuvants to rotator cuff repairs induce anti-inflammatory macrophage 2 polarization and reduce inflammatory macrophage 1 polarization in vitro. Arthroscopy 2025 41 1 32 41 10.1016/j.arthro.2024.04.031 38735413
    [Google Scholar]
  27. Kaur S. Bansal Y. Kumar R. Bansal G. A panoramic review of IL-6: Structure, pathophysiological roles and inhibitors. Bioorg. Med. Chem. 2020 28 5 115327 10.1016/j.bmc.2020.115327 31992476
    [Google Scholar]
  28. Nagata K. Nishiyama C. IL-10 in mast cell-mediated immune responses: Anti-inflammatory and proinflammatory roles. Int. J. Mol. Sci. 2021 22 9 4972 10.3390/ijms22094972 34067047
    [Google Scholar]
  29. Sevivas N. Teixeira F.G. Portugal R. Araújo L. Carriço L.F. Ferreira N. Vieira da Silva M. Espregueira-Mendes J. Anjo S. Manadas B. Sousa N. Salgado A.J. Serra S.C. Mesenchymal stem cell secretome: A potential tool for the prevention of muscle degenerative changes associated with chronic rotator cuff tears. Am. J. Sports Med. 2017 45 1 179 188 10.1177/0363546516657827 27501832
    [Google Scholar]
  30. Ma L. Zhang R. Li D. Qiao T. Guo X. Fluoride regulates chondrocyte proliferation and autophagy via PI3K/AKT/mTOR signaling pathway. Chem. Biol. Interact. 2021 349 109659 10.1016/j.cbi.2021.109659 34536393
    [Google Scholar]
  31. Zheng R. Huang S. Zhu J. Lin W. Xu H. Zheng X. Leucine attenuates muscle atrophy and autophagosome formation by activating PI3K/AKT/mTOR signaling pathway in rotator cuff tears. Cell Tissue Res. 2019 378 1 113 125 10.1007/s00441‑019‑03021‑x 31020406
    [Google Scholar]
  32. Tian T. Chen L. Wang Z. Zhu M. Xu W. Wu B. Sema3A Drives Alternative Macrophage Activation in the Resolution of Periodontitis via PI3K/AKT/mTOR Signaling. Inflammation 2023 46 3 876 891 10.1007/s10753‑022‑01777‑z 36598593
    [Google Scholar]
  33. Zheng T. Li S. Zhang T. Fu W. Liu S. He Y. Wang X. Ma T. Exosome-shuttled miR-150–5p from LPS-preconditioned mesenchymal stem cells down-regulate PI3K/Akt/mTOR pathway via Irs1 to enhance M2 macrophage polarization and confer protection against sepsis. Front. Immunol. 2024 15 1397722 10.3389/fimmu.2024.1397722 38957471
    [Google Scholar]
  34. Li M. Tian F. Guo J. Li X. Ma L. Jiang M. Zhao J. Therapeutic potential of coptis chinensis for arthritis with underlying mechanisms. Front. Pharmacol. 2023 14 1243820 10.3389/fphar.2023.1243820 37637408
    [Google Scholar]
  35. Shen Y. Yang Y. Wang Z. Lin W. Feng N. Shi M. Liu J. Ma W. Coptisine exerts anti‐tumour effects in triple‐negative breast cancer by targeting mitochondrial complex I. Br. J. Pharmacol. 2024 181 21 4262 4278 10.1111/bph.16489 38982680
    [Google Scholar]
  36. Giancola R. Oliva F. Gallorini M. Michetti N. Gissi C. Moussa F. Antonetti Lamorgese Passeri C. Colosimo A. Berardi A.C. CD200 as a potential new player in inflammation during rotator cuff tendon injury/repair: An in vitro model. Int. J. Mol. Sci. 2022 23 23 15165 10.3390/ijms232315165 36499497
    [Google Scholar]
  37. Mao X. Yin Z. Inhibition of miR-205 promotes proliferation, migration and fibrosis of tenocytes through targeting MECP2: Implications for rotator cuff injury. Adv. Clin. Exp. Med. 2022 31 4 437 443 10.17219/acem/131961 35166074
    [Google Scholar]
/content/journals/cad/10.2174/0115734099394549251014152637
Loading
/content/journals/cad/10.2174/0115734099394549251014152637
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test