-
oa Study on the Mechanism of Action of Qi Zhu Formula in the Treatment of Metabolic-associated Fatty Liver Disease based on Network Pharmacology and Experimental Validation
-
-
- 24 Mar 2025
- 03 Jun 2025
- 05 Nov 2025
Abstract
The aim of the study was to investigate the mechanism of Qi Zhu Formula (QZF) against Metabolic-Associated Fatty Liver Disease (MAFLD) via network pharmacology and experimental validation.
Network pharmacology identified QZF components, targets, and pathways for MAFLD. Key predicted AMPK pathway targets (SREBP1C, FASN, ACC1) were validated. MAFLD was induced in rats with a 16-week high-fat/high-sugar diet. Low/medium/high QZF doses and positive control (YSF) were administered for 8 weeks. Serum parameters (liver function, lipids, glucose, cytokines, oxidative stress markers), liver histopathology (HE, Oil Red O), and hepatic mRNA/protein levels (SREBP1C, FASN, ACC1, p-AMPK) were assessed. In vitro, lipid accumulation and protein expression (p-AMPK, SREBP1C, FASN, ACC1) were measured in fatty AML12 cells treated with control/model/normal serum/QZF serum/AMPK inhibitor/QZF serum + inhibitor.
Network pharmacology identified 36 QZF components, 236 targets, and 138 intersecting MAFLD targets, enriching the AMPK pathway. QZF significantly reduced liver steatosis, inflammation, necrosis, serum liver enzymes, lipids, glucose, IL-6, IL-1β, TNF-α, FFA, MDA, and increased SOD in MAFLD rats. QZF upregulated hepatic p-AMPK protein and downregulated SREBP1C, FASN, and ACC1 mRNA/protein. QZF serum reduced lipid droplets in cells, most effectively at 24h, increasing p-AMPK and decreasing SREBP1C/FASN/ACC1 protein. AMPK inhibitor abolished QZF serum's effects.
QZF's AMPK-mediated lipid suppression advances TCM mechanism validation, though unexamined pathways and compound synergies require exploration.
QZF ameliorates MAFLD by improving serum profiles, inhibiting lipid synthesis (via AMPK activation, suppressing SREBP1C/FASN/ACC1), reducing inflammation, and attenuating liver injury. Its “multi-target-multi-pathway” action supports its potential as a novel MAFLD treatment.