Skip to content
2000
image of Study on the Mechanism of Action of Qi Zhu Formula in the Treatment of Metabolic-associated Fatty Liver Disease based on Network Pharmacology and Experimental Validation

Abstract

Introduction

The aim of the study was to investigate the mechanism of Qi Zhu Formula (QZF) against Metabolic-Associated Fatty Liver Disease (MAFLD) network pharmacology and experimental validation.

Methods

Network pharmacology identified QZF components, targets, and pathways for MAFLD. Key predicted AMPK pathway targets (SREBP1C, FASN, ACC1) were validated. MAFLD was induced in rats with a 16-week high-fat/high-sugar diet. Low/medium/high QZF doses and positive control (YSF) were administered for 8 weeks. Serum parameters (liver function, lipids, glucose, cytokines, oxidative stress markers), liver histopathology (HE, Oil Red O), and hepatic mRNA/protein levels (SREBP1C, FASN, ACC1, p-AMPK) were assessed. , lipid accumulation and protein expression (p-AMPK, SREBP1C, FASN, ACC1) were measured in fatty AML12 cells treated with control/model/normal serum/QZF serum/AMPK inhibitor/QZF serum + inhibitor.

Results

Network pharmacology identified 36 QZF components, 236 targets, and 138 intersecting MAFLD targets, enriching the AMPK pathway. QZF significantly reduced liver steatosis, inflammation, necrosis, serum liver enzymes, lipids, glucose, IL-6, IL-1β, TNF-α, FFA, MDA, and increased SOD in MAFLD rats. QZF upregulated hepatic p-AMPK protein and downregulated SREBP1C, FASN, and ACC1 mRNA/protein. QZF serum reduced lipid droplets in cells, most effectively at 24h, increasing p-AMPK and decreasing SREBP1C/FASN/ACC1 protein. AMPK inhibitor abolished QZF serum's effects.

Discussion

QZF's AMPK-mediated lipid suppression advances TCM mechanism validation, though unexamined pathways and compound synergies require exploration.

Conclusion

QZF ameliorates MAFLD by improving serum profiles, inhibiting lipid synthesis ( AMPK activation, suppressing SREBP1C/FASN/ACC1), reducing inflammation, and attenuating liver injury. Its “multi-target-multi-pathway” action supports its potential as a novel MAFLD treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099394452251014103956
2025-11-05
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099394452251014103956/BMS-CCADD-2025-HT21-6752-4.html?itemId=/content/journals/cad/10.2174/0115734099394452251014103956&mimeType=html&fmt=ahah

References

  1. Manne V. Handa P. Kowdley K.V. Pathophysiology of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis. Clin. Liver Dis. 2018 22 1 23 37 10.1016/j.cld.2017.08.007 29128059
    [Google Scholar]
  2. Chen Y.H. Zhan Z. Hu P. Ren H. Peng M.L. [A new attempt with lipoprotein lipase agonists in the treatment of nonalcoholic steatohepatitis]. Zhonghua Gan Zang Bing Za Zhi 2019 27 7 533 540 31357780
    [Google Scholar]
  3. Pais R. Barritt A.S. IV Calmus Y. Scatton O. Runge T. Lebray P. Poynard T. Ratziu V. Conti F. NAFLD and liver transplantation: Current burden and expected challenges. J. Hepatol. 2016 65 6 1245 1257 10.1016/j.jhep.2016.07.033 27486010
    [Google Scholar]
  4. Younossi Z.M. Koenig A.B. Abdelatif D. Fazel Y. Henry L. Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016 64 1 73 84 10.1002/hep.28431 26707365
    [Google Scholar]
  5. Younossi Z.M. Golabi P. Paik J.M. Henry A. Van Dongen C. Henry L. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review. Hepatology 2023 77 4 1335 1347 10.1097/HEP.0000000000000004 36626630
    [Google Scholar]
  6. Paik J.M. Golabi P. Younossi Y. Mishra A. Younossi Z.M. Changes in the global burden of chronic liver diseases from 2012 to 2017: the growing impact of NAFLD. Hepatology 2020 72 5 1605 1616 10.1002/hep.31173 32043613
    [Google Scholar]
  7. Wong R.J. Cheung R. Ahmed A. Nonalcoholic steatohepatitis is the most rapidly growing indication for liver transplantation in patients with hepatocellular carcinoma in the U.S. Hepatology 2014 59 6 2188 2195 10.1002/hep.26986 24375711
    [Google Scholar]
  8. Meta-analysis A. Nonalcoholic fatty liver disease and risk of incident type 2 diabetes: A meta-analysis. Diabetes Care 2018 41 2 372 382.Feb
    [Google Scholar]
  9. Mantovani A. Zaza G. Byrne C.D. Lonardo A. Zoppini G. Bonora E. Targher G. Nonalcoholic fatty liver disease increases risk of incident chronic kidney disease: A systematic review and meta-analysis. Metabolism 2018 79 64 76 10.1016/j.metabol.2017.11.003 29137912
    [Google Scholar]
  10. Targher G. Byrne C.D. Lonardo A. Zoppini G. Barbui C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016 65 3 589 600 10.1016/j.jhep.2016.05.013 27212244
    [Google Scholar]
  11. Golabi P. Paik J.M. AlQahtani S. Younossi Y. Tuncer G. Younossi Z.M. The burden of nonalcoholic fatty liver disease in Asia, Middle East and North Africa: data from Global Burden of Disease 2009-2019. J. Hepatol. 2021 75 4 795 809 10.1016/j.jhep.2021.05.022 34081959
    [Google Scholar]
  12. Paik J.M. Golabi P. Younossi Y. Srishord M. Mishra A. Younossi Z.M. The growing burden of disability related to nonalcoholic fatty liver disease: data from the Global Burden of Disease 2007-2017. Hepatol. Commun. 2020 4 12 1769 1780 10.1002/hep4.1599 33305148
    [Google Scholar]
  13. Ekstedt M. Hagström H. Nasr P. Fredrikson M. Stål P. Kechagias S. Hultcrantz R. Fibrosis stage is the strongest predictor for disease‐specific mortality in NAFLD after up to 33 years of follow‐up. Hepatology 2015 61 5 1547 1554 10.1002/hep.27368 25125077
    [Google Scholar]
  14. Söderberg C. Stål P. Askling J. Glaumann H. Lindberg G. Marmur J. Hultcrantz R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatology 2010 51 2 595 602 10.1002/hep.23314 20014114
    [Google Scholar]
  15. Sanna C. Rosso C. Marietti M. Bugianesi E. Non-Alcoholic fatty liver disease and extra-hepatic cancers. Int. J. Mol. Sci. 2016 17 5 717 10.3390/ijms17050717 27187365
    [Google Scholar]
  16. Wang P. Liu Y. Kang S.Y. Lyu C. Han X. Ho T. Lee K.J. Meng X. Park Y.K. Jung H.W. Clean-DM1, a Korean polyherbal formula, improves high fat diet-induced diabetic symptoms in mice by regulating IRS/PI3K/AKT and AMPK expressions in pancreas and liver tissues. Chin. J. Integr. Med. 2024 30 2 125 134 10.1007/s11655‑023‑3548‑9 37118530
    [Google Scholar]
  17. Younossi Z. Anstee Q.M. Marietti M. Hardy T. Henry L. Eslam M. George J. Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018 15 1 11 20 10.1038/nrgastro.2017.109 28930295
    [Google Scholar]
  18. Li L. Wu L. Wang C. Liu L. Zhao Y. Adiponectin modulates carnitine palmitoyltransferase-1 through AMPK signaling cascade in rat cardiomyocytes. Regul. Pept. 2007 139 1-3 72 79 10.1016/j.regpep.2006.10.007 17109977
    [Google Scholar]
  19. Bultot L. Guigas B. Von Wilamowitz-Moellendorff A. Maisin L. Vertommen D. Hussain N. Beullens M. Guinovart J.J. Foretz M. Viollet B. Sakamoto K. Hue L. Rider M.H. AMP-activated protein kinase phosphorylates and inactivates liver glycogen synthase. Biochem. J. 2012 443 1 193 203 10.1042/BJ20112026 22233421
    [Google Scholar]
  20. Li Y. Xu S. Mihaylova M.M. Zheng B. Hou X. Jiang B. Park O. Luo Z. Lefai E. Shyy J.Y.J. Gao B. Wierzbicki M. Verbeuren T.J. Shaw R.J. Cohen R.A. Zang M. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 2011 13 4 376 388 10.1016/j.cmet.2011.03.009 21459323
    [Google Scholar]
  21. Kawaguchi T. Osatomi K. Yamashita H. Kabashima T. Uyeda K. Mechanism for fatty acid “sparing” effect on glucose-induced transcription: regulation of carbohydrate-responsive nlm-binding protein by AMP-activated protein kinase. J. Biol. Chem. 2002 277 6 3829 3835 10.1074/jbc.M107895200 11724780
    [Google Scholar]
  22. Hong Y.H. Varanasi U.S. Yang W. Leff T. AMP-activated protein kinase regulates HNF4alpha transcriptional activity by inhibiting dimer formation and decreasing protein stability. J. Biol. Chem. 2003 278 30 27495 27501 10.1074/jbc.M304112200 12740371
    [Google Scholar]
  23. Herzig S. Shaw R.J. AMPK: guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018 19 2 121 135 10.1038/nrm.2017.95 28974774
    [Google Scholar]
  24. Zhou G. Myers R. Li Y. Chen Y. Shen X. Fenyk-Melody J. Wu M. Ventre J. Doebber T. Fujii N. Musi N. Hirshman M.F. Goodyear L.J. Moller D.E. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001 108 8 1167 1174 10.1172/JCI13505 11602624
    [Google Scholar]
/content/journals/cad/10.2174/0115734099394452251014103956
Loading
/content/journals/cad/10.2174/0115734099394452251014103956
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test