Skip to content
2000
image of Unraveling Multi-target Mechanisms of Codonopsis pilosula in Breast Cancer: A Synergistic Approach Combining Network Pharmacology, Molecular Docking, and Machine Learning Techniques

Abstract

Introduction

Breast cancer is a leading cause of cancer-related mortality in women. Although the traditional Chinese medicine Codonopsis Pilosula (CP) is empirically used in its treatment the underlying mechanisms of action remain elusive. This study aimed to apply a novel integrative network pharmacology and machine learning approach to identify bioactive compounds in CP and elucidate their anti-breast cancer mechanisms.

Methods

The analysis utilized a comprehensive and innovative workflow that combined network pharmacology machine learning-based target prediction bioinformatics analyses and molecular docking and molecular dynamics simulations. Publicly available datasets were mined for CP constituents and putative targets and integrated with breast cancer-associated gene profiles. Key compound-target interactions were prioritized machine learning algorithms.

Results

Machine learning highlighted EGFR and PTGS2 as primary targets. Molecular docking and dynamics demonstrated stable binding of Taraxerol and Stigmasterol to these proteins with EGFR–Taraxerol EGFR–Spinasterol PTGS2–Stigmasterol and PTGS2–Taraxerol complexes exhibiting robust affinity and stability.

Discussion

The findings are significant as they reveal previously unreported interactions between CP’s bioactive compounds and critical breast cancer targets. This provides a molecular-level explanation for the traditional use of CP bridging the gap between TCM and modern pharmacology. These results offer a solid foundation for further experimental validation.

Conclusion

This multidisciplinary predictive strategy successfully identified key bioactive compounds in CP and their molecular targets in breast cancer. The study provides crucial mechanistic evidence for CP’s therapeutic potential and highlights the power of this integrated approach for drug discovery from TCM (Traditional Chinese Medicine).

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099391503251119090622
2026-01-08
2026-01-19
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099391503251119090622/BMS-CCADD-2025-37.html?itemId=/content/journals/cad/10.2174/0115734099391503251119090622&mimeType=html&fmt=ahah

References

  1. Nolan E. Lindeman G.J. Visvader J.E. Deciphering breast cancer: From biology to the clinic. Cell 2023 186 8 1708 1728 10.1016/j.cell.2023.01.040 36931265
    [Google Scholar]
  2. Park M. Kim D. Ko S. Kim A. Mo K. Yoon H. Breast cancer metastasis: Mechanisms and therapeutic implications. Int. J. Mol. Sci. 2022 23 12 6806 10.3390/ijms23126806 35743249
    [Google Scholar]
  3. Li D.D. Zhou T. Gao J. Wu G.L. Yang G.R. Circadian rhythms and breast cancer: From molecular level to therapeutic advancements. J. Cancer Res. Clin. Oncol. 2024 150 9 419 10.1007/s00432‑024‑05917‑w 39266868
    [Google Scholar]
  4. Fitzgerald R.C. Antoniou A.C. Fruk L. Rosenfeld N. The future of early cancer detection. Nat. Med. 2022 28 4 666 677 10.1038/s41591‑022‑01746‑x 35440720
    [Google Scholar]
  5. Shi Z.D. Pang K. Wu Z.X. Dong Y. Hao L. Qin J.X. Wang W. Chen Z.S. Han C.H. Tumor cell plasticity in targeted therapy-induced resistance: Mechanisms and new strategies. Signal Transduct. Target. Ther. 2023 8 1 113 10.1038/s41392‑023‑01383‑x 36906600
    [Google Scholar]
  6. Guo H. Lou Y. Hou X. Han Q. Guo Y. Li Z. Guan X. Liu H. Zhang C. A systematic review of the mechanism of action and potential medicinal value of codonopsis pilosula in diseases. Front. Pharmacol. 2024 15 1415147 10.3389/fphar.2024.1415147 38803438
    [Google Scholar]
  7. Luan F. Ji Y. Peng L. Liu Q. Cao H. Yang Y. He X. Zeng N. Extraction, purification, structural characteristics and biological properties of the polysaccharides from Codonopsis pilosula: A review. Carbohydr. Polym. 2021 261 117863 10.1016/j.carbpol.2021.117863 33766352
    [Google Scholar]
  8. Chen L. Huang G. Antitumor activity of polysaccharides: An overview. Curr. Drug Targets 2018 19 1 89 96 10.2174/1389450118666170704143018 28676001
    [Google Scholar]
  9. Ullah S. Khalil A.A. Shaukat F. Song Y. Sources, extraction and biomedical properties of polysaccharides. Foods 2019 8 8 304 10.3390/foods8080304 31374889
    [Google Scholar]
  10. Bailly C. Anticancer properties of lobetyolin, an essential component of radix codonopsis (Dangshen). Nat. Prod. Bioprospect. 2021 11 2 143 153 10.1007/s13659‑020‑00283‑9 33161560
    [Google Scholar]
  11. Esmeeta A. Adhikary S. Dharshnaa V. Swarnamughi P. Ummul Maqsummiya Z. Banerjee A. Pathak S. Duttaroy A.K. Plant-derived bioactive compounds in colon cancer treatment: An updated review. Biomed. Pharmacother. 2022 153 113384 10.1016/j.biopha.2022.113384 35820317
    [Google Scholar]
  12. Zhai Y. Liu L. Zhang F. Chen X. Wang H. Zhou J. Chai K. Liu J. Lei H. Lu P. Guo M. Guo J. Wu J. Network pharmacology: A crucial approach in traditional Chinese medicine research. Chin. Med. 2025 20 1 8 10.1186/s13020‑024‑01056‑z 39800680
    [Google Scholar]
  13. Zhang X. Wu F. Yang N. Zhan X. Liao J. Mai S. Huang Z. In silico methods for identification of potential therapeutic targets. Interdiscip. Sci. 2022 14 2 285 310 10.1007/s12539‑021‑00491‑y 34826045
    [Google Scholar]
  14. Yang K. Lu K. Wu Y. Yu J. Liu B. Zhao Y. Chen J. Zhou X. A network-based machine-learning framework to identify both functional modules and disease genes. Hum. Genet. 2021 140 6 897 913 10.1007/s00439‑020‑02253‑0 33409574
    [Google Scholar]
  15. Greener J.G. Kandathil S.M. Moffat L. Jones D.T. A guide to machine learning for biologists. Nat. Rev. Mol. Cell Biol. 2022 23 1 40 55 10.1038/s41580‑021‑00407‑0 34518686
    [Google Scholar]
  16. Fan H. Ren C. Feng Y. Zhu L. Yu A. Guan T. A systematic review of the phytochemical profile and potential medicinal functions of Codonopsis pilosula in cancer. Food Sci. Nutr. 2025 13 3 e70054 10.1002/fsn3.70054 40008240
    [Google Scholar]
  17. Liu M. Wang Y. Deng W. Xie J. He Y. Wang L. Zhang J. Cui M. Combining network pharmacology, machine learning, molecular docking and molecular dynamic to explore the mechanism of Chufeng Qingpi decoction in treating schistosomiasis. Front. Cell. Infect. Microbiol. 2024 14 1453529 10.3389/fcimb.2024.1453529 39310787
    [Google Scholar]
  18. Agu P.C. Afiukwa C.A. Orji O.U. Ezeh E.M. Ofoke I.H. Ogbu C.O. Ugwuja E.I. Aja P.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management. Sci. Rep. 2023 13 1 13398 10.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  19. Rico M.I. Lebedenko C.G. Mitchell S.M. Banerjee I.A. Molecular dynamics simulations, docking and MMGBSA studies of newly designed peptide-conjugated glucosyloxy stilbene derivatives with tumor cell receptors. Mol. Divers. 2022 26 5 2717 2743 10.1007/s11030‑021‑10354‑9 35037187
    [Google Scholar]
  20. Li N. Yang C. Xia J. Wang W. Xiong W. Molecular mechanisms of Codonopsis pilosula in inhibiting hepatocellular carcinoma growth and metastasis. Phytomedicine 2024 128 155338 10.1016/j.phymed.2024.155338 38520835
    [Google Scholar]
  21. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  22. Sakle N.S. More S.A. Mokale S.N. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020 10 1 17217 10.1038/s41598‑020‑74251‑1 33057155
    [Google Scholar]
  23. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  24. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  25. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  26. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  27. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The genecards suite:From gene data mining to disease genome sequence analyses Curr. Protoc Bioinform. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  28. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  29. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  30. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  31. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  32. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology 2014 8 Suppl. 4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  33. Sanz H. Valim C. Vegas E. Oller J.M. Reverter F. SVM-RFE: Selection and visualization of the most relevant features through non-linear kernels. BMC Bioinformatics 2018 19 1 432 10.1186/s12859‑018‑2451‑4 30453885
    [Google Scholar]
  34. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chao H. Chen L. Craig P.A. Crichlow G.V. Dalenberg K. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Henry J. Hudson B.P. Khokhriakov I. Lawson C.L. Liang Y. Lowe R. Peisach E. Persikova I. Piehl D.W. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Vallat B. Voigt M. Webb B. Westbrook J.D. Whetstone S. Young J.Y. Zalevsky A. Zardecki C. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023 51 D1 D488 D508 10.1093/nar/gkac1077 36420884
    [Google Scholar]
  35. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  36. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  37. Guex N. Peitsch M.C. SWISS‐MODEL and the Swiss‐Pdb viewer: An environment for comparative protein modeling. Electrophoresis 1997 18 15 2714 2723 10.1002/elps.1150181505 9504803
    [Google Scholar]
  38. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  39. Tuccinardi T. What is the current value of MM/PBSA and MM/GBSA methods in drug discovery? Expert Opin. Drug Discov. 2021 16 11 1233 1237 10.1080/17460441.2021.1942836 34165011
    [Google Scholar]
  40. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  41. Esteva F.J. Hubbard-Lucey V.M. Tang J. Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. Lancet Oncol. 2019 20 3 e175 e186 10.1016/S1470‑2045(19)30026‑9 30842061
    [Google Scholar]
  42. Harbeck N. Penault-Llorca F. Cortes J. Gnant M. Houssami N. Poortmans P. Ruddy K. Tsang J. Cardoso F. Breast cancer. Nat. Rev. Dis. Primers 2019 5 1 66 10.1038/s41572‑019‑0111‑2 31548545
    [Google Scholar]
  43. Leon-Ferre R.A. Goetz M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023 381 e071674 10.1136/bmj‑2022‑071674 37253507
    [Google Scholar]
  44. Batool S. Javed M.R. Aslam S. Noor F. Javed H.M.F. Seemab R. Rehman A. Aslam M.F. Paray B.A. Gulnaz A. Network pharmacology and bioinformatics approach reveals the multi-target pharmacological mechanism of Fumaria indica in the treatment of liver cancer. Pharmaceuticals 2022 15 6 654 10.3390/ph15060654 35745580
    [Google Scholar]
  45. Rehman A. Noor F. Fatima I. Qasim M. Liao M. Identification of molecular mechanisms underlying the therapeutic effects of Celosia Cristata on immunoglobulin nephropathy. Comput. Biol. Med. 2022 151 Pt A 106290.Dec 10.1016/j.compbiomed.2022.106290 36379189
    [Google Scholar]
  46. Hu Y.R. Xing S.L. Chen C. Shen D.Z. Chen J.L. Codonopsis pilosula polysaccharides alleviate Aβ1-40-induced PC12 cells energy dysmetabolism via CD38/NAD+ signaling pathway. Curr. Alzheimer Res. 2021 18 3 208 221 10.2174/15672050MTE2rMDIjy 34102973
    [Google Scholar]
  47. Liu J. An J. Jiang N. Yang K. Guan C. Zhao N. Cheng J. Fu S. Ma C. Ma X. Tang X. Codonopsis pilosula polysaccharides promote osteogenic differentiation and inhibit lipogenic differentiation of rat bone marrow stem cells by activating β-catenin. Chem. Biol. Interact. 2023 385 110721 10.1016/j.cbi.2023.110721 37739048
    [Google Scholar]
  48. Zou Y.F. Zhang Y.Y. Paulsen B.S. Rise F. Chen Z.L. Jia R.Y. Li L.X. Song X. Feng B. Tang H.Q. Huang C. Ye G. Yin Z.Q. New pectic polysaccharides from Codonopsis pilosula and Codonopsis tangshen: Structural characterization and cellular antioxidant activities. J. Sci. Food Agric. 2021 101 14 6043 6052 10.1002/jsfa.11261 33857333
    [Google Scholar]
  49. Zhang X. Shen T. Zhou X. Tang X. Gao R. Xu L. Wang L. Zhou Z. Lin J. Hu Y. Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Sci. Rep. 2020 10 1 15730 10.1038/s41598‑020‑72797‑8 32978480
    [Google Scholar]
  50. Li S. Yang Y. Wang Z. Li L. Gao Y. Cao Y. The lncRNA DANCR promotes breast cancer brain metastasis by acting as a ceRNA for miR-758-3p to regulate PTGS2 expression. Acta Biochim. Biophys. Sin 2025 10.3724/abbs.2025082 40370195
    [Google Scholar]
  51. Zhang M.Y. Zheng S.Q. Network pharmacology and molecular dynamics study of the effect of the Astragalus-Coptis drug pair on diabetic kidney disease. World J. Diabetes 2024 15 7 1562 1588 10.4239/wjd.v15.i7.1562 39099827
    [Google Scholar]
  52. Rocchetti M.T. Bellanti F. Zadorozhna M. Fiocco D. Mangieri D. Multi-faceted role of luteolin in cancer metastasis: EMT, angiogenesis, ECM degradation and apoptosis. Int. J. Mol. Sci. 2023 24 10 8824 10.3390/ijms24108824 37240168
    [Google Scholar]
  53. Xia Y. Zhang Y. Chen L. Min L. Huang D. Zhang Y. Li C. Li Z. Suppression of migration and invasion by taraxerol in the triple-negative breast cancer cell line MDA-MB-231 via the ERK/Slug axis. PLoS One 2023 18 9 e0291693 10.1371/journal.pone.0291693 37751436
    [Google Scholar]
  54. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  55. Tassan J.P. Jaquenoud M. Léopold P. Schultz S.J. Nigg E.A. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA 1995 92 19 8871 8875 10.1073/pnas.92.19.8871 7568034
    [Google Scholar]
  56. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014 15 6 122 10.1186/gb4184 25180339
    [Google Scholar]
  57. Zhang X. Wang X. Xu K. Jiang Z. Dong K. Xie X. Zhang H. Yue N. Zhang Y. Wang X.B. Han C. Yu J. Li D. The serine/threonine/tyrosine kinase STY46 defends against hordeivirus infection by phosphorylating γb protein. Plant Physiol. 2021 186 1 715 730 10.1093/plphys/kiab056 33576790
    [Google Scholar]
  58. Parthibane V. Iyappan R. Vijayakumar A. Venkateshwari V. Rajasekharan R. Serine/threonine/tyrosine protein kinase phosphorylates oleosin, a regulator of lipid metabolic functions. Plant Physiol. 2012 159 1 95 104 10.1104/pp.112.197194 22434039
    [Google Scholar]
  59. Martín-Vázquez E. Cobo-Vuilleumier N. López-Noriega L. Lorenzo P.I. Gauthier B.R. The PTGS2/COX2-PGE2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus. Int. J. Biol. Sci. 2023 19 13 4157 4165 10.7150/ijbs.86492 37705740
    [Google Scholar]
  60. Dossus L. Kaaks R. Canzian F. Albanes D. Berndt S.I. Boeing H. Buring J. Chanock S.J. Clavel-Chapelon F. Feigelson H.S. Gaziano J.M. Giovannucci E. Gonzalez C. Haiman C.A. Hallmans G. Hankinson S.E. Hayes R.B. Henderson B.E. Hoover R.N. Hunter D.J. Khaw K.T. Kolonel L.N. Kraft P. Ma J. Le Marchand L. Lund E. Peeters P.H.M. Stampfer M. Stram D.O. Thomas G. Thun M.J. Tjonneland A. Trichopoulos D. Tumino R. Riboli E. Virtamo J. Weinstein S.J. Yeager M. Ziegler R.G. Cox D.G. PTGS2 and IL6 genetic variation and risk of breast and prostate cancer: Results from the breast and prostate cancer cohort consortium (BPC3). Carcinogenesis 2010 31 3 455 461 10.1093/carcin/bgp307 19965896
    [Google Scholar]
  61. Cervello M. Montalto G. Cyclooxygenases in hepatocellular carcinoma. World J. Gastroenterol. 2006 12 32 5113 5121 10.3748/wjg.v12.i32.5113 16937518
    [Google Scholar]
  62. Ali R. Wendt M.K. The paradoxical functions of EGFR during breast cancer progression. Signal Transduct. Target. Ther. 2017 2 1 16042 10.1038/sigtrans.2016.42 28435746
    [Google Scholar]
  63. Uribe M.L. Marrocco I. Yarden Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021 13 11 2748 10.3390/cancers13112748 34206026
    [Google Scholar]
  64. Jin M. Fang J. Peng J. Wang X. Xing P. Jia K. Hu J. Wang D. Ding Y. Wang X. Li W. Chen Z. PD-1/PD-L1 immune checkpoint blockade in breast cancer: Research insights and sensitization strategies. Mol. Cancer 2024 23 1 266 10.1186/s12943‑024‑02176‑8 39614285
    [Google Scholar]
  65. Wang H. Fan S. Zhan Y. Xu Y. Du Y. Luo J. Zang H. Peng S. Wang W. Targeting EGFR-binding protein SLC7A11 enhancing antitumor immunity of T cells via inducing MHC-I antigen presentation in nasopharyngeal carcinoma. Cell Death Dis. 2025 16 1 21 10.1038/s41419‑024‑07327‑9 39820491
    [Google Scholar]
  66. Pu D. Yin L. Huang L. Qin C. Zhou Y. Wu Q. Li Y. Zhou Q. Li L. Cyclooxygenase-2 inhibitor: A potential combination strategy with immunotherapy in cancer. Front. Oncol. 2021 11 637504 10.3389/fonc.2021.637504 33718229
    [Google Scholar]
  67. Reimand J. Isserlin R. Voisin V. Kucera M. Tannus-Lopes C. Rostamianfar A. Wadi L. Meyer M. Wong J. Xu C. Merico D. Bader G.D. Pathway enrichment analysis and visualization of omics data using g: Profiler, GSEA, cytoscape and enrichmentMap. Nat. Protoc. 2019 14 2 482 517 10.1038/s41596‑018‑0103‑9 30664679
    [Google Scholar]
  68. Kerrigan K. Patel S.B. Haaland B. Ose D. Weinberg Chalmers A. Haydell T. Meropol N.J. Akerley W. Prognostic significance of patient-reported outcomes in cancer. JCO Oncol. Pract. 2020 16 4 e313 e323 10.1200/JOP.19.00329 32048943
    [Google Scholar]
  69. Zhu Q. Han Y. He Y. Meng P. Fu Y. Yang H. He G. Long M. Shi Y. Quercetin inhibits neuronal Ferroptosis and promotes immune response by targeting lipid metabolism-related gene PTGS2 to alleviate breast cancer-related depression. Phytomedicine 2024 130 155560 10.1016/j.phymed.2024.155560 38815404
    [Google Scholar]
  70. Luo L. Yang P. Mastoraki S. Rao X. Wang Y. Kettner N.M. Raghavendra A.S. Tripathy D. Damodaran S. Hunt K.K. Wang J. Li Z. Keyomarsi K. Single-cell RNA sequencing identifies molecular biomarkers predicting late progression to CDK4/6 inhibition in patients with HR+/HER2- metastatic breast cancer. Mol. Cancer 2025 24 1 48 10.1186/s12943‑025‑02226‑9 39955556
    [Google Scholar]
  71. Cheung A. Chenoweth A.M. Johansson A. Laddach R. Guppy N. Trendell J. Esapa B. Mavousian A. Navarro-Llinas B. Haider S. Romero-Clavijo P. Hoffmann R.M. Andriollo P. Rahman K.M. Jackson P. Tsoka S. Irshad S. Roxanis I. Grigoriadis A. Thurston D.E. Lord C.J. Tutt A.N.J. Karagiannis S.N. Anti-EGFR antibody–drug conjugate carrying an inhibitor targeting CDK restricts triple-negative breast cancer growth. Clin. Cancer Res. 2024 30 15 3298 3315 10.1158/1078‑0432.CCR‑23‑3110 38772416
    [Google Scholar]
  72. Yee J.L. Huang C.Y. Yu Y.C. Huang S.J. Potential mechanisms of guizhi fuling wan in treating endometriosis: An analysis based on TCMSP and DisGeNET databases. J. Ethnopharmacol. 2024 329 118190 10.1016/j.jep.2024.118190 38614264
    [Google Scholar]
  73. Otasek D. Morris J.H. Bouças J. Pico A.R. Demchak B. Cytoscape automation: Empowering workflow-based network analysis. Genome Biol. 2019 20 1 185 10.1186/s13059‑019‑1758‑4 31477170
    [Google Scholar]
  74. Guan S. Xu Z. Yang T. Zhang Y. Zheng Y. Chen T. Liu H. Zhou J. Identifying potential targets for preventing cancer progression through the PLA2G1B recombinant protein using bioinformatics and machine learning methods. Int. J. Biol. Macromol. 2024 276 Pt 1 133918 10.1016/j.ijbiomac.2024.133918 39019365
    [Google Scholar]
  75. Chen D. Liu J. Zang L. Xiao T. Zhang X. Li Z. Zhu H. Gao W. Yu X. Integrated machine learning and bioinformatic analyses constructed a novel stemness-related classifier to predict prognosis and immunotherapy responses for hepatocellular carcinoma patients. Int. J. Biol. Sci. 2022 18 1 360 373 10.7150/ijbs.66913 34975338
    [Google Scholar]
/content/journals/cad/10.2174/0115734099391503251119090622
Loading
/content/journals/cad/10.2174/0115734099391503251119090622
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test