Skip to content
2000
image of Decoding the Molecular Mechanism of Bioactive Compounds Derived from Microalgae via Transcriptomics Data and Integrative Bioinformatics Analysis

Abstract

Introduction

Microalgae, with their high photosynthetic efficiency and sustainability, hold promise to produce bioactive compounds, chemicals, cosmetics, and biofuels. This study aims to understand the molecular mechanisms of bioactive compounds from microalgae using integrative bioinformatics approaches to identify their potential therapeutic applications.

Methods

Gene expression profiles from the GSE113144 and GSE115827 datasets were retrieved from the GEO database using keywords such as liver disease, microalgae, and bioactive compounds. Different expressed genes (DEGs) were identified using the GEO2R tool. Subsequently, a PPI network was constructed to identify hub genes and key regulatory elements. The findings were further cross-validated using a range of bioinformatics tools, databases, and literature to explore their potential applications in drug development, nutraceuticals, and disease modulation.

Results

Following oxo-fatty acid treatment, 2051 differentially expressed genes (DEGs) were identified, while 399 DEGs were detected after sea spray aerosol treatment, with 39 genes shared between the two treatments. These DEGs were primarily enriched in immune and metabolic processes. Protein-protein interaction analysis revealed ten key hub genes: PBK, CENPA, ASPM, DLGAP5, DEPDC1, SPC25, CDCA3, HJURP, ERCC6L, and KIF18B, which are involved in immune and metabolic responses. Functional enrichment highlighted roles in cholesterol and fatty-acyl-CoA binding, peptidoglycan recognition, metal ion binding, and protease activity. Notably, PBK and CDCA3 are associated with approved drugs, suggesting potential for therapeutic repurposing.

Discussion

The molecular functions enriched among hub genes, such as cholesterol binding, fatty-acyl-CoA binding, peptidoglycan receptor activity, and metal ion binding, suggest actionable pathways that could be pharmacologically modulated. These targets are highly relevant to diseases such as NAFLD and chronic inflammation. The identification of druggable hub genes and enriched immune-metabolic functions provides a foundation for further preclinical and translational research.

Conclusion

This study offers valuable insights into the molecular mechanisms underlying human immune and metabolic responses to sea spray aerosols and oxo-fatty acids, identifying cellular pathways and processes that are often regulated in human immune and metabolic responses to various microalgae. Overall, this study enhances our understanding of the potential therapeutic applications of microalgae-derived bioactive compounds, offering potential breakthroughs in drug discovery and nutraceutical development.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099389525250704104200
2025-07-24
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099389525250704104200/BMS-CCADD-2025-26.html?itemId=/content/journals/cad/10.2174/0115734099389525250704104200&mimeType=html&fmt=ahah

References

  1. Zhou L. Li K. Duan X. Hill D. Barrow C. Dunshea F. Martin G. Suleria H. Bioactive compounds in microalgae and their potential health benefits. Food Biosci. 2022 49 101932 10.1016/j.fbio.2022.101932
    [Google Scholar]
  2. Abe K. Hattori H. Hirano M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chem. 2007 100 2 656 661 10.1016/j.foodchem.2005.10.026
    [Google Scholar]
  3. Ursu A.V. Marcati A. Sayd T. Sante-Lhoutellier V. Djelveh G. Michaud P. Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresour. Technol. 2014 157 134 139 10.1016/j.biortech.2014.01.071 24534795
    [Google Scholar]
  4. Miazek K. Beton K. Śliwińska A. Brożek-Płuska B. The effect of β-carotene, tocopherols and ascorbic acid as anti-oxidant molecules on human and animal in vitro/in vivo studies: A review of research design and analytical techniques used. Biomolecules 2022 12 8 1087 10.3390/biom12081087 36008981
    [Google Scholar]
  5. Pizzino G. Irrera N. Cucinotta M. Pallio G. Mannino F. Arcoraci V. Squadrito F. Altavilla D. Bitto A. Oxidative stress: Harms and benefits for human health. Oxid. Med. Cell. Longev. 2017 2017 1 8416763 10.1155/2017/8416763 28819546
    [Google Scholar]
  6. Tan Q. Chu H. Wei J. Yan S. Sun X. Wang J. Zhu L. Yang F. Astaxanthin alleviates hepatic lipid metabolic dysregulation induced by microcystin-LR. Toxins 2024 16 9 401 10.3390/toxins16090401 39330859
    [Google Scholar]
  7. Lü J.M. Lin P.H. Yao Q. Chen C. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 2010 14 4 840 860 10.1111/j.1582‑4934.2009.00897.x 19754673
    [Google Scholar]
  8. Valko M. Rhodes C.J. Moncol J. Izakovic M. Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006 160 1 1 40 10.1016/j.cbi.2005.12.009 16430879
    [Google Scholar]
  9. Saed-Moucheshi A. Shekoofa A. Pessarakli M. Reactive oxygen species (ROS) generation and detoxifying in plants. J. Plant Nutr. 2014 37 10 1573 1585 10.1080/01904167.2013.868483
    [Google Scholar]
  10. Roointan A. Ghaeidamini M. Yavari P. Naimi A. Gheisari Y. Gholaminejad A. Transcriptome meta-analysis and validation to discovery of hub genes and pathways in focal and segmental glomerulosclerosis. BMC Nephrol. 2024 25 1 293 10.1186/s12882‑024‑03734‑4 39232654
    [Google Scholar]
  11. Su Y. Tian X. Gao R. Guo W. Chen C. Chen C. Jia D. Li H. Lv X. Colon cancer diagnosis and staging classification based on machine learning and bioinformatics analysis. Comput. Biol. Med. 2022 145 105409 10.1016/j.compbiomed.2022.105409 35339846
    [Google Scholar]
  12. Yusof Z. Tong Y.W. Selvarajoo K. Parakh S.K. Foo S.C. Overcoming challenges in microalgal bioprocessing through data-driven and computational approaches. Curr. Opin. Food Sci. 2024 ••• 101253 10.1016/j.cofs.2024.101253
    [Google Scholar]
  13. Wang M. Lin H. Lin H. Du P. Zhang S. From species to varieties: How modern sequencing technologies are shaping medicinal plant identification. Genes 2024 16 1 16 10.3390/genes16010016 39858563
    [Google Scholar]
  14. Dougherty B.V. Papin J.A. Systems biology approaches help to facilitate interpretation of cross-species comparisons. Curr. Opin. Toxicol. 2020 23-24 74 79 10.1016/j.cotox.2020.06.002
    [Google Scholar]
  15. Liu S. Li X. Xie Q. Zhang S. Liang X. Li S. Zhang P. Identification of a lncRNA/circRNA-miRNA-mRNA network in Nasopharyngeal Carcinoma by deep sequencing and bioinformatics analysis. J. Cancer 2024 15 7 1916 1928 10.7150/jca.91546 38434987
    [Google Scholar]
  16. Zhuo T. Yu K. Chai B. Tang Q. Gao X. Wang J. He L. Lei X. Li Y. Meng Y. Wu L. Chen B. Microplastics increase the microbial functional potential of greenhouse gas emissions and water pollution in a freshwater lake: A metagenomic study. Environ. Res. 2024 257 119250 10.1016/j.envres.2024.119250 38844031
    [Google Scholar]
  17. Zhao W. Zhu J. Yang S. Liu J. Sun Z. Sun H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. Sci. Total Environ. 2024 951 175460 10.1016/j.scitotenv.2024.175460 39137841
    [Google Scholar]
  18. Asselman J. Van Acker E. De Rijcke M. Tilleman L. Van Nieuwerburgh F. Mees J. De Schamphelaere K.A.C. Janssen C.R. Marine biogenics in sea spray aerosols interact with the mTOR signaling pathway. Sci. Rep. 2019 9 1 675 10.1038/s41598‑018‑36866‑3 30679557
    [Google Scholar]
  19. Sæther T. Paulsen S.M. Tungen J.E. Vik A. Aursnes M. Holen T. Hansen T.V. Nebb H.I. Synthesis and biological evaluations of marine oxohexadecenoic acids: PPARα/γ dual agonism and anti-diabetic target gene effects. Eur. J. Med. Chem. 2018 155 736 753 10.1016/j.ejmech.2018.06.034 29940464
    [Google Scholar]
  20. Davis S. Meltzer P.S. GEOquery: A bridge between the gene expression omnibus (GEO) and bioconductor. Bioinformatics 2007 23 14 1846 1847 10.1093/bioinformatics/btm254 17496320
    [Google Scholar]
  21. Ye Q. Huang Z. Lu W. Yan F. Zeng W. Xie J. Zhong W. Identification of the common differentially expressed genes and pathogenesis between neuropathic pain and aging. Front. Neurosci. 2022 16 994575 10.3389/fnins.2022.994575 36340779
    [Google Scholar]
  22. Heberle H. Meirelles G.V. da Silva F.R. Telles G.P. Minghim R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 2015 16 1 169 10.1186/s12859‑015‑0611‑3 25994840
    [Google Scholar]
  23. Garcia-Moreno A. López-Domínguez R. Villatoro-García J.A. Ramirez-Mena A. Aparicio-Puerta E. Hackenberg M. Pascual-Montano A. Carmona-Saez P. Functional enrichment analysis of regulatory elements. Biomedicines 2022 10 3 590 10.3390/biomedicines10030590 35327392
    [Google Scholar]
  24. Chen E.Y. Tan C.M. Kou Y. Duan Q. Wang Z. Meirelles G.V. Clark N.R. Ma’ayan A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013 14 1 128 10.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  25. Makris C. Theodoridis E. Computational methods for modeling biological interaction networks. Pattern Recognition in Computational Molecular Biology. Research Gate 2015 505 525 10.1002/9781119078845.ch26
    [Google Scholar]
  26. Nushi E. Popescu V-B. Sanchez Martin J-A. Ivanov S. Czeizler E. Petre I. Network modelling methods for precision medicine. Systems Biology Modelling and Analysis. Wiley 2022 363 423 10.1002/9781119716600.ch10
    [Google Scholar]
  27. Szklarczyk D. Franceschini A. Wyder S. Forslund K. Heller D. Huerta-Cepas J. Simonovic M. Roth A. Santos A. Tsafou K.P. Kuhn M. Bork P. Jensen L.J. von Mering C. STRING v10: Protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015 43 D1 D447 D452 10.1093/nar/gku1003 25352553
    [Google Scholar]
  28. Chin C.H. Chen S.H. Wu H.H. Ho C.W. Ko M.T. Lin C.Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst. Biol. 2014 8 S4 S11 10.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  29. Bader G.D. Hogue C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003 4 1 2 10.1186/1471‑2105‑4‑2 12525261
    [Google Scholar]
  30. Cheng F. Lu W. Liu C. Fang J. Hou Y. Handy D.E. Wang R. Zhao Y. Yang Y. Huang J. Hill D.E. Vidal M. Eng C. Loscalzo J. A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 2019 10 1 3476 10.1038/s41467‑019‑10744‑6 31375661
    [Google Scholar]
  31. Zhou Y. Lauschke V.M. Pharmacogenomic network analysis of the gene-drug interaction landscape underlying drug disposition. Comput. Struct. Biotechnol. J. 2020 18 52 58 10.1016/j.csbj.2019.11.010 31890144
    [Google Scholar]
  32. Ebrahimpoor M. Goeman J.J. Inflated false discovery rate due to volcano plots: Problem and solutions. Brief. Bioinform. 2021 22 5 bbab053 10.1093/bib/bbab053 33758907
    [Google Scholar]
  33. Kemp F. Braverman E.L. Byersdorfer C.A. Fatty acid oxidation in immune function. Front. Immunol. 2024 15 1420336 10.3389/fimmu.2024.1420336 39007133
    [Google Scholar]
  34. Udhaya Kumar S. Thirumal Kumar D. Bithia R. Sankar S. Magesh R. Sidenna M. George Priya Doss C. Zayed H. Analysis of differentially expressed genes and molecular pathways in familial hypercholesterolemia involved in atherosclerosis: A systematic and bioinformatics approach. Front. Genet. 2020 11 734 10.3389/fgene.2020.00734 32760426
    [Google Scholar]
  35. Medina M.A. Fuentes-Villalobos F. Quevedo C. Aguilera F. Riquelme R. Rioseco M.L. Barria S. Pinos Y. Calvo M. Burbulis I. Kossack C. Alvarez R.A. Garrido J.L. Barria M.I. Longitudinal transcriptional changes reveal genes from the natural killer cell-mediated cytotoxicity pathway as critical players underlying COVID-19 progression. eLife 2024 13 RP94242 10.7554/eLife.94242
    [Google Scholar]
  36. Bai Y.M. Liang S. Zhou B. Revealing immune infiltrate characteristics and potential immune-related genes in hepatic fibrosis: Based on bioinformatics, transcriptomics and q-PCR experiments. Front. Immunol. 2023 14 1133543 10.3389/fimmu.2023.1133543 37122694
    [Google Scholar]
  37. Zheng W. Huang X. Lai Y. Liu X. Jiang Y. Zhan S. Glycyrrhizic acid for covid-19: Findings of targeting pivotal inflammatory pathways triggered by SARS-CoV-2. Front. Pharmacol. 2021 12 631206 10.3389/fphar.2021.631206 34177566
    [Google Scholar]
  38. Yang L. Pang Y. Moses H.L. TGF-β and immune cells: An important regulatory axis in the tumor microenvironment and progression. Trends Immunol. 2010 31 6 220 227 10.1016/j.it.2010.04.002 20538542
    [Google Scholar]
  39. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  40. Chandrasekaran P. Weiskirchen R. The role of obesity in type 2 diabetes mellitus-an overview. Int. J. Mol. Sci. 2024 25 3 1882 10.3390/ijms25031882 38339160
    [Google Scholar]
  41. Wang L. Waltenberger B. Pferschy-Wenzig E.M. Blunder M. Liu X. Malainer C. Blazevic T. Schwaiger S. Rollinger J.M. Heiss E.H. Schuster D. Kopp B. Bauer R. Stuppner H. Dirsch V.M. Atanasov A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol. 2014 92 1 73 89 10.1016/j.bcp.2014.07.018 25083916
    [Google Scholar]
  42. Yang J. Huang Y. Song M. Pan Q. Zhao J. He J. Ouyang D. Yang C. Han Y. Tang Y. Wang Q. He J. Li Y. Chen H. Weng D. Xiang T. Xia J. SPC25 promotes proliferation and stemness of hepatocellular carcinoma cells via the DNA-PK/AKT/Notch1 signaling pathway. Int. J. Biol. Sci. 2022 18 14 5241 5259 10.7150/ijbs.71694 36147467
    [Google Scholar]
  43. Qu D. Cui F. Lu D. Yang Y. Xu Y. DEP domain containing 1 predicts prognosis of hepatocellular carcinoma patients and regulates tumor proliferation and metastasis. Cancer Sci. 2019 110 1 157 165 10.1111/cas.13867 30417471
    [Google Scholar]
  44. Kato T. Sato N. Hayama S. Yamabuki T. Ito T. Miyamoto M. Kondo S. Nakamura Y. Daigo Y. Activation of Holliday junction recognizing protein involved in the chromosomal stability and immortality of cancer cells. Cancer Res. 2007 67 18 8544 8553 10.1158/0008‑5472.CAN‑07‑1307 17823411
    [Google Scholar]
  45. Han C. Liu S. Ji Y. Hu Y. Zhang J. CDCA3 is a potential biomarker for glioma malignancy and targeted therapy. Medicine 2024 103 19 38066 10.1097/MD.0000000000038066 38728485
    [Google Scholar]
  46. Deng Y. Wen H. Yang H. Zhu Z. Huang Q. Bi Y. Wang P. Zhou M. Guan J. Zhang W. Li M. Identification of PBK as a hub gene and potential therapeutic target for medulloblastoma. Oncol. Rep. 2022 48 1 125 10.3892/or.2022.8336 35593307
    [Google Scholar]
  47. Williams G.H. Stoeber K. The cell cycle and cancer. J. Pathol. 2012 226 2 352 364 10.1002/path.3022 21990031
    [Google Scholar]
  48. Malumbres M. Barbacid M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer 2009 9 3 153 166 10.1038/nrc2602 19238148
    [Google Scholar]
  49. Barnum K.J. O’Connell M.J. Cell cycle regulation by checkpoints. Methods Mol. Biol. 2014 1170 29 40 10.1007/978‑1‑4939‑0888‑2_2 24906307
    [Google Scholar]
  50. Kim D.Y. Changing etiology and epidemiology of hepatocellular carcinoma: Asia and worldwide. J. Liver Cancer 2024 24 1 622 670 10.17998/jlc.2024.03.13 38523466
    [Google Scholar]
/content/journals/cad/10.2174/0115734099389525250704104200
Loading
/content/journals/cad/10.2174/0115734099389525250704104200
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GEO2R ; GO ; KEGG ; P. reticulatum ; Microalgae ; C. karianus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test