Skip to content
2000
image of Assessing Lung Injury Induced by Streptozotocin-induced Diabetes: A Deep Neural Network Analysis of Histopathological and Immunohistochemical Images

Abstract

Introduction

Diabetes mellitus is an endocrine disorder characterized by metabolic abnormalities and chronic hyperglycemia, caused by insulin deficiency (Type I) or resistance (Type II). It affects various tissues differently, and its complications extend beyond classical targets, such as the kidneys and eyes, to lesser-studied organs, including the lungs. Understanding tissue-specific damage is crucial for effective disease management and the prevention of complications.

Objective

This study aims to evaluate the histopathological and immunohistochemical effects of diabetic lung fibrosis using a streptozotocin (STZ)-induced diabetes model. Additionally, it seeks to develop a high-performance image classification system based on deep neural networks to accurately classify tissue damage in diabetic models.

Methods

Lung tissue samples were collected from the STZ-induced diabetes model and analyzed through histopathological and immunohistochemical techniques. Image data were further processed using convolutional neural networks (CNNs), including pre-trained models, such as ResNet50, VGG16, and SqueezeNet. Classification was conducted in multiple color spaces (RGB, Grayscale, and HSV) and evaluated using performance metrics, including confusion matrix, precision, recall, F1 score, and accuracy.

Results

The use of color significantly enhanced image patch classification performance. Among the models tested, SqueezeNet in the RGB color space demonstrated the highest accuracy, achieving an F1 score of 93.49% ± 0.04 and an accuracy of 93.77% ± 0.04. These results indicated the efficacy of CNN-based classification in detecting lung damage associated with diabetes.

Discussion and Conclusion

Our findings confirmed that diabetes induces histopathological changes in lung tissue, contributing to fibrosis and potential pulmonary complications. Deep learning-based classification methods, particularly when utilizing color space variations and advanced preprocessing techniques, provide a powerful tool for analyzing diabetic tissue damage and may aid in the development of diagnostic support systems.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099387481250930073924
2025-10-21
2025-12-05
Loading full text...

Full text loading...

References

  1. Setyoadi S. Yusuf A. Kristianingrum N.D. Hayati Y.S. Noviyanti L.W. Syafiky N.F. The correlation between family support and health status in patients with diabetes mellitus. Healthc. Low Resour. Settings 2023 11 s1 10.4081/hls.2023.11212
    [Google Scholar]
  2. Bellazzi R. Abu-Hanna A. Data mining technologies for blood glucose and diabetes management. J. Diabetes Sci. Technol. 2009 3 3 603 612 10.1177/193229680900300326 20144300
    [Google Scholar]
  3. Panwar M. Acharyya A. Shafik R.A. Biswas D. K-nearest neighbor based methodology for accurate diagnosis of diabetes mellitus. 2016 Sixth International Symposium on Embedded Computing and System Design (ISED) Patna, India 15-17 December 2016 132 136 10.1109/ISED.2016.7977069.
    [Google Scholar]
  4. Devi M.R. Analysis of various data mining techniques to] predict diabetes mellitus. Int. J. Appl. Eng. Res. 2016 11 1 727 730
    [Google Scholar]
  5. Goswami S. Vishwanath M. Gangadarappa S. Razdan R. Inamdar M. Efficacy of ellagic acid and sildenafil in diabetes-induced sexual dysfunction. Pharmacogn Mag, 2014 10 39 581.(Suppl. 3) 10.4103/0973‑1296.139790 25298678
    [Google Scholar]
  6. Lotfy M. Adeghate J. Kalasz H. Singh J. Adeghate E. Chronic complications of diabetes mellitus: A mini review. Curr. Diabetes Rev. 2016 13 1 3 10 10.2174/1573399812666151016101622 26472574
    [Google Scholar]
  7. Bolat D. Ülger M. Baran M. Turan I.T. Yay A. Lung injury aggravated in Streptozotocin-induced diabetes: An experimental study. Cukurova Med. J. 2022 47 1 175 182 10.17826/cumj.1020617
    [Google Scholar]
  8. Islam Ayon S. Islam M.M. Diabetes prediction: A deep learning approach. Int. J. Inf Eng. Electron. Bus 2019 11 2 21 27 10.5815/ijieeb.2019.02.03
    [Google Scholar]
  9. Palaniappan S. Awang R. Intelligent heart disease prediction system using data mining techniques. 2008 IEEE/ACS international conference on computer systems and applications 2008 IEEE/ACS International Conference on Computer Systems and Applications, Doha, Qatar, 31 March 2008 04 April 2008, 108 115 10.1109/AICCSA.2008.4493524
    [Google Scholar]
  10. Bancroft J. D. Gamble M. Theory and practice of histological techniques; Elsevier health sciences, 2008
  11. Musumeci G. Past, present and future: Overview on histology and histopathology. J. Histol Histopathol 2014 1 1 5 10.7243/2055‑091X‑1‑5
    [Google Scholar]
  12. Titford M. Progress in the development of microscopical] techniques for diagnostic pathology. J. Histotechnol. 2009 32 1 9 19 10.1179/his.2009.32.1.9
    [Google Scholar]
  13. Alturkistani H.A. Tashkandi F.M. Mohammedsaleh Z.M. Histological stains: A literature review and case study. Glob. J. Health Sci. 2015 8 3 72 79 10.5539/gjhs.v8n3p72 26493433
    [Google Scholar]
  14. Gurcan M.N. Boucheron L.E. Can A. Madabhushi A. Rajpoot N.M. Yener B. Histopathological image analysis: A review. IEEE Rev. Biomed. Eng. 2009 2 147 171 10.1109/RBME.2009.2034865 20671804
    [Google Scholar]
  15. Rashmi R. Prasad K. Udupa C.B.K. Breast histopathological image analysis using image processing techniques for] diagnostic purposes: A methodological review. J. Med. Syst. 2022 46 1 7 10.1007/s10916‑021‑01786‑9 34860316
    [Google Scholar]
  16. Javaeed A. Qamar S. Ali S. Mustafa M.A.T. Nusrat A. Ghauri S.K. Histological stains in the past, present, and future. Cureus 2021 13 10 e18486 10.7759/cureus.18486 34754648
    [Google Scholar]
  17. Titford M. The long history of hematoxylin. Biotech. Histochem. 2005 80 2 73 78 10.1080/10520290500138372 16195172
    [Google Scholar]
  18. Foot N.C. The Masson trichrome staining methods in routine laboratory use. Stain Technol. 1933 8 3 101 110 10.3109/10520293309116112
    [Google Scholar]
  19. Suvik A. Effendy A.W.M. The use of modified Masson’s trichrome staining in collagen evaluation in wound healing study. Mal J. Vet. Res. 2012 3 1 39 47
    [Google Scholar]
  20. Pollitt C.C. Basement membrane pathology: A feature of acute equine laminitis. Equine Vet. J. 1996 28 1 38 46 10.1111/j.2042‑3306.1996.tb01588.x 8565952
    [Google Scholar]
  21. Coons A.H. Creech H.J. Jones R.N. Immunological properties of an antibody containing a fluorescent group. Exp. Biol. Med. 1941 47 2 200 202 10.3181/00379727‑47‑13084P
    [Google Scholar]
  22. Romo D. Romero E. González F. Learning regions of interest from low level maps in virtual microscopy. Diagn. Pathol., 2011 6 S1 S22.(Suppl. 1) 10.1186/1746‑1596‑6‑S1‑S22 21489193
    [Google Scholar]
  23. Kamble M.T.P. Patil S.T. Diabetes detection using deep learning approach. Int. J. Innov. Res. Sci. Technol 2016 2 12 342 349
    [Google Scholar]
  24. Dwivedi A.K. Analysis of computational intelligence techniques for diabetes mellitus prediction. Neural Comput. Appl. 2018 30 12 3837 3845 10.1007/s00521‑017‑2969‑9
    [Google Scholar]
  25. Majeed Alneamy J.S. A Hameed Alnaish, Z.; Mohd Hashim, S.Z.; Hamed Alnaish, R.A. Utilizing hybrid functional fuzzy wavelet neural networks with a teaching learning-based optimization algorithm for medical disease diagnosis. Comput. Biol. Med. 2019 112 103348 10.1016/j.compbiomed.2019.103348 31356992
    [Google Scholar]
  26. Kannadasan K. Edla D.R. Kuppili V. Type 2 diabetes data classification using stacked autoencoders in deep neural networks. Clin. Epidemiol. Glob. Health 2019 7 4 530 535 10.1016/j.cegh.2018.12.004
    [Google Scholar]
  27. Heydari M. Teimouri M. Heshmati Z. Alavinia S.M. Comparison of various classification algorithms in the diagnosis of type 2 diabetes in Iran. Int. J. Diabetes Dev. Ctries. 2016 36 2 167 173 10.1007/s13410‑015‑0374‑4
    [Google Scholar]
  28. Yurttakal A.H. Erbay H. Çinarer G. Baş H. Classification of diabetic rat histopathology images using convolutional neural networks. Int. J. Comput. Intell. Syst. 2020 14 1 715 722 10.2991/ijcis.d.201110.001
    [Google Scholar]
  29. Rustam F. Al-Shamayleh A.S. Shafique R. Obregon,] S.A.; Iglesias, R.C.; Gonzalez, J.P.M.; Ashraf, I. Enhanced detection of diabetes mellitus using novel ensemble feature engineering approach and machine learning model. Sci. Rep. 2024 14 1 23274 10.1038/s41598‑024‑74357‑w 39375469
    [Google Scholar]
  30. Dai R. Sun M. Lu M. Deng L. Deep learning for predicting fibrotic progression risk in diabetic individuals with metabolic dysfunction-associated steatotic liver disease initially free of hepatic fibrosis. Heliyon 2024 10 13 e34150 10.1016/j.heliyon.2024.e34150 39071617
    [Google Scholar]
  31. Wang X. Wang W. Ren H. Li X. Wen Y. Prediction] and analysis of risk factors for diabetic retinopathy based on] machine learning and interpretable models. Heliyon 2024 10 9 e29497 10.1016/j.heliyon.2024.e29497 38699007
    [Google Scholar]
  32. Johnson D.R. O’Connor J.C. Hartman M.E. Tapping,] R.I.; Freund, G.G. Acute hypoxia activates the neuroimmune] system, which diabetes exacerbates. J. Neurosci. 2007 27 5 1161 1166 10.1523/JNEUROSCI.4560‑06.2007 17267571
    [Google Scholar]
  33. Eleazu C.O. Eleazu K.C. Chukwuma S. Essien U.N. Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord. 2013 12 1 60 10.1186/2251‑6581‑12‑60 24364898
    [Google Scholar]
  34. Öz Gergin Ö. Gergin İ.Ş. Pehlivan S.S. Cengiz Mat O. Turan I.T. Bayram A. Gönen Z.B. Korkmaz Ş. Bıcer C. Yildiz K. Yay A.H. The neuroprotective effect of mesenchymal stem cells in colistin-induced neurotoxicity. Toxicol. Mech. Methods 2023 33 2 95 103 10.1080/15376516.2022.2090303 35702031
    [Google Scholar]
  35. Şahin S. Effect of mesenchymal stem cells obtained from different sources on diabetic wound healing. Thesis Collection 2024
    [Google Scholar]
  36. Yanoff M. Ocular pathology of diabetes mellitus. Am. J. Ophthalmol. 1969 67 1 21 38 10.1016/0002‑9394(69)90004‑X 4178151
    [Google Scholar]
  37. Abunasef S.K. Amin H.A. Abdel-Hamid G.A. A histological and immunohistochemical study of beta cells in streptozotocin diabetic rats treated with caffeine. Folia Histochem. Cytobiol. 2014 52 1 42 50 10.5603/FHC.2014.0005 24802960
    [Google Scholar]
  38. Chen Y. Chen L. Yang T. Silymarin nanoliposomes attenuate renal injury on diabetic nephropathy rats via co-suppressing TGF-β/Smad and JAK2/STAT3/SOCS1 pathway. Life Sci. 2021 271 119197 10.1016/j.lfs.2021.119197 33577847
    [Google Scholar]
  39. Sagawa T. Tsujikawa T. Honda A. Miyasaka N. Tanaka,] M.; Kida, T.; Hasegawa, K.; Okuda, T.; Kawahito, Y.; Takano,] H. Exposure to particulate matter upregulates ACE2 and TMPRSS2 expression in the murine lung. Environ. Res. 2021 195 110722 10.1016/j.envres.2021.110722 33422505
    [Google Scholar]
  40. Dugbartey G.J. Alornyo K.K. N’guessan B.B. Atule S. Mensah S.D. Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed. Pharmacother. 2022 149 112818 10.1016/j.biopha.2022.112818 35286963
    [Google Scholar]
  41. Hu Y. Wang S.X. Wu F.Y. Wu K.J. Shi R.P. Qin L.H. Lu C.F. Wang S.Q. Wang F.F. Zhou S. Effects and mechanism of Ganoderma lucidum polysaccharides in the treatment of diabetic nephropathy in streptozotocin‐induced diabetic rats. BioMed Res. Int. 2022 2022 1 4314415 10.1155/2022/4314415 35299891
    [Google Scholar]
  42. Zhang L. Liu S. Ding K. Zeng B. Li B. Zhou J. Li J. Wang J. Su X. Sun R. Yanghe decoction inhibits inflammation-induced lung metastasis of colorectal cancer. J. Ethnopharmacol. 2025 340 119257 10.1016/j.jep.2024.119257 39694428
    [Google Scholar]
  43. Jia W. Bai T. Zeng J. Niu Z. Fan D. Xu X. Luo M. Wang P. Zou Q. Dai X. Combined administration of metformin and atorvastatin attenuates diabetic cardiomyopathy by inhibiting inflammation, apoptosis, and oxidative stress in type 2 diabetic mice. Front. Cell Dev. Biol. 2021 9 634900 10.3389/fcell.2021.634900 33718370
    [Google Scholar]
  44. Fu Y. Aldrich C. Flotation froth image recognition with convolutional neural networks. Miner. Eng. 2019 132 183 190 10.1016/j.mineng.2018.12.011
    [Google Scholar]
  45. Gülcü A. Kuş Z. Investigation of hyper-parameter optimization methods in convolutional neural networks. Gazi Univ J. Sci. Part C Des Technol 2019 7 2 503 522 10.29109/gujsc.514483
    [Google Scholar]
  46. Chollet F. Deep learning with Python. Shelter Island, New York Manning Publications Company 2017
    [Google Scholar]
  47. Ayyüce Kizrak M. Bolat B. A detailed study on crowd] analysis with deep learning. Inf Technol Mag 2018 11 3 263 286 10.17671/gazibtd.419205
    [Google Scholar]
  48. Krizhevsky A. Sutskever I. Hinton G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017 60 6 84 90 10.1145/3065386
    [Google Scholar]
  49. Mohsen H. El-Dahshan E.S.A. El-Horbaty E.S.M. ; Salem, A.B.M. Classification using deep learning neural networks for brain tumors Future Comput. Inform. J. 2018 3 1 68 7 10.1016/j.fcij.2017.12.001
    [Google Scholar]
  50. Deng J. Dong W. Socher R. Li L-J. Imagenet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition Miami, FL, USA 20-25 June 2009 248 255 10.1109/CVPR.2009.5206848
    [Google Scholar]
  51. Iandola F.N. arXiv, 2016 arXiv:1602.07360 10.48550/arXiv.1602.07360
  52. Simonyan K. Zisserman A. Very deep convolutional] networks for large-scale image recognition. arXiv, 2014 arXiv:1409.1556 10.48550/arXiv.1409.1556
    [Google Scholar]
  53. Theckedath D. Sedamkar R.R. Detecting affect states using VGG16, ResNet50 and SE-ResNet50 networks. SN Comput. Sci. 2020 1 2 79 10.1007/s42979‑020‑0114‑9
    [Google Scholar]
  54. Zavan F.H. de B. Bellon O.R.P. Silva L. Medioni G.G. Benchmarking parts based face processing in-the-wild for gender recognition and head pose estimation. Pattern Recognit. Lett. 2019 123 104 110 10.1016/j.patrec.2018.09.023
    [Google Scholar]
  55. Özyurt F. Sert E. Avcı D. An expert system for brain tumor detection: Fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med. Hypotheses 2020 134 109433 10.1016/j.mehy.2019.109433 31634769
    [Google Scholar]
  56. Lee H.J. Ullah I. Wan W. Gao Y. Fang Z. Real-time vehicle make and model recognition with the residual SqueezeNet architecture. Sensors 2019 19 5 982 10.3390/s19050982 30813512
    [Google Scholar]
  57. Ji Q. Huang J. He W. Sun Y. Optimized deep convolutional neural networks for identification of macular diseases from optical coherence tomography images. Algorithms 2019 12 3 51 10.3390/a12030051
    [Google Scholar]
  58. Mukti I.Z. Biswas D. Transfer learning based plant diseases detection using ResNet50. 2019 4th International Conference on Electrical Information and Communication Technology (EICT) Khulna, Bangladesh 20-22 December 2019 1 6 10.1109/EICT48899.2019.9068805
    [Google Scholar]
  59. He K. Zhang X. Ren S. Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA 27-30 June 2016 770 778 10.1109/CVPR.2016.90
    [Google Scholar]
  60. Gaye B. Wulamu A. Sentiment analysis of text classification algorithms using confusion matrix. Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health.: International 2019 Cyberspace Congress. CyberDI and CyberLife, Beijing, China 2019 16–18 December 2019 231 241
    [Google Scholar]
  61. Kınacı E.B. Bal H. Kınacı H. A novel classification approach based on support regression for epileptic seizure detection. Polytech J. 2024 27 2 587 601 10.2339/politeknik.1055549
    [Google Scholar]
  62. Dice L.R. Measures of the amount of ecologic association between species. Ecology 1945 26 3 297 302 10.2307/1932409
    [Google Scholar]
  63. Association A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010 33 Suppl 1 S62 S69.(Suppl. 1) 10.2337/dc10‑S062 20042775
    [Google Scholar]
  64. Mayfield J. Diagnosis and classification of diabetes mellitus: new criteria. Am. Fam. Physician 1998 58 6 1355 1362, 1369-1370 9803200
    [Google Scholar]
  65. Association A.D. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014 37 S81 S90.(Suppl. 1) 10.2337/dc14‑S081 24357215
    [Google Scholar]
  66. Daryabor G. Atashzar M.R. Kabelitz D. Meri S. Kalantar K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020 11 1582 10.3389/fimmu.2020.01582 32793223
    [Google Scholar]
  67. Esper A.M. Moss M. Martin G.S. The effect of diabetes mellitus on organ dysfunction with sepsis: an epidemiological study. Crit. Care 2009 13 1 R18 10.1186/cc7717 19216780
    [Google Scholar]
  68. Rabinowicz A. Rosset S. Cross-validation for correlated data. J. Am. Stat. Assoc. 2022 117 538 718 731 10.1080/01621459.2020.1801451
    [Google Scholar]
  69. Aghbalou A. Sabourin A. Portier F. On the bias of K-fold cross validation with stable learners International Conference on Artificial Intelligence and Statistics 2023 2023 3775 3794
    [Google Scholar]
  70. Fazekas A. Kovács G. Enumerating the k-fold configurations in multi-class classification problems. 2025 8th International Conference on Data Science and Machine Learning Applications (CDMA) Riyadh, Saudi Arabia 16-17 February 2025 14 17 10.1109/CDMA61895.2025.00008
    [Google Scholar]
  71. Jung Y. Hu J.A. K -fold averaging cross-validation procedure. J. Nonparametr. Stat. 2015 27 2 167 179 10.1080/10485252.2015.1010532 27630515
    [Google Scholar]
/content/journals/cad/10.2174/0115734099387481250930073924
Loading
/content/journals/cad/10.2174/0115734099387481250930073924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test