Skip to content
2000
image of Exploring the Selective Potential Inhibitors for Homologous Protein BD1/BD2 with MD and AIDD Methods

Abstract

Introduction

The study aims to explore selective potential inhibitors for the homologous BD1/BD2 domains of bromodomain-containing protein 4 (BRD4) and uncover the binding mechanisms between these inhibitors and BD1/BD2. Given BRD4's role as an epigenetic regulator and its potential in treating triple-negative breast cancer (TNBC), overcoming the challenge of domain-specific inhibition due to the structural similarity of BD1 and BD2 is crucial.

Methods

For comparison with experimental research, FL-411 was selected as a novel inhibitor for BD1/BD2. The AutoDock vina method was employed to screen potential lead compounds of BD1/BD2 from Traditional Chinese herbal medicines (TCMs) for nervous diseases. Molecular dynamics (MD) simulations were conducted to investigate the interaction mechanisms between BD1/BD2 and potential inhibitors (miltirone/FL-411).

Results

The analysis shows that the inhibitors stabilize the conformation of BD1/BD2 and enhance their hydrophobic and salt-bridge interactions. Notably, atomic interaction studies reveal that the oxygen atom of FL-411 binds with E85 of BD1, while the 1,1-Dimethylcyclohexane group of miltirone binds with H437 of BD2, indicating the selective characteristics of these potential inhibitors.

Discussion

The study reveals key structural determinants for BD1/BD2 selectivity, addressing a major challenge in BRD4-targeted drug design. MD simulations support the experimental data, validating the screening approach.

Conclusion

Based on conformational characters of FL-411/miltirone and atomic interaction mechanism of BD1/BD2 and inhibitors, the potential inhibitors with a new skeleton and lower binding energy were generated with artificial intelligence drug discovery (AIDD) methods.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099386097250922062749
2025-10-01
2025-12-05
Loading full text...

Full text loading...

References

  1. Belkina A.C. Denis G.V. BET domain co-regulators in obesity, inflammation and cancer. Nat. Rev. Cancer 2012 12 7 465 477 10.1038/nrc3256 22722403
    [Google Scholar]
  2. Prinjha R.K. Witherington J. Lee K. Place your BETs: The therapeutic potential of bromodomains. Trends Pharmacol. Sci. 2012 33 3 146 153 10.1016/j.tips.2011.12.002 22277300
    [Google Scholar]
  3. Taniguchi Y. The bromodomain and extra-terminal domain (BET) family: Functional anatomy of BET paralogous proteins. Int. J. Mol. Sci. 2016 17 11 1849 10.3390/ijms17111849 27827996
    [Google Scholar]
  4. Dhalluin C. Carlson J.E. Zeng L. He C. Aggarwal A.K. Zhou M.M. Zhou M-M. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999 399 6735 491 496 10.1038/20974 10365964
    [Google Scholar]
  5. Owen D.J. Ornaghi P. Yang J.C. Lowe N. Evans P.R. Ballario P. Neuhaus D. Filetici P. Travers A.A. The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase Gcn5p. EMBO J. 2000 19 22 6141 6149 10.1093/emboj/19.22.6141 11080160
    [Google Scholar]
  6. Morinière J. Rousseaux S. Steuerwald U. Soler-López M. Curtet S. Vitte A.L. Govin J. Gaucher J. Sadoul K. Hart D.J. Krijgsveld J. Khochbin S. Müller C.W. Petosa C. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 2009 461 7264 664 668 10.1038/nature08397 19794495
    [Google Scholar]
  7. Sun C. BRD4 inhibition is synthetic lethal with PARP inhibitors through the induction of homologous recombination deficiency. Cancer Cell 2018 33 3 401 416.e8 10.1016/j.ccell.2018.01.019 29533782
    [Google Scholar]
  8. Tan Y.F. Wang M. Chen Z.Y. Wang L. Liu X.H. Inhibition of BRD4 prevents proliferation and epithelial–mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis. Cell Death Dis. 2020 11 4 239 10.1038/s41419‑020‑2431‑2 32303673
    [Google Scholar]
  9. Wu S-Y. Opposing functions of BRD4 isoforms in breast cancer. Mol. Cell 2020 78 6 1114 1132.e10 10.1016/j.molcel.2020.04.034 32446320
    [Google Scholar]
  10. Bao Y. Wu X. Chen J. Hu X. Zeng F. Cheng J. Jin H. Lin X. Chen L.F. Brd4 modulates the innate immune response through Mnk2–eIF4E pathway-dependent translational control of IκBα. Proc. Natl. Acad. Sci. USA 2017 114 20 E3993 E4001 10.1073/pnas.1700109114 28461486
    [Google Scholar]
  11. Duan Q. McMahon S. Anand P. Shah H. Thomas S. Salunga H.T. Huang Y. Zhang R. Sahadevan A. Lemieux M.E. Brown J.D. Srivastava D. Bradner J.E. McKinsey T.A. Haldar S.M. BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci. Transl. Med. 2017 9 390 eaah5084 10.1126/scitranslmed.aah5084 28515341
    [Google Scholar]
  12. Li Y. Chen J. Bolinger A.A. Chen H. Liu Z. Cong Y. Brasier A.R. Pinchuk I.V. Tian B. Zhou J. Target-based small molecule drug discovery towards novel therapeutics for inflammatory bowel diseases. Inflamm. Bowel Dis. 2021 27 Suppl. 2 S38 S62 10.1093/ibd/izab190 34791293
    [Google Scholar]
  13. Zhu J. Gaiha G.D. John S.P. Pertel T. Chin C.R. Gao G. Qu H. Walker B.D. Elledge S.J. Brass A.L. Reactivation of latent HIV-1 by inhibition of BRD4. Cell Rep. 2012 2 4 807 816 10.1016/j.celrep.2012.09.008 23041316
    [Google Scholar]
  14. Wu S.Y. Nin D.S. Lee A.Y. Simanski S. Kodadek T. Chiang C.M. BRD4 phosphorylation regulates HPV E2-mediated viral transcription, origin replication, and cellular MMP-9 expression. Cell Rep. 2016 16 6 1733 1748 10.1016/j.celrep.2016.07.001 27477287
    [Google Scholar]
  15. Korb E. Herre M. Zucker-Scharff I. Darnell R.B. Allis C.D. BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat. Neurosci. 2015 18 10 1464 1473 10.1038/nn.4095 26301327
    [Google Scholar]
  16. Groves A. Clymer J. Filbin M.G. Bromodomain and extra-terminal protein inhibitors: Biologic insights and therapeutic potential in pediatric brain tumors. Pharmaceuticals 2022 15 6 665 10.3390/ph15060665 35745584
    [Google Scholar]
  17. He Y. Jiang Z. Chen C. Wang X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J. Exp. Clin. Cancer Res. 2018 37 1 327 10.1186/s13046‑018‑1002‑1 30594216
    [Google Scholar]
  18. Si P. Chen H. Liu J. Zhang E. Li C. Gu J. Wang R. Li W. Identification of (S)-10-Hydroxycamptothecin as a potent BRD4 inhibitor for treating triple-negative breast cancer. J. Mol. Struct. 2022 1265 133366 10.1016/j.molstruc.2022.133366
    [Google Scholar]
  19. Andrieu G. Tran A.H. Strissel K.J. Denis G.V. BRD4 regulates breast cancer dissemination through Jagged1/Notch1 signaling. Cancer Res. 2016 76 22 6555 6567 10.1158/0008‑5472.CAN‑16‑0559 27651315
    [Google Scholar]
  20. Wang K. Zhang Q. Li D. Ching K. Zhang C. Zheng X. Ozeck M. Shi S. Li X. Wang H. Rejto P. Christensen J. Olson P. PEST domain mutations in Notch receptors comprise an oncogenic driver segment in triple-negative breast cancer sensitive to a γ-secretase inhibitor. Clin. Cancer Res. 2015 21 6 1487 1496 10.1158/1078‑0432.CCR‑14‑1348 25564152
    [Google Scholar]
  21. Gacias M. Gerona-Navarro G. Plotnikov A.N. Zhang G. Zeng L. Kaur J. Moy G. Rusinova E. Rodriguez Y. Matikainen B. Vincek A. Joshua J. Casaccia P. Zhou M.M. Selective chemical modulation of gene transcription favors oligodendrocyte lineage progression. Chem. Biol. 2014 21 7 841 854 10.1016/j.chembiol.2014.05.009 24954007
    [Google Scholar]
  22. Wang Z. Yin L. Xiong Z. Huang F. Yang N. Jiang F. Li H. Cui Y. Ren J. Cheng Z. Jia K. Lu T. Zhu J. Hu Q. Chen Y. Discovery of a bromodomain and extra terminal domain (BET) inhibitor with the selectivity for the second bromodomain (BD2) and the capacity for the treatment of inflammatory diseases. J. Med. Chem. 2023 66 15 10824 10848 10.1021/acs.jmedchem.3c01028 37478496
    [Google Scholar]
  23. Liu Z. Wang P. Chen H. Wold E.A. Tian B. Brasier A.R. Zhou J. Drug discovery targeting bromodomain-containing protein 4. J. Med. Chem. 2017 60 11 4533 4558 10.1021/acs.jmedchem.6b01761 28195723
    [Google Scholar]
  24. Ouyang L. Zhang L. Liu J. Fu L. Yao D. Zhao Y. Zhang S. Wang G. He G. Liu B. Discovery of a small-molecule bromodomain-containing protein 4 (BRD4) inhibitor that induces AMP-activated protein kinase-modulated autophagy-associated cell death in breast cancer. J. Med. Chem. 2017 60 24 9990 10012 10.1021/acs.jmedchem.7b00275 29172540
    [Google Scholar]
  25. Yin M. Guo Y. Hu R. Cai W.L. Li Y. Pei S. Sun H. Peng C. Li J. Ye R. Yang Q. Wang N. Tao Y. Chen X. Yan Q. Potent BRD4 inhibitor suppresses cancer cell-macrophage interaction. Nat. Commun. 2020 11 1 1833 10.1038/s41467‑020‑15290‑0 32286255
    [Google Scholar]
  26. Huang N. Liao P. Zuo Y. Zhang L. Jiang R. Design, synthesis, and biological evaluation of a potent dual EZH2–BRD4 inhibitor for the treatment of some solid tumors. J. Med. Chem. 2023 66 4 2646 2662 10.1021/acs.jmedchem.2c01607 36774555
    [Google Scholar]
  27. Gezici S. Şekeroğlu N. Current perspectives in the application of medicinal plants against cancer: Novel therapeutic agents. Anticancer. Agents Med. Chem. 2019 19 1 101 111 10.2174/1871520619666181224121004 30582485
    [Google Scholar]
  28. Naeem A. Hu P. Yang M. Zhang J. Liu Y. Zhu W. Zheng Q. Natural products as anticancer agents: Current status and future perspectives. Molecules 2022 27 23 8367 10.3390/molecules27238367 36500466
    [Google Scholar]
  29. Shi D. Li H. Zhang Z. He Y. Chen M. Sun L. Zhao P. Cryptotanshinone inhibits proliferation and induces apoptosis of breast cancer MCF-7 cells via GPER mediated PI3K/AKT signaling pathway. PLoS One 2022 17 1 0262389 10.1371/journal.pone.0262389 35061800
    [Google Scholar]
  30. Jin Z. Chenghao Y. Cheng P. Anticancer effect of tanshinones on female breast cancer and gynecological cancer. Front. Pharmacol. 2022 12 824531 10.3389/fphar.2021.824531 35145409
    [Google Scholar]
  31. Zhou L. Jiang L. Xu M. Liu Q. Gao N. Li P. Liu E.H. Miltirone exhibits antileukemic activity by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction pathways. Sci. Rep. 2016 6 1 20585 10.1038/srep20585 26848099
    [Google Scholar]
  32. Wu C.F. Efferth T. Miltirone induces G2/M cell cycle arrest and apoptosis in CCRF-CEM acute lymphoblastic leukemia cells. J. Nat. Prod. 2015 78 6 1339 1347 10.1021/acs.jnatprod.5b00158 26035463
    [Google Scholar]
  33. Zhu Z. Miltirone induced apoptosis in cisplatin resistant lung cancer cells through upregulation of p53 signaling pathways. Oncol. Lett. 2018 15 6 8841 8846 10.3892/ol.2018.8440 29928326
    [Google Scholar]
  34. Huang J. Zhang J. Sun C. Yang R. Sheng M. Hu J. Kai G. Han B. Adjuvant role of Salvia miltiorrhiza bunge in cancer chemotherapy: A review of its bioactive components, health-promotion effect and mechanisms. J. Ethnopharmacol 2024 318 Pt B 117022 10.1016/j.jep.2023.117022 37572929
  35. Wang L. Hu T. Shen J. Zhang L. Li L. Chan R.L.Y. Li M. Wu W.K.K. Cho C.H. Miltirone induced mitochondrial dysfunction and ROS-dependent apoptosis in colon cancer cells. Life Sci. 2016 151 224 234 10.1016/j.lfs.2016.02.083 26969764
    [Google Scholar]
  36. Zhang X. Zhang P. An L. Sun N. Peng L. Tang W. Ma D. Chen J. Miltirone induces cell death in hepatocellular carcinoma cell through GSDME-dependent pyroptosis. Acta Pharm. Sin. B 2020 10 8 1397 1413 10.1016/j.apsb.2020.06.015 32963939
    [Google Scholar]
  37. Yang J. Fu B. Gou R. Lin X. Wu H. Xue W. Molecular mechanism-driven discovery of novel small molecule inhibitors against drug-resistant SARS-CoV-2 M pro variants. J. Chem. Inf. Model. 2024 64 20 7998 8009 10.1021/acs.jcim.4c01206 39387184
    [Google Scholar]
  38. Chopra H. Baig A.A. Gautam R.K. Kamal M.A. Application of artificial intelligence in drug discovery. Curr. Pharm. Des. 2022 28 33 2690 2703 10.2174/1381612828666220608141049 35676841
    [Google Scholar]
  39. Yang X. Wang Y. Byrne R. Schneider G. Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem. Rev. 2019 119 18 10520 10594 10.1021/acs.chemrev.8b00728 31294972
    [Google Scholar]
  40. Narayanan R.R. Durga N. Nagalakshmi S. Impact of artificial intelligence (AI) on drug discovery and product development. Indian J. Pharm. Educ. Res. 2022 56 3s s387 s397 10.5530/ijper.56.3s.146
    [Google Scholar]
  41. Mao J. Guan S. Chen Y. Zeb A. Sun Q. Lu R. Dong J. Wang J. Cao D. Application of a deep generative model produces novel and diverse functional peptides against microbial resistance. Comput. Struct. Biotechnol. J. 2023 21 463 471 10.1016/j.csbj.2022.12.029 36618982
    [Google Scholar]
  42. Segler M.H.S. Kogej T. Tyrchan C. Waller M.P. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 2018 4 1 120 131 10.1021/acscentsci.7b00512 29392184
    [Google Scholar]
  43. Gupta A. Müller A.T. Huisman B.J.H. Fuchs J.A. Schneider P. Schneider G. Generative recurrent networks for de novo drug design. Mol. Inform. 2018 37 1-2 1700111 10.1002/minf.201700111 29095571
    [Google Scholar]
  44. Glusker J.P. Lewis M. Rossi M. Crystal structure analysis for chemists and biologists 1996
    [Google Scholar]
  45. Sheppard G.S. Wang L. Fidanze S.D. Hasvold L.A. Liu,] D.; Pratt, J.K.; Park, C.H.; Longenecker, K.; Qiu, W.; Torrent,] M.; Kovar, P.J.; Bui, M.; Faivre, E.; Huang, X.; Lin, X.; Wilcox, D.; Zhang, L.; Shen, Y.; Albert, D.H.; Magoc, T.J.; Rajaraman,] G.; Kati, W.M.; McDaniel, K.F. Discovery of N -Ethyl-4-[2-(4-fluoro-2,6-dimethyl-phenoxy)-5-(1-hydroxy-1-methyl-ethyl)phenyl]] -6-methyl-7-oxo-1 H-pyrrolo[2,3-c]pyridine-2-carboxamide (ABBV-744), a BET Bromodomain Inhibitor with Selectivity for the Second Bromodomain. J. Med. Chem. 2020 63 10 5585 5623 10.1021/acs.jmedchem.0c00628 32324999
    [Google Scholar]
  46. Mo Y. Lu Y. Wei G. Derreumaux P. Structural diversity of the soluble trimers of the human amylin(20-29) peptide revealed by molecular dynamics simulations. J. Chem. Phys. 2009 130 12 125101 10.1063/1.3097982 19334894
    [Google Scholar]
  47. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  48. Forli S. Olson A.J. A force field with discrete displaceable waters and desolvation entropy for hydrated ligand docking. J. Med. Chem. 2012 55 2 623 638 10.1021/jm2005145 22148468
    [Google Scholar]
  49. Lindorff-Larsen K. Piana S. Palmo K. Maragakis P. Klepeis J.L. Dror R.O. Shaw D.E. Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins 2010 78 8 1950 1958 10.1002/prot.22711 20408171
    [Google Scholar]
  50. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  51. Hess B. Bekker H. Berendsen H.J.C. Fraaije J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 1997 18 12 1463 1472 10.1002/(SICI)1096‑987X(199709)18:12<1463:AID‑JCC4>3.0.CO;2‑H
    [Google Scholar]
  52. Best R.B. Zhu X. Shim J. Lopes P.E.M. Mittal J. Feig M. MacKerell A.D. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone φ, ψ and side-chain χ(1) and χ(2) dihedral angles. J. Chem. Theory Comput. 2012 8 9 3257 3273 10.1021/ct300400x 23341755
    [Google Scholar]
  53. Schüttelkopf A.W. van Aalten D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 2004 60 8 1355 1363 10.1107/S0907444904011679 15272157
    [Google Scholar]
  54. Humphrey W. Dalke A. Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph 1996 14 1 33-38, 27-28 10.1016/0263‑7855(96)00018‑5 8744570
  55. DeLano W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr 2002 40 1 82 92
    [Google Scholar]
  56. Mo Y. Brahmachari S. Lei J. Gilead S. Tang Y. Gazit E. Wei G. The inhibitory effect of hydroxylated carbon nanotubes on the aggregation of human islet amyloid polypeptide revealed by a combined computational and experimental study. ACS Chem. Neurosci. 2018 9 11 2741 2752 10.1021/acschemneuro.8b00166 29986579
    [Google Scholar]
  57. Hao M.H. Theoretical calculation of hydrogen-bonding strength for drug molecules. J. Chem. Theory Comput. 2006 2 3 863 872 10.1021/ct0600262 26626693
    [Google Scholar]
  58. Yang Z. Yao Y. Zhou Y. Li X. Tang Y. Wei G. EGCG attenuates α-synuclein protofibril-membrane interactions and disrupts the protofibril. Int. J. Biol. Macromol. 2023 230 123194 10.1016/j.ijbiomac.2023.123194 36623616
    [Google Scholar]
  59. Musafia B. Buchner V. Arad D. Complex salt bridges in proteins: Statistical analysis of structure and function. J. Mol. Biol. 1995 254 4 761 770 10.1006/jmbi.1995.0653 7500348
    [Google Scholar]
  60. Burley S.K. Petsko G.A. Aromatic-aromatic interaction: A mechanism of protein structure stabilization. Science 1985 229 4708 23 28 10.1126/science.3892686 3892686
    [Google Scholar]
  61. Onufriev A. Bashford D. Case D.A. Modification of the generalized Born model suitable for macromolecules. J. Phys. Chem. B 2000 104 15 3712 3720 10.1021/jp994072s
    [Google Scholar]
  62. Onufriev A. Bashford D. Case D.A. Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins 2004 55 2 383 394 10.1002/prot.20033 15048829
    [Google Scholar]
  63. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  64. Narang S.S. Goyal D. Goyal B. Inhibition of Alzheimer’s amyloid-β 42 peptide aggregation by a bi-functional bis-tryptoline triazole: Key insights from molecular dynamics simulations. J. Biomol. Struct. Dyn. 2019 1 14 10.1080/07391102.2019.1614093 31046642
    [Google Scholar]
  65. Berhanu W.M. Hansmann U.H.E. The stability of cylindrin β‐barrel amyloid oligomer models—A molecular dynamics study. Proteins 2013 81 9 1542 1555 10.1002/prot.24302 23606599
    [Google Scholar]
  66. Zhang T. Zhang J. Derreumaux P. Mu Y. Molecular mechanism of the inhibition of EGCG on the Alzheimer Aβ(1-42) dimer. J. Phys. Chem. B 2013 117 15 3993 4002 10.1021/jp312573y 23537203
    [Google Scholar]
  67. Song M. Sun Y. Luo Y. Zhu Y. Liu Y. Li H. Exploring the mechanism of inhibition of au nanoparticles on the aggregation of amyloid-β (16-22) peptides at the atom level by all-atom molecular dynamics. Int. J. Mol. Sci. 2018 19 6 1815 10.3390/ijms19061815 29925792
    [Google Scholar]
  68. Kumari R. Kumar R. Lynn A. g_mmpbsa--A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  69. Mendez D. Gaulton A. Bento A.P. Chambers J. De Veij M. Félix E. Magariños M.P. Mosquera J.F. Mutowo P. Nowotka M. Gordillo-Marañón M. Hunter F. Junco L. Mugumbate G. Rodriguez-Lopez M. Atkinson F. Bosc N. Radoux C.J. Segura-Cabrera A. Hersey A. Leach A.R. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 2019 47 D1 D930 D940 10.1093/nar/gky1075 30398643
    [Google Scholar]
  70. Staudemeyer R.C. Morris E.R. . Understanding LSTM--a tutorial into long short-term memory recurrent neural networks. arXiv Preprint 2019
  71. Zhang X. Qiu H. Li C. Cai P. Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci. Trends 2021 15 5 283 298 10.5582/bst.2021.01318 34421064
    [Google Scholar]
  72. Wang K. Chen Q. Shao Y. Yin S. Liu C. Liu Y. Wang R. Wang T. Qiu Y. Yu H. Anticancer activities of TCM and their active components against tumor metastasis. Biomed. Pharmacother. 2021 133 111044 10.1016/j.biopha.2020.111044 33378952
    [Google Scholar]
  73. Harb J. Assessing the anti-metastatic effects of Triptonide, for a more efficient treatment of triple negative basal-like breast cancer, using a novel disease model Danio rerio. Western University of Health Sciences 2019
    [Google Scholar]
  74. Lin Y.S. Shen Y.C. Wu C.Y. Tsai Y.Y. Yang Y.H. Lin Y.Y. Kuan F.C. Lu C.N. Chang G.H. Tsai M.S. Hsu C.M. Yeh R.A. Yang P.R. Lee I.Y. Shu L.H. Cheng Y.C. Liu H.T. Wu Y.H. Wu Y.H. Chang D.C. Danshen improves survival of patients with breast cancer and dihydroisotanshinone I induces ferroptosis and apoptosis of breast cancer cells. Front. Pharmacol. 2019 10 1226 10.3389/fphar.2019.01226 31736748
    [Google Scholar]
  75. Hu C. Li M. Guo T. Wang S. Huang W. Yang K. Liao Z. Wang J. Zhang F. Wang H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine 2019 58 152740 10.1016/j.phymed.2018.11.001 31005718
    [Google Scholar]
  76. Chu Y. Zhang W. Kanimozhi G. Brindha G.R. Tian D. Ginsenoside Rg1 induces apoptotic cell death in triple‐negative breast cancer cell lines and prevents carcinogen‐induced breast tumorigenesis in sprague dawley rats. Evid. Based Complement. Alternat. Med. 2020 2020 1 8886955 10.1155/2020/8886955 33178325
    [Google Scholar]
  77. Tsao S.M. Hsu H.Y. Fucose-containing fraction of Ling-Zhi enhances lipid rafts-dependent ubiquitination of TGFβ receptor degradation and attenuates breast cancer tumorigenesis. Sci. Rep. 2016 6 1 36563 10.1038/srep36563 27830743
    [Google Scholar]
  78. Chen C.Y.C. TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 2011 6 1 15939 10.1371/journal.pone.0015939 21253603
    [Google Scholar]
  79. Bai Q. Tan S. Xu T. Liu H. Huang J. Yao X. MolAICal: A soft tool for 3D drug design of protein targets by artificial intelligence and classical algorithm. Brief. Bioinform. 2021 22 3 bbaa161 10.1093/bib/bbaa161 32778891
    [Google Scholar]
  80. Huang D. Guo C. E46K mutation of α-synuclein preorganizes the intramolecular interactions crucial for aggregation. J. Chem. Inf. Model. 2023 63 15 4803 4813 10.1021/acs.jcim.3c00694 37489886
    [Google Scholar]
  81. Liu Y. Wang X. Zhang J. Huang H. Ding B. Wu J. Shi Y. Structural basis and binding properties of the second bromodomain of Brd4 with acetylated histone tails. Biochemistry 2008 47 24 6403 6417 10.1021/bi8001659 18500820
    [Google Scholar]
  82. Vollmuth F. Blankenfeldt W. Geyer M. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. J. Biol. Chem. 2009 284 52 36547 36556 10.1074/jbc.M109.033712 19828451
    [Google Scholar]
  83. Wu S.Y. Chiang C.M. The double bromodomain-containing chromatin adaptor Brd4 and transcriptional regulation. J. Biol. Chem. 2007 282 18 13141 13145 10.1074/jbc.R700001200 17329240
    [Google Scholar]
  84. Yasonik J. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting. J. Cheminform. 2020 12 1 14 10.1186/s13321‑020‑00419‑6 33430996
    [Google Scholar]
  85. Merk D. Grisoni F. Friedrich L. Schneider G. Tuning artificial intelligence on the de novo design of natural-product-inspired retinoid X receptor modulators. Commun. Chem. 2018 1 1 68 10.1038/s42004‑018‑0068‑1
    [Google Scholar]
  86. Li J. Zou W. Yu K. Liu B. Liang W. Wang L. Lu Y. Jiang Z. Wang A. Zhu J. Discovery of the natural product 3′,4′,7,8-tetrahydroxyflavone as a novel and potent selective BRD4 bromodomain 2 inhibitor. J. Enzyme Inhib. Med. Chem. 2021 36 1 903 913 10.1080/14756366.2021.1906663 33820450
    [Google Scholar]
  87. Gilan O. Rioja I. Knezevic K. Bell M.J. Yeung M.M. Harker N.R. Lam E.Y.N. Chung C. Bamborough P. Petretich M. Urh M. Atkinson S.J. Bassil A.K. Roberts E.J. Vassiliadis D. Burr M.L. Preston A.G.S. Wellaway C. Werner T. Gray J.R. Michon A.M. Gobbetti T. Kumar V. Soden P.E. Haynes A. Vappiani J. Tough D.F. Taylor S. Dawson S.J. Bantscheff M. Lindon M. Drewes G. Demont E.H. Daniels D.L. Grandi P. Prinjha R.K. Dawson M.A. Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science 2020 368 6489 387 394 10.1126/science.aaz8455 32193360
    [Google Scholar]
/content/journals/cad/10.2174/0115734099386097250922062749
Loading
/content/journals/cad/10.2174/0115734099386097250922062749
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test