-
oa Study on the Mechanism of Ku Diding in the Treatment of Diabetes based on Network Pharmacology, Molecular Docking Technology, and Molecular Dynamics
-
-
- 24 Feb 2025
- 19 May 2025
- 26 Jan 2026
Abstract
To explore how Ku Diding (KDD) works in managing Diabetes Mellitus (DM), researchers utilized network pharmacology, molecular docking, and molecular dynamics methodologies.
Key active components of KDD were identified using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP). Data for diabetes-related targets were retrieved from the Human Genetic Comprehensive Databases (Genecards) and the Online Mendelian Inheritance in Man (OMIM) database. The intersection of these targets was analyzed to determine potential therapeutic targets for diabetes treatment. Protein-protein interaction networks (PPI) were constructed using the STRING database and Cytoscape software, followed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking between the components and key targets was performed using the AutoDock Vina platform.
This study identified that Dihydrosanguinarine, (S)-Scoulerine, among others, are the main active ingredients of KDD for treating DM, showing high affinity for critical targets like PTGS2 and PRKACA, through multiple pathways including vascular regulation, neuromodulation, metabolic regulation, and endocrine regulation. The molecular docking results showed that there are interactions between the active ingredients and the key targets, with the majority of the effective components exhibiting a stronger binding affinity than Metformin. Among them, (S)-Scoulerine and Dihydrosanguinarine demonstrated high docking affinity with the key target proteins PTGS2 and PRKACA.
DM is closely linked to oxidative stress, chronic inflammation, and insulin signaling dysregulation. This study reveals that KDD exerts anti-diabetic effects via a multi-target network involving proteins such as PRKACA, PTGS2, ESR1, FOS, and DRD2. These targets are associated with glucose metabolism, inflammation, oxidative stress, and neural regulation. Modulation of these pathways likely enhances insulin sensitivity, lowers blood glucose, suppresses inflammation, and protects against oxidative damage. GO and KEGG analyses further indicate involvement in MAPK signaling, synaptic transmission, and vascular regulation, forming a multidimensional “metabolism-inflammation-neural” regulatory network. Compared to Metformin, most KDD-derived compounds showed stronger binding, highlighting their therapeutic potential. Molecular dynamics simulations support the stability of the observed binding conformations, suggesting their potential as therapeutic targets. These findings underscore KDD's ability to simultaneously target multiple pathological mechanisms, offering a holistic treatment strategy for DM.
This study provides preliminary evidence that KDD is characterized by a multi-component, multi-target, and multi-pathway approach in the treatment of diabetes mellitus (DM), thereby establishing a scientific foundation for further in-depth exploration of KDD's molecular mechanisms.