Skip to content
2000
image of Study on the Mechanism of Ku Diding in the Treatment of Diabetes based on Network Pharmacology, Molecular Docking Technology, and Molecular Dynamics

Abstract

Introduction

To explore how Ku Diding (KDD) works in managing Diabetes Mellitus (DM), researchers utilized network pharmacology, molecular docking, and molecular dynamics methodologies.

Methods

Key active components of KDD were identified using the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP). Data for diabetes-related targets were retrieved from the Human Genetic Comprehensive Databases (Genecards) and the Online Mendelian Inheritance in Man (OMIM) database. The intersection of these targets was analyzed to determine potential therapeutic targets for diabetes treatment. Protein-protein interaction networks (PPI) were constructed using the STRING database and Cytoscape software, followed by Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Molecular docking between the components and key targets was performed using the AutoDock Vina platform.

Results

This study identified that , among others, are the main active ingredients of KDD for treating DM, showing high affinity for critical targets like PTGS2 and PRKACA, through multiple pathways including vascular regulation, neuromodulation, metabolic regulation, and endocrine regulation. The molecular docking results showed that there are interactions between the active ingredients and the key targets, with the majority of the effective components exhibiting a stronger binding affinity than Metformin. Among them, (S)-Scoulerine and Dihydrosanguinarine demonstrated high docking affinity with the key target proteins PTGS2 and PRKACA.

Discussion

DM is closely linked to oxidative stress, chronic inflammation, and insulin signaling dysregulation. This study reveals that KDD exerts anti-diabetic effects a multi-target network involving proteins such as PRKACA, PTGS2, ESR1, FOS, and DRD2. These targets are associated with glucose metabolism, inflammation, oxidative stress, and neural regulation. Modulation of these pathways likely enhances insulin sensitivity, lowers blood glucose, suppresses inflammation, and protects against oxidative damage. GO and KEGG analyses further indicate involvement in MAPK signaling, synaptic transmission, and vascular regulation, forming a multidimensional “metabolism-inflammation-neural” regulatory network. Compared to Metformin, most KDD-derived compounds showed stronger binding, highlighting their therapeutic potential. Molecular dynamics simulations support the stability of the observed binding conformations, suggesting their potential as therapeutic targets. These findings underscore KDD's ability to simultaneously target multiple pathological mechanisms, offering a holistic treatment strategy for DM.

Conclusion

This study provides preliminary evidence that KDD is characterized by a multi-component, multi-target, and multi-pathway approach in the treatment of diabetes mellitus (DM), thereby establishing a scientific foundation for further in-depth exploration of KDD's molecular mechanisms.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099383172251020054640
2026-01-26
2026-02-01
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099383172251020054640/BMS-CCADD-2025-HT18-6508-5.html?itemId=/content/journals/cad/10.2174/0115734099383172251020054640&mimeType=html&fmt=ahah

References

  1. American Diabetes Association American Diabetes Association. Standards of Medical Care in Diabetes-2020: Introduction. Diabetes Care. 2020 43 Suppl 1 S1 S2 10.2337/dc20‑Sint. 31862741
  2. Diabetes Atlas I.D.F. 8th ed International Diabetes Federation. 8th ed Brussels 2017
    [Google Scholar]
  3. Brown A.F. Ettner S.L. Piette J. Weinberger M. Gregg E. Shapiro M.F. Karter A.J. Safford M. Waitzfelder B. Prata P.A. Beckles G.L. Socioeconomic position and health among persons with diabetes mellitus: A conceptual framework and review of the literature. Epidemiol. Rev. 2004 26 1 63 77 10.1093/epirev/mxh002 15234948
    [Google Scholar]
  4. Zhang L. Wang Y. Li J. The impact of long-term hyperglycemia on liver and kidney function in type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 2019 104 7 2756 2765
    [Google Scholar]
  5. Zhang L.H. Wang J.G. Li M. Analysis of recurrence rate and influencing factors after drug withdrawal in type 2 diabetes mellitus. Chin J. Diabetes 2021 29 3 161 165
    [Google Scholar]
  6. Liu Z. Chen X. Zhang Y. Traditional Chinese medicine in the management of diabetes mellitus: A review. Complement. Ther. Med. 2019 42 326 332
    [Google Scholar]
  7. Wang Y. Liu Y. Wang X. Zhang R. Li C. Gao Y. Mechanism of Huanglian Jie du Tang in treating type 2 diabetes based on network pharmacology and experimental validation. Chin. Herb. Med. 2023 15 4 401 410 10.1016/j.chmed.2023.03.002
    [Google Scholar]
  8. Li X.X. Wang X.M. Zhang X.H. Analysis of the therapeutic effect of Xiaoke Pill on type 2 diabetes mellitus. Chin. J. Integr. Med. 2021 60 3 212 218 10.1007/BF02934064 30328568
    [Google Scholar]
  9. Wang X.L. Li X.H. Zhang X.Q. Comparison of Liuwei Dihuang Pill and Metformin in the treatment of type 2 diabetes mellitus. J. Ethnopharmacol. 2020 254 112689
    [Google Scholar]
  10. Chen X.P. Wang X.B. Li X.J. The hypoglycemic effect of Ku Diding oral solution in patients with type 2 diabetes mellitus. Zhonghua Zhongyiyao Zazhi 2024 39 5 1234 1240
    [Google Scholar]
  11. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: a database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  12. Tian S. Wang J. Li Y. Li D. Xu L. Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev. 2015 86 2 10 10.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  13. Xiong G. Wu Z. Yi J. Fu L. Yang Z. Hsieh C. Yin M. Zeng X. Wu C. Lu A. Chen X. Hou T. Cao D. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021 49 W1 W5 W14 10.1093/nar/gkab255 33893803
    [Google Scholar]
  14. Reuter S. Maynard C. Rietveld A. GeneCards: The human gene database. Nucleic Acids Res. 2017 45 D1 D735 D741
    [Google Scholar]
  15. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  16. Chen H. Boutros P.C. VennDiagram: A package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Bioinformatics 2011 12 1 35 10.1186/1471‑2105‑12‑35 21269502
    [Google Scholar]
  17. Li Y. Zhang Y. Wang X. Identification of potential targets for traditional Chinese medicine. J. Ethnopharmacol. 2019 232 111 119
    [Google Scholar]
  18. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  19. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  20. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  21. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  22. Kanehisa M. Furumichi M. Tanabe M. Sato Y. Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017 45 D1 D353 D361 10.1093/nar/gkw1092 27899662
    [Google Scholar]
  23. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  24. Pronk S. Páll S. Schulz R. Larsson P. Bjelkmar P. Apostolov R. Shirts M.R. Smith J.C. Kasson P.M. van der Spoel D. Hess B. Lindahl E. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013 29 7 845 854 10.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  25. Yang M. Lai Y. Gan D. Liu Q. Wang Y. He X. An Y. Gao T. Possible molecular exploration of herbal pair Haizao-Kunbu in the treatment of Graves’ disease by network pharmacology, molecular docking, and molecular dynamic analysis. Front. Endocrinol. 2023 14 1236549 10.3389/fendo.2023.1236549 37859983
    [Google Scholar]
  26. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  27. Miller B.R. McGee T.D. Swails J.M. Homeyer N. Gohlke H. Roitberg A.E. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 3314 3321 10.1021/ct300418h 26605738
    [Google Scholar]
  28. Zhang Y. Antioxidant capacity and its relation to type 2 diabetes mellitus. J. Diabetes Res. 2020 123
    [Google Scholar]
  29. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005 54 6 1615 1625 10.2337/diabetes.54.6.1615 15919781
    [Google Scholar]
  30. Ceriello A. Motz E. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler. Thromb. Vasc. Biol. 2004 24 5 816 823 10.1161/01.ATV.0000122852.22604.78 14976002
    [Google Scholar]
  31. Wang X. Network pharmacology-based prediction of active components and targets for DGLHT in treating diabetes. Pharmacol. Res. 2021 105359
    [Google Scholar]
  32. Kim J.H. Insulin signaling through PKA. Mol. Metab. 2017 585
    [Google Scholar]
  33. Zhang H. Wang J. Liu Y. (2021) Anti-inflammatory effects of natural polyphenols in the management of diabetes: Mechanisms and clinical implications. Pharmacological Research 165 105430 10.1016/j.phrs.2021.105430
    [Google Scholar]
  34. Libby P. Inflammatory mechanisms: The molecular basis of inflammation and disease. Nutr. Rev. 2007 65 12 140 146 10.1301/nr.2007.dec.S140‑S146 18240538
    [Google Scholar]
  35. Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxid. Med. Cell. Longev. 2011 2011 1 15 10.1155/2011/194586 22191011
    [Google Scholar]
  36. Cai D. Frantz J.D. Tawa N.E. Melendez P.A. Oh B.C. Lidov H.G.W. Hasselgren P.O. Frontera W.R. Lee J. Glass D.J. Shoelson S.E. IKKbeta/NF-kappaB activation causes severe muscle wasting in mice. Cell 2004 119 2 285 298 10.1016/j.cell.2004.09.027 15479644
    [Google Scholar]
  37. Huang R. Zhong T. Wu H. Enrichment analysis of GO and KEGG pathways for potential targets of traditional Chinese medicine. Front. Pharmacol. 2020 11 581
    [Google Scholar]
  38. Chen Y. Li J. Li Q. Regulation of MAPK cascade by herbal medicines. Evid. Based Complement. Alternat. Med. 2020 2020 8858477
    [Google Scholar]
  39. Liu Z. Ma L. Zhou G. Beta cell function and insulin secretion improvement by natural products. Phytother. Res. 2018 32 10 1877 1889
    [Google Scholar]
  40. Zhou Y. Wang J. Yang W. Calcium signaling pathway modulation by traditional Chinese medicine. Acta Pharm. Sin. B 2019 9 3 467 475
    [Google Scholar]
  41. Zhang Q. Zhu W. Xu F. Regulation of glucose homeostasis by estrogen receptor alpha. Endocrinology 2021 162 3 bqaa242 10.1210/endocr/bqaa242 33508121
    [Google Scholar]
  42. Yang L. Wang Z. Huang L. Molecular docking analysis of berberine analogs with multiple target proteins involved in diabetes. Int. J. Mol. Sci. 2021 22 17 8986
    [Google Scholar]
  43. Sun B. Li D. Mao R.X. Hypoglycemic effect of Jilin ginseng oligopeptides on diabetic rats. China. Food Nutr. 2016 22 10 62 65
    [Google Scholar]
  44. Qi G. Wang J.F. Qi F.J. Clinical study on mulberry leaf extract combined with aerobic exercise in the treatment of obese type 2 diabetes. Acta. Chin. Med. 2018 33 7 1230 1235 10.16368/j.issn.1674‑8999.2018.07.291
    [Google Scholar]
  45. Jiang Y.F. Li X.R. Geng J.Y. Quercetin alleviates diabetes-induced renal injury in rats by inhibiting the HMGB1/RAGE/NF-κB signaling pathway. J. South Med. Univ 2024 44 9 1769 1775 10.12122/j.issn.1673‑4254.2024.09.17 39505345
    [Google Scholar]
  46. Zhang Y. Li J. Wang H. Resveratrol ameliorates high-fat-diet-induced abnormalities in hepatic glucose metabolism in mice via the AMP-activated protein kinase pathway. J. Nutr. Biochem. 2021 92 108789 10.1016/j.jnutbio.2021.108789
    [Google Scholar]
/content/journals/cad/10.2174/0115734099383172251020054640
Loading
/content/journals/cad/10.2174/0115734099383172251020054640
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: neurotoxicity ; cyberpharmacology ; Ku diding ; molecular dynamics ; targets ; diabetes mellitus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test