Skip to content
2000
image of Elucidating the Mechanisms of a Patented Chinese Herbal Medicine for Ovarian Cystadenoma via Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulations

Abstract

Introduction

Ovarian cystadenoma (OC) is a common benign tumor in women. Wang’s formula for gynecological masses (WGM), a patented traditional Chinese medicine, was reported to have therapeutic potential for OC.

Method

Here, we explored the pharmacological effects of WGM on treating OC network pharmacology, molecular docking, and molecular dynamics simulations. The active ingredients in WGM and their putative targets were acquired from the TCMSP and BATMAN-TCM platforms. The known therapeutic targets of OC were obtained from the DrugBank, OMIM, and GeneCards databases. GO and KEGG analyses of the overlapping targets were performed the DAVID database. Molecular docking and molecular dynamics (MD) simulations were conducted to evaluate the binding efficacy of the chemical ingredients to the core targets.

Results

In total, 287 chemicals in WGM may relieve OC by targeting 134 genes involved in malignant tumors, endocrine resistance, and oxidative stress, of which ERBB2, ESR1, and AKT1 play vital roles. Molecular docking revealed stable binding energies of the receptors to the ligands, which bond electrostatic interactions and van der Waals interactions in MD simulations.

Conclusions

The bioinformatics analysis revealed the mechanisms of WGM treatment for OC. More pharmacological evidence of WGM treatment for OC, such as and clinical studies, is needed before WGM can benefit more patients.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099380177250802013905
2025-08-15
2025-12-05
Loading full text...

Full text loading...

References

  1. Ghosh A. Ghartimagar D. Thapa S. Sathian B. Narasimhan R. Talwar O.P. Ovarian tumors: Pattern of histomorphological types- A 10 years study in a tertiary referral center and review of literature. Kathmandu Univ. Med. J. 2016 14 54 153 158 [KUMJ]. 28166073
    [Google Scholar]
  2. Marko J. Marko K.I. Pachigolla S.L. Crothers B.A. Mattu R. Wolfman D.J. Mucinous neoplasms of the ovary: Radiologic-pathologic correlation. Radiographics 2019 39 4 982 997 10.1148/rg.2019180221 31283462
    [Google Scholar]
  3. Cheung A.N. Ellenson L.H. Gilks C.B. Kim K-R. Kong C.S. Lax S.F. Longacre T.A. Tumors of ovary. WHO Classification of Female Genital Tumors International Agency for Research on Cancer (IARC) 2020
    [Google Scholar]
  4. Ibrahimkhil A.S. Malakzai H.A. Haidary A.M. Hussaini N. Abdul-Ghafar J. Pathological features of ovarian tumors, diagnosed at a tertiary care hospital in Afghanistan: A cross-sectional study. Cancer Manag. Res. 2022 14 3325 3333 10.2147/CMAR.S384969 36465710
    [Google Scholar]
  5. Ohya A. Fujinaga Y. Magnetic resonance imaging findings of cystic ovarian tumors: major differential diagnoses in five types frequently encountered in daily clinical practice. Jpn. J. Radiol. 2022 40 12 1213 1234 10.1007/s11604‑022‑01321‑x 35916971
    [Google Scholar]
  6. Jeong Y.Y. Outwater E.K. Kang H.K. Imaging evaluation of ovarian masses. Radiographics 2000 20 5 1445 1470 10.1148/radiographics.20.5.g00se101445 10992033
    [Google Scholar]
  7. Li T. Hou N. Mao L. Liu F. Ma Z. Wang L. Xu X. Yan G. Han Y. Wei J. Tumor markers in differential diagnosis of benign ovarian masses. Int. J. Womens Health 2024 16 1517 1531 10.2147/IJWH.S471058 39309199
    [Google Scholar]
  8. Limaiem F. Lekkala M.R. Mlika M. Ovarian Cystadenoma. StatPearls Treasure Island (FL) StatPearls Publishing 2023
    [Google Scholar]
  9. Brito M.E. Borges A. Rodrigues S. Ambrósio P. Condeço R. Lacerda A. Bernardo M.J. Pinto P. Djokovic D. Conservative management of asymptomatic adnexal masses classified as benign by the IOTA ADNEX model: A prospective multicenter portuguese study. Diagnostics 2021 11 11 1992 10.3390/diagnostics11111992 34829339
    [Google Scholar]
  10. Lin Y.H. Hsia L.H. Huang Y.Y. Chang H.J. Lee T.H. Potential damage to ovarian reserve from laparoscopic electrocoagulation in endometriomas and benign ovarian cysts: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2024 41 10 2727 2738 10.1007/s10815‑024‑03227‑1 39145875
    [Google Scholar]
  11. Wang J. Guo Y. Wang G. 100 cases of ovarian cysts with Wang’s syndrome treated with enteric fluid. J. Tradit. Chin. Med. 2011 52 24 2139 2140 [in Chinese].
    [Google Scholar]
  12. Singh K. Bhushan B. Singh B. Advances in drug discovery and design using computer-aided molecular modeling. Curr. Computeraided Drug Des. 2024 20 5 697 710 10.2174/1573409920666230914123005 37711101
    [Google Scholar]
  13. Talevi A. Computer-aided drug discovery and design: Recent advances and future prospects. Methods Mol. Biol. 2024 2714 1 20 10.1007/978‑1‑0716‑3441‑7_1 37676590
    [Google Scholar]
  14. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  15. Ferreira L. Dos Santos R. Oliva G. Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules 2015 20 7 13384 13421 10.3390/molecules200713384 26205061
    [Google Scholar]
  16. Santos L.H.S. Ferreira R.S. Caffarena E.R. Integrating molecular docking and molecular dynamics simulations. Methods Mol. Biol. 2019 2053 13 34 10.1007/978‑1‑4939‑9752‑7_2 31452096
    [Google Scholar]
  17. “Clinical application guide of proprietary chinese medicine for the treatment of advantageous diseases” standardization project team. Clinical application guide of Guizhi Poria capsule (2021). Chinese J. of Integ. Trad. Western Medicine. 2022 42 5 525 538 [in Chinese].
    [Google Scholar]
  18. Aumeeruddy M.Z. Mahomoodally M.F. Ethnomedicinal plants for the management of diabetes worldwide: A systematic review. Curr. Med. Chem. 2021 28 23 4670 4693 10.2174/0929867328666210121123037 33475054
    [Google Scholar]
  19. Lien A.M. Banki O. Barik S.K. Buckeridge J.S. Christidis L. Cigliano M.M. Conix S. Costello M.J. Hobern D. Kirk P.M. Kroh A. Montgomery N. Nikolaeva S. Orrell T.M. Pyle R.L. Raz L. Thiele K. Thomson S.A. van Dijk P.P. Wambiji N. Whalen A. Zachos F.E. Zhang Z.Q. Garnett S.T. Widespread support for a global species list with a formal governance system. Proc. Natl. Acad. Sci. USA 2023 120 45 e2306899120 10.1073/pnas.2306899120 37903262
    [Google Scholar]
  20. Penev L. Paton A. Nicolson N. Kirk P. Pyle R. Whitton R. Georgiev T. Barker C. Hopkins C. Robert V. Bisserkov J. Stoev P. A common registration-to-citation automated pipeline for nomenclatural acts for higher plants (International Plant Names Index, IPNI), fungi (Index Fungorum, MycoBank) and animals (ZooBank). ZooKeys 2016 550 550 233 246 10.3897/zookeys.550.9551 26877662
    [Google Scholar]
  21. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  22. Kong X. Liu C. Zhang Z. Cheng M. Mei Z. Li X. Liu P. Diao L. Ma Y. Jiang P. Kong X. Nie S. Guo Y. Wang Z. Zhang X. Wang Y. Tang L. Guo S. Liu Z. Li D. BATMAN-TCM 2.0: An enhanced integrative database for known and predicted interactions between traditional Chinese medicine ingredients and target proteins. Nucleic Acids Res. 2024 52 D1 D1110 D1120 10.1093/nar/gkad926 37904598
    [Google Scholar]
  23. Yu Y. Yang F. Liu H. Network pharmacology evaluation of the active ingredients and potential targets of XiaoLuoWan for application to uterine fibroids. Biosci. Rep. 2020 40 12 BSR20202342 10.1042/BSR20202342 33196098
    [Google Scholar]
  24. Editorial: ChemSpider: A tool for Natural Products research. Nat. Prod. Rep. 2015 32 8 1163 1164 10.1039/C5NP90022K 26155872
    [Google Scholar]
  25. Bateman A. Martin M-J. Orchard S. Magrane M. Agivetova R. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bursteinas B. Bye-A-Jee H. Coetzee R. Cukura A. Da Silva A. Denny P. Dogan T. Ebenezer T.G. Fan J. Castro L.G. Garmiri P. Georghiou G. Gonzales L. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Jokinen P. Joshi V. Jyothi D. Lock A. Lopez R. Luciani A. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Menchi M. Mishra A. Moulang K. Nightingale A. Oliveira C.S. Pundir S. Qi G. Raj S. Rice D. Lopez M.R. Saidi R. Sampson J. Sawford T. Speretta E. Turner E. Tyagi N. Vasudev P. Volynkin V. Warner K. Watkins X. Zaru R. Zellner H. Bridge A. Poux S. Redaschi N. Aimo L. Argoud-Puy G. Auchincloss A. Axelsen K. Bansal P. Baratin D. Blatter M-C. Bolleman J. Boutet E. Breuza L. Casals-Casas C. de Castro E. Echioukh K.C. Coudert E. Cuche B. Doche M. Dornevil D. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gehant S. Gerritsen V. Gos A. Gruaz-Gumowski N. Hinz U. Hulo C. Hyka-Nouspikel N. Jungo F. Keller G. Kerhornou A. Lara V. Le Mercier P. Lieberherr D. Lombardot T. Martin X. Masson P. Morgat A. Neto T.B. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Pozzato M. Pruess M. Rivoire C. Sigrist C. Sonesson K. Stutz A. Sundaram S. Tognolli M. Verbregue L. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Garavelli J.S. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Yeh L-S. Zhang J. Ruch P. Teodoro D. UniProt Consortium UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021 49 D1 D480 D489 10.1093/nar/gkaa1100 33237286
    [Google Scholar]
  26. Hamosh A. Amberger J.S. Bocchini C. Scott A.F. Rasmussen S.A. Online mendelian inheritance in Man ( OMIM ®): Victor McKusick 's magnum opus. Am. J. Med. Genet. A. 2021 185 11 3259 3265 10.1002/ajmg.a.62407 34169650
    [Google Scholar]
  27. Stelzer G Rosen N Plaschkes I Zimmerman S Twik M Fishilevich S Stein TI Nudel R Lieder I Mazor Y Kaplan S Dahary D Warshawsky D Guan-Golan Y Kohn A Rappaport N Safran M Lancet D The GeneCards Suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  28. Knox C. Wilson M. Klinger C.M. Franklin M. Oler E. Wilson A. Pon A. Cox J. Chin N.E.L. Strawbridge S.A. Garcia-Patino M. Kruger R. Sivakumaran A. Sanford S. Doshi R. Khetarpal N. Fatokun O. Doucet D. Zubkowski A. Rayat D.Y. Jackson H. Harford K. Anjum A. Zakir M. Wang F. Tian S. Lee B. Liigand J. Peters H. Wang R.Q.R. Nguyen T. So D. Sharp M. da Silva R. Gabriel C. Scantlebury J. Jasinski M. Ackerman D. Jewison T. Sajed T. Gautam V. Wishart D.S. DrugBank 6.0: The DrugBank Knowledgebase for 2024. Nucleic Acids Res. 2024 52 D1 D1265 D1275 10.1093/nar/gkad976 37953279
    [Google Scholar]
  29. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  30. Majeed A. Mukhtar S. Protein-protein interaction network exploration using Cytoscape. Methods Mol. Biol. 2023 2690 419 427 10.1007/978‑1‑0716‑3327‑4_32 37450163
    [Google Scholar]
  31. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  32. Su G Morris JH Demchak B Bader GD Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics. 47 2014 8.13.1
    [Google Scholar]
  33. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  34. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  35. Walter W. Sánchez-Cabo F. Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 2015 31 17 2912 2914 10.1093/bioinformatics/btv300 25964631
    [Google Scholar]
  36. Yu Y.H. Zhang H.J. Yang F. Xu L. Liu H. Curcumol, a major terpenoid from Curcumae Rhizoma, attenuates human uterine leiomyoma cell development via the p38MAPK/NF-κB pathway. J. Ethnopharmacol. 2023 310 116311 10.1016/j.jep.2023.116311 36894110
    [Google Scholar]
  37. Thilakasiri P. Huynh J. Poh A.R. Tan C.W. Nero T.L. Tran K. Parslow A.C. Afshar-Sterle S. Baloyan D. Hannan N.J. Buchert M. Scott A.M. Griffin M.D.W. Hollande F. Parker M.W. Putoczki T.L. Ernst M. Chand A.L. Repurposing the selective estrogen receptor modulator bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol. Med. 2019 11 4 e9539 10.15252/emmm.201809539 30885958
    [Google Scholar]
  38. Roskoski R. Jr Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol. Res. 2019 139 395 411 10.1016/j.phrs.2018.11.014 30500458
    [Google Scholar]
  39. Kalinsky K. Hong F. McCourt C.K. Sachdev J.C. Mitchell E.P. Zwiebel J.A. Doyle L.A. McShane L.M. Li S. Gray R.J. Rubinstein L.V. Patton D. Williams P.M. Hamilton S.R. Conley B.A. O’Dwyer P.J. Harris L.N. Arteaga C.L. Chen A.P. Flaherty K.T. Effect of Capivasertib in patients with an AKT1 E17K -mutated tumor. JAMA Oncol. 2021 7 2 271 278 10.1001/jamaoncol.2020.6741 33377972
    [Google Scholar]
  40. Malik A. Dalal V. Ankri S. Tomar S. Structural insights into Entamoeba histolytica arginase and structure‐based identification of novel non‐amino acid based inhibitors as potential antiamoebic molecules. FEBS J. 2019 286 20 4135 4155 10.1111/febs.14960 31199070
    [Google Scholar]
  41. Adasme M.F. Linnemann K.L. Bolz S.N. Kaiser F. Salentin S. Haupt V.J. Schroeder M. PLIP 2021: expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res. 2021 49 W1 W530 W534 10.1093/nar/gkab294 33950214
    [Google Scholar]
  42. Blanes-Mira C. Fernández-Aguado P. de Andrés-López J. Fernández-Carvajal A. Ferrer-Montiel A. Fernández-Ballester G. Comprehensive survey of consensus docking for high-throughput virtual screening. Molecules 2022 28 1 175 10.3390/molecules28010175 36615367
    [Google Scholar]
  43. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  44. Dhankhar P. Dalal V. Mahto J.K. Gurjar B.R. Tomar S. Sharma A.K. Kumar P. Characterization of dye-decolorizing peroxidase from Bacillus subtilis. Arch. Biochem. Biophys. 2020 693 108590 10.1016/j.abb.2020.108590 32971035
    [Google Scholar]
  45. Kumari R. Kumar R. Lynn A. Open Source Drug Discovery Consortium g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  46. Senior T. Botha M.J. Kennedy A.R. Calvo-Castro J. Understanding the contribution of individual amino acid residues in the binding of psychoactive substances to monoamine transporters. ACS Omega 2020 5 28 17223 17231 10.1021/acsomega.0c01370 32715208
    [Google Scholar]
  47. Li W. Shih A. Freudenberg-Hua Y. Fury W. Yang Y. Beyond standard pipeline and p < 0.05 in pathway enrichment analyses. Comput. Biol. Chem. 2021 92 107455 10.1016/j.compbiolchem.2021.107455 33774420
    [Google Scholar]
  48. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus : structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2022 40 20 9833 9847 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  49. Kaur T. Madgulkar A. Bhalekar M. Asgaonkar K. Molecular docking in formulation and development. Curr. Drug Discov. Technol. 2019 16 1 30 39 10.2174/1570163815666180219112421 29468973
    [Google Scholar]
  50. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  51. Zhang X. Wei X. Shi L. Jiang H. Ma F. Li Y. Li C. Ma Y. Ma Y. The latest research progress: Active components of Traditional Chinese medicine as promising candidates for ovarian cancer therapy. J. Ethnopharmacol. 2025 337 Pt 1 118811 10.1016/j.jep.2024.118811 39251149
    [Google Scholar]
  52. Ma X.X. Xiang Y. Di W. Guo Z.Q. Leng J.H. Zhang G.N. Zhang S.Q. China expert consensus of diagnosis and treatment of ovarian cyst (2022 edition). Zhongguo Shiyong Fuke Yu Chanke Zazhi 2022 38 8 814 819
    [Google Scholar]
  53. Hassan G. Seno M. ERBB signaling pathway in cancer stem cells. Adv. Exp. Med. Biol. 2022 1393 65 81 10.1007/978‑3‑031‑12974‑2_3 36587302
    [Google Scholar]
  54. Cai W.Q. Zeng L.S. Wang L.F. Wang Y.Y. Cheng J.T. Zhang Y. Han Z.W. Zhou Y. Huang S.L. Wang X.W. Peng X.C. Xiang Y. Ma Z. Cui S.Z. Xin H.W. The Latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front. Oncol. 2020 10 1249 10.3389/fonc.2020.01249 32793499
    [Google Scholar]
  55. Kumagai S. Koyama S. Nishikawa H. Antitumour immunity regulated by aberrant ERBB family signalling. Nat. Rev. Cancer 2021 21 3 181 197 10.1038/s41568‑020‑00322‑0 33462501
    [Google Scholar]
  56. Odintsov I. Makarem M. Nishino M. Bachert S.E. Zhang T. LoPiccolo J. Paweletz C.P. Gokhale P.C. Ivanova E. Saldanha A. Rudin C.M. Lockwood W.W. Ladanyi M. Somwar R. Jänne P.A. Sholl L.M. Prevalence and therapeutic targeting of high-Level ERBB2 amplification in NSCLC. J. Thorac. Oncol. 2024 19 5 732 748 10.1016/j.jtho.2023.12.019 38154514
    [Google Scholar]
  57. Janjigian Y.Y. Kawazoe A. Yañez P. Li N. Lonardi S. Kolesnik O. Barajas O. Bai Y. Shen L. Tang Y. Wyrwicz L.S. Xu J. Shitara K. Qin S. Van Cutsem E. Tabernero J. Li L. Shah S. Bhagia P. Chung H.C. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021 600 7890 727 730 10.1038/s41586‑021‑04161‑3 34912120
    [Google Scholar]
  58. Uckun F.M. Qazi S. Upregulated expression of ERBB2/HER2 in multiple myeloma as a predictor of poor survival outcomes. Int. J. Mol. Sci. 2023 24 12 9943 10.3390/ijms24129943 37373090
    [Google Scholar]
  59. Kanwal W. Narjis K. Musani S. Nancy F. Qureshi L. Mudasir M. Naseem R. Tooba F. Yousuf J. Farhan K. Javed H. Eljack M.M.F. Exploring Zanidatamab’s efficacy across HER2-positive malignancies: A narrative review. BMC Cancer 2025 25 1 382 10.1186/s12885‑025‑13749‑1 40025472
    [Google Scholar]
  60. Wu D. Lei Y. Liu Q. Hu H. Li H. Xie L. Zhou J. Characterization and clinical significance of the CADM1/HER2/STAT3 axis in serous ovarian tumors. Medicine (Baltimore) 2021 100 8 e23777 10.1097/MD.0000000000023777 33663040
    [Google Scholar]
  61. Nagy Z. Jeselsohn R. ESR1 fusions and therapeutic resistance in metastatic breast cancer. Front. Oncol. 2023 12 1037531 10.3389/fonc.2022.1037531 36686845
    [Google Scholar]
  62. Wang Z. Li Y. Wang N. Li P. Kong B. Liu Z. EVI1 overexpression promotes ovarian cancer progression by regulating estrogen signaling. Mol. Cell. Endocrinol. 2021 534 111367 10.1016/j.mce.2021.111367 34146645
    [Google Scholar]
  63. Basu A. Lambring C.B. Akt isoforms: A family affair in breast cancer. Cancers 2021 13 14 3445 10.3390/cancers13143445 34298660
    [Google Scholar]
  64. Song M. Bode A.M. Dong Z. Lee M.H. AKT as a therapeutic target for cancer. Cancer Res. 2019 79 6 1019 1031 10.1158/0008‑5472.CAN‑18‑2738 30808672
    [Google Scholar]
  65. Khezri M.R. Jafari R. Yousefi K. Zolbanin N.M. The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions. Exp. Mol. Pathol. 2022 127 104787 10.1016/j.yexmp.2022.104787 35644245
    [Google Scholar]
  66. Long H. Yu W. Yu S. Yin M. Wu L. Chen Q. Cai R. Suo L. wang L. Lyu Q. Kuang Y. Progesterone affects clinic oocyte yields by coordinating with follicle stimulating hormone via PI3K/AKT and MAPK pathways. J. Adv. Res. 2021 33 189 199 10.1016/j.jare.2021.02.008 34603789
    [Google Scholar]
  67. Lee S.H. Golinska M. Griffiths J.R. HIF-1-independent mechanisms regulating metabolic adaptation in hypoxic cancer cells. Cells 2021 10 9 2371 10.3390/cells10092371 34572020
    [Google Scholar]
  68. Agani F. Jiang B.H. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets 2013 13 3 245 251 10.2174/1568009611313030003 23297826
    [Google Scholar]
  69. Orea-Soufi A. Paik J. Bragança J. Donlon T.A. Willcox B.J. Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol. Sci. 2022 43 12 1070 1084 10.1016/j.tips.2022.09.010 36280450
    [Google Scholar]
  70. Shi Y.Y. Meng X.T. Xu Y.N. Tian X.J. Role of FOXO protein’s abnormal activation through PI3K / AKT pathway in platinum resistance of ovarian cancer. J. Obstet. Gynaecol. Res. 2021 47 6 1946 1957 10.1111/jog.14753 33827148
    [Google Scholar]
  71. Seidman J.D. Mehrotra A. Benign ovarian serous tumors: A re-evaluation and proposed reclassification of serous “cystadenomas” and “cystadenofibromas”. Gynecol. Oncol. 2005 96 2 395 401 10.1016/j.ygyno.2004.10.014 15661227
    [Google Scholar]
  72. Lax S. Staebler A. Mucinous ovarian neoplasms. Pathologe 2014 35 4 327 335 10.1007/s00292‑014‑1912‑4 24962632
    [Google Scholar]
  73. Sheokand S. Siwatch S. Kundu R. Saha P.K. A rare case of infection and spontaneous rupture in ovarian mucinous cystadenoma. BMJ Case Rep. 2023 16 12 e253329 10.1136/bcr‑2022‑253329 38114297
    [Google Scholar]
  74. Lu Y.U. Wei L.I. Yan W.A.N.G. MSCT manifestations of ovarian mucinous cystadenoma and its differential diagnosis from mucinous cystadenocarcinoma. Chinese J. CT MRI. 2022 20 8 133 135
    [Google Scholar]
  75. Jung S.E. Lee J.M. Rha S.E. Byun J.Y. Jung J.I. Hahn S.T. CT and MR imaging of ovarian tumors with emphasis on differential diagnosis. Radiographics 2002 22 6 1305 1325 10.1148/rg.226025033 12432104
    [Google Scholar]
  76. Taylor E.C. Irshaid L. Mathur M. Multimodality imaging approach to ovarian neoplasms with pathologic correlation. Radiographics 2021 41 1 289 315 10.1148/rg.2021200086 33186060
    [Google Scholar]
  77. Ordulu Z. Watkins J. Ritterhouse L.L. Molecular pathology of ovarian epithelial neoplasms: Predictive, prognostic, and emerging biomarkers. Surg. Pathol. Clin. 2021 14 3 415 428 10.1016/j.path.2021.05.006 34373093
    [Google Scholar]
  78. Mills A.M. Shanes E.D. Mucinous ovarian tumors. Surg. Pathol. Clin. 2019 12 2 565 585 10.1016/j.path.2019.01.008 31097115
    [Google Scholar]
/content/journals/cad/10.2174/0115734099380177250802013905
Loading
/content/journals/cad/10.2174/0115734099380177250802013905
Loading

Data & Media loading...

Supplements

The data used to support the findings of this study are included within the Supplementary Tables.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test