Skip to content
2000
image of Wound Healing Properties of Nymphaea alba (Nymphaeaceae) Flower 
Extract: Evidence from In Vivo, In Vitro, and In Silico Network Analysis

Abstract

Introduction

The white water lily () is a traditional medicinal plant recognized for its diverse array of bioactive properties. However, its potential in wound healing remains largely unexplored. This study aimed to evaluate the phytochemical profile, cytotoxicity, and wound healing efficacy of flower extract (NAFE) using both and models, as well as computational network analysis.

Methods

Qualitative phytochemical screening of NAFE was conducted using standard techniques. Cytotoxicity was assessed on HaCaT keratinocyte cells at concentrations ranging from 0 to 1000 µg/ml. wound healing was evaluated using excision wound models in Wistar albino rats treated with 2.5% and 5% NAFE ointments, measuring wound contraction, epithelialization time, and breaking strength. scratch assays were used to assess cell migration at selected concentrations of NAFE. A wound-healing-associated network analysis was performed using IMPPAT, STRING, GeneCards, and OMIM databases to explore the molecular targets and interactions of bioactive compounds.

Results

Phytochemical analysis confirmed the presence of alkaloids, flavonoids, phenolics, tannins, and glycosides. NAFE was found to be non-cytotoxic with an IC of 245 µg/ml. , 5% NAFE ointment showed 98.92% wound closure by day 14 and complete closure by day 21, comparable to betadine. Epithelialization time (15.83±0.16 days) was nearly equivalent to the standard drug. assays demonstrated enhanced HaCaT cell migration at concentrations of 122.5 and 245 µg/ml. Network analysis identified kaempferol and quercetin as key compounds interacting with wound-healing proteins, notably AKT1, ESR1, and EGFR.

Discussion

The findings suggest that NAFE promotes wound healing by enhancing wound contraction, epithelialization, and cell migration, likely through the modulation of molecular pathways involved in tissue repair. The presence of bioactive compounds such as kaempferol and quercetin underpins the extract's pharmacological potential.

Conclusion

flower extract exhibits promising wound-healing activity through multiple mechanisms, including enhancement of cell migration and regulation of key proteins involved in tissue regeneration. These results support its potential as a natural therapeutic agent in wound management.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099367529250728112330
2025-09-03
2025-12-05
Loading full text...

Full text loading...

References

  1. Rodrigues M. Kosaric N. Bonham C.A. Gurtner G.C. Wound healing: A cellular perspective. Physiol. Rev. 2019 99 1 665 706 10.1152/physrev.00067.2017 30475656
    [Google Scholar]
  2. Monavarian M. Kader S. Moeinzadeh S. Jabbari E. Regenerative scar-free skin wound healing. Tissue Eng. Part B Rev. 2019 25 4 294 311 10.1089/ten.teb.2018.0350 30938269
    [Google Scholar]
  3. Chandrasekar M.J.N. Ramalingam S. Nanjan M.J. Plant-based natural products for wound healing: A critical review. Curr. Drug Res. Rev. 2022 14 1 37 60 10.2174/2589977513666211005095613 35549848
    [Google Scholar]
  4. Artem Ataide J. Caramori Cefali L. Machado Croisfelt F. Arruda Martins Shimojo A. Oliveira-Nascimento L. Gava Mazzola P. Natural actives for wound healing: A review. Phytother. Res. 2018 32 9 1664 1674 10.1002/ptr.6102 29722075
    [Google Scholar]
  5. El-Sherbeni S.A. Negm W.A. The wound healing effect of botanicals and pure natural substances used in in vivo models. Inflammopharmacology 2023 31 2 755 772 10.1007/s10787‑023‑01157‑5 36811778
    [Google Scholar]
  6. Ferreira A.S. Macedo C. Silva A.M. Delerue-Matos C. Costa P. Rodrigues F. Natural products for the prevention and treatment of oral mucositis—a review. Int. J. Mol. Sci. 2022 23 8 4385 10.3390/ijms23084385 35457202
    [Google Scholar]
  7. Kotian S. Bhat K. Pai S. Nayak J. Souza A. Gourisheti K. Padma D. The role of natural medicines on wound healing: A biomechanical, histological, biochemical and molecular study. Ethiop. J. Health Sci. 2018 28 6 759 770 30607093
    [Google Scholar]
  8. Cudalbeanu M. Ghinea I.O. Furdui B. Dah-Nouvlessounon D. Raclea R. Costache T. Cucolea I.E. Urlan F. Dinica R.M. Exploring new antioxidant and mineral compounds from Nymphaea alba wild-grown in danube delta biosphere. Molecules 2018 23 6 1247 10.3390/molecules23061247 29882880
    [Google Scholar]
  9. Iqbal J. Abbasi B.A. Batool R. Mahmood T. Ali B. Khalil A.T. Kanwal S. Shah S.A. Ahmad R. Potential phytocompounds for developing breast cancer therapeutics: Nature’s healing touch. Eur. J. Pharmacol. 2018 827 125 148 10.1016/j.ejphar.2018.03.007 29535002
    [Google Scholar]
  10. Gupta A. Singh A.K. Kumar R. Ganguly R. Rana H.K. Pandey P.K. Sethi G. Bishayee A. Pandey A.K. Corilagin in cancer: A critical evaluation of anticancer activities and molecular mechanisms. Molecules 2019 24 18 3399 10.3390/molecules24183399 31546767
    [Google Scholar]
  11. Nazir S. Qureshi M.A. Chat O.A. Anti-tumor, anti-oxidant and anti-microbial potential of Nymphaea alba and Nymphaea mexicana flowers a comparative study. Adv. Biomed. Pharm. 2015 2 4 196 204 10.19046/abp.v02i04.06
    [Google Scholar]
  12. Dash B.K. Sen M.K. Alam K. Hossain K. Islam R. Banu N.A. Rahman S. Jamal A.M. Antibacterial activity of Nymphaea nouchali (Burm. f) flower. Ann. Clin. Microbiol. Antimicrob. 2013 12 1 27 10.1186/1476‑0711‑12‑27 24099586
    [Google Scholar]
  13. Supaphon P. Keawpiboon C. Preedanon S. Phongpaichit S. Rukachaisirikul V. Isolation and antimicrobial activities of fungi derived from Nymphaea lotus and Nymphaea stellata. Mycoscience 2018 59 5 415 423 10.1016/j.myc.2018.02.012
    [Google Scholar]
  14. Manimekalai P. Raj C.D. Dhanalakshmi R. Evaluation of bioactive constituents in hydroalcoholic extract of Nlumbo nucifera by FTIR, HPTLC and GC-MS analysis. Int. J. Chemtech Res. 2019 12 3 103 108 10.20902/IJCTR.2019.120316
    [Google Scholar]
  15. Lohvina H. Sándor M. Wink M. Effect of ethanol solvents on total phenolic content and antioxidant properties of seed extracts of fenugreek (Trigonella foenum-graecum L.) varieties and determination of phenolic composition by HPLC-ESI-MS. Diversity 2021 14 1 7 10.3390/d14010007
    [Google Scholar]
  16. Herman-Lara E. Rodríguez-Miranda J. Ávila-Manrique S. Dorado-López C. Villalva M. Jaime L. Santoyo S. Martínez-Sánchez C.E. In vitro antioxidant, anti-inflammatory activity and bioaccessibility of ethanolic extracts from Mexican Moringa oleifera Leaf. Foods 2024 13 17 2709 10.3390/foods13172709 39272475
    [Google Scholar]
  17. Chu J. Ming Y. Cui Q. Zheng N. Yang S. Li W. Gao H. Zhang R. Cheng X. Efficient extraction and antioxidant activity of polyphenols from Antrodia cinnamomea. BMC Biotechnol. 2022 22 1 9 10.1186/s12896‑022‑00739‑5 35255883
    [Google Scholar]
  18. Mohan S.C. Dinakar S. Anand T. Elayaraja R. Priya B.S. Phytochemical, GS-MS analysis and Antibacterial activity of a Medicinal plant Acalypha indica. Int. J. Pharm. Tech. Res. 2012 4 3 1050 1054
    [Google Scholar]
  19. Demilew W. Adinew G.M. Asrade S. Evaluation of the wound healing activity of the crude extract of leaves of Acanthus polystachyus delile (acanthaceae). Evid. Based Complement. Alternat. Med. 2018 2018 1 2047896 10.1155/2018/2047896 29991951
    [Google Scholar]
  20. Hafiz A. Dave O.D. Toshikhane H. An experimental study to evaluate acute dermal toxicity of Rasakriya in Wistar rats. Int. J. Ayurvedic Med. 2022 13 1 68 72 10.47552/ijam.v13i1.2321
    [Google Scholar]
  21. Colombo I. Sangiovanni E. Maggio R. Mattozzi C. Zava S. Corbett Y. Fumagalli M. Carlino C. Corsetto P.A. Scaccabarozzi D. Calvieri S. Gismondi A. Taramelli D. Dell’Agli M. Hacat cells as a reliable in vitro differentiation model to dissect the inflammatory/repair response of human keratinocytes. Mediators Inflamm. 2017 2017 1 12 10.1155/2017/7435621 29391667
    [Google Scholar]
  22. Weber B. Lackner I. Haffner-Luntzer M. Palmer A. Pressmar J. Scharffetter-Kochanek K. Knöll B. Schrezenemeier H. Relja B. Kalbitz M. Modeling trauma in rats: Similarities to humans and potential pitfalls to consider. J. Transl. Med. 2019 17 1 305 10.1186/s12967‑019‑2052‑7 31488164
    [Google Scholar]
  23. Pastar I. Stojadinovic O. Yin N.C. Ramirez H. Nusbaum A.G. Sawaya A. Patel S.B. Khalid L. Isseroff R.R. Tomic-Canic M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care 2014 3 7 445 464 10.1089/wound.2013.0473 25032064
    [Google Scholar]
  24. Upadhyay G Tiwari N Maurya H Upadhyay J Joshi R Ansari MN In vivo wound-healing and antioxidant activity of aqueous extract of Roylea elegans leaves against physically induced burn model in Wistar albino rats. 3 Biotech 2021 11 10 442
    [Google Scholar]
  25. Alsareii S.A. Alzerwi N.A.N. AlAsmari M.Y. Alamri A.M. Mahnashi M.H. Shaikh I.A. Topical application of Premna integrifolia linn on skin wound injury in rats accelerates the wound healing process: Evidence from in vitro and in vivo experimental models. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/6449550 35463068
    [Google Scholar]
  26. Teshome N. Degu A. Ashenafi E. Ayele E. Abebe A. Evaluation of wound healing and anti-inflammatory activity of hydroalcoholic leaf extract of Clematis simensis fresen (ranunculaceae). Clin. Cosmet. Investig. Dermatol. 2022 15 1883 1897 10.2147/CCID.S384419 36117768
    [Google Scholar]
  27. Quazi A. Patwekar M. Patwekar F. Mezni A. Ahmad I. Islam F. Evaluation of wound healing activity (excision wound model) of ointment prepared from infusion extract of polyherbal tea bag formulation in diabetes-induced rats. Evid. Based Complement. Alternat. Med. 2022 2022 1 7 10.1155/2022/1372199 35707477
    [Google Scholar]
  28. Wolde B. Abay S.M. Nigussie D. Legesse B. Makonnen E. Mengie Ayele T. Evaluation of wound healing and antibacterial activities of solvent fractions of 80% methanol leaf extract of Brucea antidysenterica J.F. Mill (simaroubaceae). Infect. Drug Resist. 2022 15 1517 1531 10.2147/IDR.S360761 35411156
    [Google Scholar]
  29. Nagar H.K. Srivastava A.K. Srivastava R. Kurmi M.L. Chandel H.S. Ranawat M.S. Pharmacological investigation of the wound healing activity of Cestrum nocturnum (L.) ointment in wistar albino rats. J. Pharm. 2016 2016 1 8 10.1155/2016/9249040 27018126
    [Google Scholar]
  30. Panda V. Thakur T. Wound healing activity of the inflorescence of Typha elephantina (Cattail). Int. J. Low. Extrem. Wounds 2014 13 1 50 57 10.1177/1534734613516859 24351705
    [Google Scholar]
  31. Bhaskar A. Nithya V. Evaluation of the wound-healing activity of Hibiscus rosa sinensis L (Malvaceae) in Wistar albino rats. Indian J. Pharmacol. 2012 44 6 694 698 10.4103/0253‑7613.103252 23248396
    [Google Scholar]
  32. Mahdi I. Imbimbo P. Annaz H. Bakrim W.B. Sahri N. Alaoui A. Monti D.M. Sobeh M. Profiling of Petroselinum sativum (mill.) fuss phytoconstituents and assessment of their biocompatibility, antioxidant, anti-aging, wound healing, and antibacterial activities. Front. Nutr. 2024 11 1338482 10.3389/fnut.2024.1338482 38505264
    [Google Scholar]
  33. Chiangnoon R. Samee W. Uttayarat P. Jittachai W. Ruksiriwanich W. Sommano S.R. Athikomkulchai S. Chittasupho C. Phytochemical analysis, antioxidant, and wound healing activity of Pluchea indica L. (Less) branch extract nanoparticles. Molecules 2022 27 3 635 10.3390/molecules27030635 35163900
    [Google Scholar]
  34. Maas-Szabowski N. Stärker A. Fusenig N.E. Epidermal tissue regeneration and stromal interaction in HaCaT cells is initiated by TGF-α. J. Cell Sci. 2003 116 14 2937 2948 10.1242/jcs.00474 12771184
    [Google Scholar]
  35. Liu Y. Liu Y. Zeng C. Li W. Ke C. Xu S. Concentrated growth factor promotes wound healing potential of hacat cells by activating the RAS signaling pathway. Front. Biosci. 2022 27 12 319 10.31083/j.fbl2712319 36624939
    [Google Scholar]
  36. Kotian S.R. Bhat K.M.R. Padma D. Pai K.S.R. Influence of traditional medicines on the activity of keratinocytes in wound healing: An in-vitro study. Anat. Cell Biol. 2019 52 3 324 332 10.5115/acb.19.009 31598362
    [Google Scholar]
  37. Chen S. bin Abdul Rahim, A.A.; Mok, P.; Liu, D. An effective device to enable consistent scratches for in vitro scratch assays. BMC Biotechnol. 2023 23 1 32 10.1186/s12896‑023‑00806‑5 37641063
    [Google Scholar]
  38. Shady N.H. Mostafa N.M. Fayez S. Abdel-Rahman I.M. Maher S.A. Zayed A. Saber E.A. Khowdiary M.M. Elrehany M.A. Alzubaidi M.A. Altemani F.H. Shawky A.M. Abdelmohsen U.R. Mechanistic wound healing and antioxidant potential of Moringa oleifera seeds extract supported by metabolic profiling, in silico network design, molecular docking, and in vivo studies. Antioxidants 2022 11 9 1743 10.3390/antiox11091743 36139817
    [Google Scholar]
  39. Alsenani F. Ashour A.M. Alzubaidi M.A. Azmy A.F. Hetta M.H. Abu-Baih D.H. Elrehany M.A. Zayed A. Sayed A.M. Abdelmohsen U.R. Elmaidomy A.H. Wound healing metabolites from peters’ elephant-nose fish oil: An in vivo investigation supported by in vitro and in silico studies. Mar. Drugs 2021 19 11 605 10.3390/md19110605 34822477
    [Google Scholar]
  40. Reshad R.A.I. Alam S. Raihan H.B. Meem K.N. Rahman F. Zahid F. Rafid M.I. Rahman S.M.O. Omit S. Ali M.H. In silico investigations on curcuminoids from Curcuma longa as positive regulators of the Wnt/β-catenin signaling pathway in wound healing. Egypt. J. Med. Hum. Genet. 2021 22 1 65 10.1186/s43042‑021‑00182‑9
    [Google Scholar]
  41. Akbari F. Azadbakht M. Bagheri A. Vahedi L. In silico, in vitro, and in vivo wound healing activity of Astragalus microcephalus willd. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 16 10.1155/2022/2156629 36238201
    [Google Scholar]
  42. Wang Y. Sun Y. Wang Y. Ju Y. Meng D. Virtual screening of active compounds from Artemisia argyi and potential targets against gastric ulcer based on Network pharmacology. Bioorg. Chem. 2019 88 102924 10.1016/j.bioorg.2019.102924 31005783
    [Google Scholar]
  43. Sun R. Liu C. Liu J. Yin S. Song R. Ma J. Cao G. Lu Y. Zhang G. Wu Z. Chen A. Wang Y. Integrated network pharmacology and experimental validation to explore the mechanisms underlying naringenin treatment of chronic wounds. Sci. Rep. 2023 13 1 132 10.1038/s41598‑022‑26043‑y 36599852
    [Google Scholar]
  44. El-Dien R.T.M. Maher S.A. Hisham M. et al, Network pharmacology, molecular docking study, and in vivo validation of the wound healing activity of the Red Sea soft coral Paralemnalia thyrsoides (Ehrenberg 1834) ethanolic extract and bioactive metabolites. Beni. Suef Univ. J. Basic Appl. Sci. 2024 13 54 10.1186/s43088‑024‑00512‑x
    [Google Scholar]
  45. Gonzalez A.C.O. Costa T.F. Andrade Z.A. Medrado A.R.A.P. Wound healing - A literature review. An. Bras. Dermatol. 2016 91 5 614 620 10.1590/abd1806‑4841.20164741 27828635
    [Google Scholar]
  46. Abdulkhaleq L.A. Assi M.A. Abdullah R. Zamri-Saad M. Taufiq-Yap Y.H. Hezmee M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018 11 5 627 635 10.14202/vetworld.2018.627‑635 29915501
    [Google Scholar]
  47. Oguntibeju O.O. Medicinal plants and their effects on diabetic wound healing. Vet. World 2019 12 5 653 663 10.14202/vetworld.2019.653‑663 31327900
    [Google Scholar]
  48. Niederstätter I.M. Schiefer J.L. Fuchs P.C. Surgical strategies to promote cutaneous healing. Med. Sci. 2021 9 2 45 10.3390/medsci9020045 34208722
    [Google Scholar]
  49. Albahri G. Badran A. Hijazi A. Daou A. Baydoun E. Nasser M. Merah O. The therapeutic wound healing bioactivities of various medicinal plants. Life 2023 13 2 317 10.3390/life13020317 36836674
    [Google Scholar]
  50. Jacob R.S. Senthilkumaran J. Somasundaram G. Venugopala K. Madhavi E. Antiinflammatory activity of ethanolic extract of Nymphaea alba flower in Swiss albino mice. Int. J. Med. Res. Health Sci. 2013 2 3 474
    [Google Scholar]
  51. Koushik O.S. Himaja V. Babu P.S. Ramadoss K. Anti-inflammatory activity of flowers of Nymphaea alba by HRBC membrane stabilization method. Res. Plant Biol. 2015 5 4 18 20
    [Google Scholar]
  52. Cudalbeanu M. Furdui B. Cârâc G. Barbu V. Iancu A.V. Marques F. Leitão J.H. Sousa S.A. Dinica R.M. Antifungal, antitumoral and antioxidant potential of the danube delta Nymphaea alba extracts. Antibiotics 2019 9 1 7 10.3390/antibiotics9010007 31877815
    [Google Scholar]
  53. Fatima S.S. Govekar S.U. Satardekar V.K. Barve S.S. Dhawal P.P. In vitro analysis of ethanolic extract of flowers of Calendula officinalis for antioxidant, antimicrobial and uv-h2o2 induced DNA damage protection activity. J. Pharmacogn. Phytochem. 2018 7 5 2378 2383
    [Google Scholar]
  54. Novika K. Chaerunissa A. Sriwidodo S. Annissya W. Formulation and evaluation of anti-oxidant facial serum from extracts of various plants. Eduvest J. Univ Stud 2024 4 12 11353 11361 10.59188/eduvest.v4i12.50059
    [Google Scholar]
  55. Aimvijarn P. Palipoch S. Okada S. Suwannalert P. Thai water lily extract induces B16 melanoma cell apoptosis and inhibits cellular invasion through the role of cellular oxidants. Asian Pac. J. Cancer Prev. 2018 19 1 149 153 10.22034/APJCP.2018.19.1.149 29373906
    [Google Scholar]
  56. Liu H.M. Tang W. Lei S.N. Zhang Y. Cheng M.Y. Liu Q.L. Wang W. Extraction optimization, characterization and biological activities of polysaccharide extracts from Nymphaea hybrid. Int. J. Mol. Sci. 2023 24 10 8974 10.3390/ijms24108974 37240320
    [Google Scholar]
  57. Lee Z.M. Goh B.H. Khaw K.Y. Aloe vera and the proliferative phase of cutaneous wound healing: Status quo report on active principles, mechanisms, and applications. Planta Med. 2025 91 01/02 4 18 10.1055/a‑2446‑2146 39566518
    [Google Scholar]
  58. Chin Y.R. Toker A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell. Signal. 2009 21 4 470 476 10.1016/j.cellsig.2008.11.015 19110052
    [Google Scholar]
  59. Bakr R.O. El-Naa M.M. Zaghloul S.S. Omar M.M. Profile of bioactive compounds in Nymphaea alba L. leaves growing in Egypt: Hepatoprotective, antioxidant and anti-inflammatory activity. BMC Complement. Altern. Med. 2017 17 1 52 10.1186/s12906‑017‑1561‑2 28095910
    [Google Scholar]
  60. Preethi K.C. Kuttan G. Kuttan R. Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action. Indian J. Exp. Biol. 2009 47 2 113 120 19374166
    [Google Scholar]
  61. Parente L.M.L. Lino Júnior R.S. Tresvenzol L.M.F. Vinaud M.C. de Paula J.R. Paulo N.M. Wound healing and anti-inflammatory effect in animal models of Calendula officinalis L. Growing in Brazil. Evid. Based Complement. Alternat. Med. 2012 2012 1 7 10.1155/2012/375671 22315631
    [Google Scholar]
  62. Vitale S. Colanero S. Placidi M. Di Emidio G. Tatone C. Amicarelli F. D’Alessandro A.M. Phytochemistry and biological activity of medicinal plants in wound healing: An overview of current research. Molecules 2022 27 11 3566 10.3390/molecules27113566 35684503
    [Google Scholar]
  63. Contardi M. Lenzuni M. Fiorentini F. Summa M. Bertorelli R. Suarato G. Athanassiou A. Hydroxycinnamic acids and derivatives formulations for skin damages and disorders: A review. Pharmaceutics 2021 13 7 999 10.3390/pharmaceutics13070999 34371691
    [Google Scholar]
  64. Kang C.W. Han Y.E. Kim J. Oh J.H. Cho Y.H. Lee E.J. 4-Hydroxybenzaldehyde accelerates acute wound healing through activation of focal adhesion signalling in keratinocytes. Sci. Rep. 2017 7 1 14192 10.1038/s41598‑017‑14368‑y 29079748
    [Google Scholar]
  65. Refai H. El-Gazar A.A. Ragab G.M. Hassan D.H. Ahmed O.S. Hussein R.A. Shabana S. Waffo-Téguo P. Valls J. Al-Mokaddem A.K. Selim H.M.R.M. Yousef E.M. Ali S.K. Salman A. Abo-Zalam H.B. Albash R. Enhanced wound healing potential of Spirulina platensis nanophytosomes: Metabolomic profiling, molecular networking, and modulation of hmgb-1 in an excisional wound rat model. Mar. Drugs 2023 21 3 149 10.3390/md21030149 36976198
    [Google Scholar]
  66. Thippeswamy B.S. Mishra B. Veerapur V.P. Gupta G. Anxiolytic activity of Nymphaea alba Linn. in mice as experimental models of anxiety. Indian J. Pharmacol. 2011 43 1 50 55 10.4103/0253‑7613.75670 21455422
    [Google Scholar]
  67. Spoială A. Ilie C.I. Ficai D. Ficai A. Andronescu E. Synergic effect of honey with other natural agents in developing efficient wound dressings. Antioxidants 2022 12 1 34 10.3390/antiox12010034 36670896
    [Google Scholar]
  68. Nilawati Usman A. Sartini S. Yulianti R. Kamsurya M. Oktaviana A. Nulandari Z. Agustin D.I. Fendi F. Turmeric extract gel and honey in post-cesarean section wound healing: A preliminary study. F1000 Res. 2023 12 1095 10.12688/f1000research.134011.2 38817411
    [Google Scholar]
  69. Berning M. Prätzel-Wunder S. Bickenbach J.R. Boukamp P. Three-dimensional in vitro skin and skin cancer models based on human fibroblast-derived matrix. Tissue Eng. Part C Methods 2015 21 9 958 970 10.1089/ten.tec.2014.0698 25837604
    [Google Scholar]
  70. Intini C. Elviri L. Cabral J. Mros S. Bergonzi C. Bianchera A. Flammini L. Govoni P. Barocelli E. Bettini R. McConnell M. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr. Polym. 2018 199 593 602 10.1016/j.carbpol.2018.07.057 30143167
    [Google Scholar]
  71. Aly S.H. El-Hassab M.A. Elhady S.S. Gad H.A. Comparative metabolic study of Tamarindus indica L.’s various organs based on GC/MS analysis, in silico and in vitro anti-inflammatory and wound healing activities. Plants 2022 12 1 87 10.3390/plants12010087 36616217
    [Google Scholar]
/content/journals/cad/10.2174/0115734099367529250728112330
Loading
/content/journals/cad/10.2174/0115734099367529250728112330
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test