Skip to content
2000
image of Through Network Pharmacology Combined with Artificial Intelligence Techniques, Potential Targets of Banxia Xiexin Decoction for the Treatment of Functional Dyspepsia were Identified and Validated

Abstract

Background

Banxia Xiexin Decoction (BXD) has been shown to exert therapeutic effects on Functional dyspepsia (FD). This study aims to investigate the therapeutic mechanisms of BXD in treating FD.

Methods

Network pharmacology was employed to explore the potential targets of BXD in the treatment of FD. Immunoinfiltration analysis assessed immune activation in FD, with the XGBoost machine learning algorithm used to predict the feature importance of key targets. Deep learning and molecular docking were employed to assess the interactions between active compounds and key targets. Finally, an FD mouse model was established, and Western blotting, immunofluorescence, immunohistochemistry, and Enzyme-linked immunosorbent assay were conducted to validate the findings.

Results

Through network pharmacology analysis and machine learning predictions, three key active compounds were identified. GO enrichment analysis indicated that the mechanism of BXD primarily involves biological processes related to inflammatory responses. Immunoinfiltration analysis suggested that immune activation in FD may be associated with increased mast cell presence. Seven hub genes were identified through PPI analysis, with STAT3 identified as a key feature in XGBoost predictions of FD. experiments showed that BXD inhibited p-STAT3, alleviated mast cell infiltration and mucosal barrier damage, and enhanced gastrointestinal motility.

Conclusion

BXD may alleviate mast cell infiltration and mucosal barrier damage in FD by inhibiting the expression of p-STAT3, thereby exerting its therapeutic effects.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099363762250812150637
2025-08-22
2025-12-05
Loading full text...

Full text loading...

References

  1. Ford A.C. Mahadeva S. Carbone M.F. Lacy B.E. Talley N.J. Functional dyspepsia. Lancet 2020 396 10263 1689 1702 10.1016/S0140‑6736(20)30469‑4 33049222
    [Google Scholar]
  2. Ford A.C. Tsipotis E. Yuan Y. Leontiadis G.I. Moayyedi P. Efficacy of Helicobacter pylori eradication therapy for functional dyspepsia: Updated systematic review and meta-analysis. Gut 2022 12 326583 10.1136/gutjnl‑2021‑326583 35022266
    [Google Scholar]
  3. Jagdish B. Kilgore D.W.R. The relationship between functional dyspepsia, PPI therapy, and the gastric microbiome. Kans. J. Med. 2021 14 136 140 10.17161/kjm.vol1414831 34084274
    [Google Scholar]
  4. Kim Y.H. Kim J.Y. Kwon O.J. Jung S.Y. Joung J.Y. Yang C.S. Lee J.H. Cho J.H. Son C.G. Efficacy of a traditional herbal formula, Banha-Sasim-Tang in functional dyspepsia classified as excess pattern. Front. Pharmacol. 2021 12 698887 10.3389/fphar.2021.698887 34512334
    [Google Scholar]
  5. Kim K. Ko S.J. Cho S.H. Kim J. Park J.W. Herbal medicine, Banxia-xiexin tang, for functional dyspepsia: A systematic review and meta-analysis. Front. Pharmacol. 2023 14 1130257 10.3389/fphar.2023.1130257 37274096
    [Google Scholar]
  6. Liu B. Kou Z. Chen B. Effects and mechanisms of traditional Chinese medicines on functional dyspepsia: A review. Chin. Herb. Med. 2023 15 4 516 525 10.1016/j.chmed.2023.06.001 38094020
    [Google Scholar]
  7. Jeon Y.J. Lee J.S. Cho Y.R. Lee S.B. Kim W.Y. Roh S.S. Joung J.Y. Lee H.D. Moon S.O. Cho J.H. Son C.G. Banha-sasim-tang improves gastrointestinal function in loperamide-induced functional dyspepsia mouse model. J. Ethnopharmacol. 2019 238 111834 10.1016/j.jep.2019.111834 30940567
    [Google Scholar]
  8. Zhang D. Lu R. Wang M. Ji J. Zhang S. Wang S. Zhang D. Chen M. Effects of Banxia xiexin decoction on apoptosis of interstitial cells of cajal via regulation of MiR-451-5p: An in vivo and in vitro study. J. Ethnopharmacol. 2023 314 116606 10.1016/j.jep.2023.116606 37192721
    [Google Scholar]
  9. Jiang N. Yu Y. Chen F.Q. Yuan L.L. Wang Q.M. Effect of Banxia xiexin decoction on gastric antral interstitial cells of Cajal and stem cell factor in diabetic rats. Zhongguo Zhong Xi Yi Jie He Za Zhi 2013 33 12 1672 1676 24517068
    [Google Scholar]
  10. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  11. Li X. Liu Z. Liao J. Chen Q. Lu X. Fan X. Network pharmacology approaches for research of traditional chinese medicines. Chin. J. Nat. Med. 2023 21 5 323 332 10.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  12. Patel H. Shah H. Patel G. Patel A. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artif. Intell. Med. 2024 152 102883 10.1016/j.artmed.2024.102883 38657439
    [Google Scholar]
  13. Deng X. Li M. Deng S. Wang L. Hybrid gene selection approach using XGBoost and multi-objective genetic algorithm for cancer classification. Med. Biol. Eng. Comput. 2022 60 3 663 681 10.1007/s11517‑021‑02476‑x 35028863
    [Google Scholar]
  14. Xia Y. Li X. Chen X. Lu C. Yu X. Inferring retinal degeneration-related genes based on xgboost. Front. Mol. Biosci. 2022 9 843150 10.3389/fmolb.2022.843150 35223997
    [Google Scholar]
  15. Huang K. Fu T. Glass L.M. Zitnik M. Xiao C. Sun J. DeepPurpose: A deep learning library for drug–target interaction prediction. Bioinformatics 2021 36 22-23 5545 5547 10.1093/bioinformatics/btaa1005 33275143
    [Google Scholar]
  16. Sun J.Y. Liu Y.T. Jiang S.N. Guo P.M. Wu X.Y. Yu J. Essential oil from the roots of Paeonia lactiflora pall. has protective effect against corticosterone-induced depression in mice via modulation of PI3K/Akt signaling pathway. Front. Pharmacol. 2022 13 999712 10.3389/fphar.2022.999712 36188568
    [Google Scholar]
  17. Sojoudi K. Solaimani M. Azizi H. Exosomal insights into ovarian cancer stem cells: Revealing the molecular hubs. J. Ovarian Res. 2025 18 1 20 10.1186/s13048‑025‑01597‑3 39891297
    [Google Scholar]
  18. Hosseinpour Z. Rezaei Tavirani M. Akbari M.E. Stage analysis of breast cancer metabolomics: A system biology approach. Asian Pac. J. Cancer Prev. 2023 24 5 1571 1582 10.31557/APJCP.2023.24.5.1571 37247276
    [Google Scholar]
  19. Gao Z. Gong Z. Huang H. Ren X. Li Z. Gao P. Transcriptomic analysis of key genes and signaling pathways in sepsis-associated intestinal mucosal barrier damage. Gene 2025 936 149137 10.1016/j.gene.2024.149137 39617276
    [Google Scholar]
  20. Puthanmadhom Narayanan S. O’Brien D.R. Sharma M. Smyrk T.C. Graham R.P. Grover M. Bharucha A.E. Duodenal mucosal barrier in functional dyspepsia. Clin. Gastroenterol. Hepatol. 2022 20 5 1019 1028.e3 10.1016/j.cgh.2021.09.029 34607017
    [Google Scholar]
  21. Cai H. Shen J. Peng W. Zhang X. Wen T. Identification of SOX9-related prognostic DEGs and a prediction model for hepatitis C-induced early-stage fibrosis. Gene 2025 937 149133 10.1016/j.gene.2024.149133 39622395
    [Google Scholar]
  22. Liu J. Zhang D. Cao Y. Zhang H. Li J. Xu J. Yu L. Ye S. Yang L. Screening of crosstalk and pyroptosis-related genes linking periodontitis and osteoporosis based on bioinformatics and machine learning. Front. Immunol. 2022 13 955441 10.3389/fimmu.2022.955441 35990678
    [Google Scholar]
  23. Nandan P.K. Sivaraman J. Elucidating the therapeutic potential of indazole derivative bindarit against K-ras receptor: An in-silico analysis using molecular dynamics exploration. Biochem. Biophys. Rep. 2025 41 101913 10.1016/j.bbrep.2024.101913 39867680
    [Google Scholar]
  24. Liu R. Li T. Xu H. Yu G. Zhang T. Wang J. Sun Y. Bi Y. Feng X. Wu H. Zhang C. Sun Y. Systems biology strategy through integrating metabolomics and network pharmacology to reveal the mechanisms of Xiaopi Hewei Capsule improves functional dyspepsia. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1226 123676 10.1016/j.jchromb.2023.123676 37329776
    [Google Scholar]
  25. Li H. Buisman-Pijlman F.T.A. Nunez-Salces M. Christie S. Frisby C.L. Inserra A. Hatzinikolas G. Lewis M.D. Kritas S. Wong M.L. Page A.J. Chronic stress induces hypersensitivity of murine gastric vagal afferents. Neurogastroenterol. Motil. 2019 31 12 e13669 10.1111/nmo.13669 31241809
    [Google Scholar]
  26. Ren L Ruan X Dong H Cheng Y Shon K Chang C Gu R Sun Z The bitter flavor of Banxia Xiexin decoction activates TAS2R38 to ameliorate low-grade inflammation in the duodenum of mice with functional dyspepsia. J. Ethnopharmacol 2025 341Feb 11, 119309. 10.1016/j.jep.2024.119309
    [Google Scholar]
  27. Du L. Chen B. Kim J.J. Chen X. Dai N. Micro‐inflammation in functional dyspepsia: A systematic review and meta‐analysis. Neurogastroenterol. Motil. 2018 30 4 e13304 10.1111/nmo.13304 29392796
    [Google Scholar]
  28. Hillmer E.J. Zhang H. Li H.S. Watowich S.S. STAT3 signaling in immunity. Cytokine Growth Factor Rev. 2016 31 1 15 10.1016/j.cytogfr.2016.05.001 27185365
    [Google Scholar]
  29. Hu Y.S. Han X. Liu X.H. STAT3: A potential drug target for tumor and inflammation. Curr. Top. Med. Chem. 2019 19 15 1305 1317 10.2174/1568026619666190620145052 31218960
    [Google Scholar]
  30. Wei G. Xiang C. Wang H. Li X. Wu Y. Li Z. Yan Z. Qisheng wan decoction alleviates the inflammation of CCI rats via TRP channels. J. Ethnopharmacol. 2025 338 Pt 1 118990 10.1016/j.jep.2024.118990 39490711
    [Google Scholar]
  31. Wouters M.M. Vicario M. Santos J. The role of mast cells in functional GI disorders. Gut 2016 65 1 155 168 10.1136/gutjnl‑2015‑309151 26194403
    [Google Scholar]
  32. Wauters L. Talley N.J. Walker M.M. Tack J. Vanuytsel T. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 2020 69 3 591 600 10.1136/gutjnl‑2019‑318536 31784469
    [Google Scholar]
  33. Black C.J. Drossman D.A. Talley N.J. Ruddy J. Ford A.C. Functional gastrointestinal disorders: Advances in understanding and management. Lancet 2020 396 10263 1664 1674 10.1016/S0140‑6736(20)32115‑2 33049221
    [Google Scholar]
  34. Oshima T. Functional dyspepsia: Current understanding and future perspective. Digestion 2024 105 1 26 33 10.1159/000532082 37598673
    [Google Scholar]
  35. Black C.J. Paine P.A. Agrawal A. Aziz I. Eugenicos M.P. Houghton L.A. Hungin P. Overshott R. Vasant D.H. Rudd S. Winning R.C. Corsetti M. Ford A.C. British Society of Gastroenterology guidelines on the management of functional dyspepsia. Gut 2022 71 9 1697 1723 10.1136/gutjnl‑2022‑327737 35798375
    [Google Scholar]
  36. Nakada K. Oshio A. Matsuhashi N. Iwakiri K. Kamiya T. Manabe N. Joh T. Higuchi K. Haruma K. Causal effect of anxiety and depression status on the symptoms of gastroesophageal reflux disease and functional dyspepsia during proton pump inhibitor therapy. Esophagus 2023 20 2 309 316 10.1007/s10388‑022‑00960‑3 36251168
    [Google Scholar]
  37. Curran M.P. Robinson D.M. Mosapride. Drugs 2008 68 7 981 991 10.2165/00003495‑200868070‑00007 18457463
    [Google Scholar]
  38. Bang C.S. Kim J.H. Baik G.H. Kim H.S. Park S.H. Kim E.J. Kim J.B. Suk K.T. Yoon J.H. Kim Y.S. Kim D.J. Mosapride treatment for functional dyspepsia: A meta‐analysis. J. Gastroenterol. Hepatol. 2015 30 1 28 42 10.1111/jgh.12662 25041564
    [Google Scholar]
  39. Yuan T. Li P. Jia B. A meta-analysis of Xin kai bitter method in the treatment of functional dyspepsia. Ann. Palliat. Med. 2020 9 3 993 1003 10.21037/apm‑20‑860 32434358
    [Google Scholar]
  40. Kim S.K. Joung J.Y. Ahn Y.C. Jung I.C. Son C.G. Beneficial potential of Banha-Sasim-Tang for stress-sensitive functional dyspepsia via modulation of ghrelin: A randomized controlled trial. Front. Pharmacol. 2021 12 636752 10.3389/fphar.2021.636752 33959008
    [Google Scholar]
  41. Yoon J.Y. Ko S.J. Park J.W. Cha J.M. Complementary and alternative medicine for functional dyspepsia: An Asian perspective. Medicine (Baltimore) 2022 101 35 e30077 10.1097/MD.0000000000030077 36107498
    [Google Scholar]
  42. Yang Y. Xiao G. Cheng P. Zeng J. Liu Y. Protective application of chinese herbal compounds and formulae in intestinal inflammation in humans and animals. Molecules 2023 28 19 6811 10.3390/molecules28196811 37836654
    [Google Scholar]
  43. Wang W. Xu C. Li X. Wang Z. Yang J. Shen Y. Shi M. Chen L. Zhang L. Guo Y. Wang B. Zhang T. Pu Y. Exploration of the potential mechanism of Banxia Xiexin decoction for the effects on TNBS-induced ulcerative colitis rats with the assistance of network pharmacology analysis. J. Ethnopharmacol. 2021 277 114197 10.1016/j.jep.2021.114197 34004261
    [Google Scholar]
  44. Wang G. Li P. Su S.W. Xu R. Huang Z.Y. Yang T.X. Li J.M. Identification of key pathways and mRNAs in interstitial cystitis/bladder pain syndrome treatment with quercetin through bioinformatics analysis of mRNA-sequence data. Aging (Albany NY) 2024 16 7 5949 5966 10.18632/aging.205682 38526326
    [Google Scholar]
  45. Fan Y. Shen J. Liu X. Cui J. Liu J. Peng D. Jin Y. β-sitosterol suppresses lipopolysaccharide-induced inflammation and lipogenesis disorder in bovine mammary epithelial cells. Int. J. Mol. Sci. 2023 24 19 14644 10.3390/ijms241914644 37834091
    [Google Scholar]
  46. Ma L. Ma Y. Liu Y. β-Sitosterol protects against food allergic response in BALB/c mice by regulating the intestinal barrier function and reconstructing the gut microbiota structure. Food Funct. 2023 14 10 4456 4469 10.1039/D3FO00772C 37066493
    [Google Scholar]
  47. Liu M.W. Zhang C.H. Ma S.H. Zhang D.Q. Jiang L.Q. Tan Y. Protective effects of baicalein on lipopolysaccharide‐induced AR42J PACs through attenuation of both inflammation and pyroptosis via downregulation of miR‐224‐5p/PARP1. Mediators Inflamm. 2024 2024 1 6618927 10.1155/2024/6618927 39421730
    [Google Scholar]
  48. Zhang W. Wang X. Yin S. Wang Y. Li Y. Ding Y. Improvement of functional dyspepsia with Suaeda salsa (L.) Pall via regulating brain-gut peptide and gut microbiota structure. Eur. J. Nutr. 2024 63 5 1929 1944 10.1007/s00394‑024‑03401‑2 38703229
    [Google Scholar]
  49. Chen C. Yin C. Wang Y. Zeng J. Wang S. Bao Y. Xu Y. Liu T. Fan J. Liu X. XGBoost-based machine learning test improves the accuracy of hemorrhage prediction among geriatric patients with long-term administration of rivaroxaban. BMC Geriatr. 2023 23 1 418 10.1186/s12877‑023‑04049‑z 37430193
    [Google Scholar]
  50. Chen C. He Y. Ni Y. Tang Z. Zhang W. Identification of crosstalk genes relating to ECM‐receptor interaction genes in MASH and DN using bioinformatics and machine learning. J. Cell. Mol. Med. 2024 28 6 e18156 10.1111/jcmm.18156 38429902
    [Google Scholar]
  51. Tarwidi D. Pudjaprasetya S.R. Adytia D. Apri M. An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX 2023 10 102119 10.1016/j.mex.2023.102119 37007622
    [Google Scholar]
  52. Moore A. Bell M. XGBoost, A novel explainable ai technique, in the prediction of myocardial infarction: A uk biobank cohort study. Clin. Med. Insights Cardiol. 2022 16 11795468221133611 10.1177/11795468221133611 36386405
    [Google Scholar]
  53. Chelakkot C. Ghim J. Ryu S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018 50 8 1 9 10.1038/s12276‑018‑0126‑x 30115904
    [Google Scholar]
  54. Hayatbakhsh Abbasi M.M. Jafari E. Zahedi M. Darvish Moghaddam S. Taghizadeh A. Kharazmi N. Differences in duodenal mast cell and eosinophil counts between patients with functional dyspepsia and healthy people. Middle East J. Dig. Dis. 2021 13 4 333 338 10.34172/mejdd.2021.243 36606016
    [Google Scholar]
  55. Wauters L. Ceulemans M. Frings D. Lambaerts M. Accarie A. Toth J. Mols R. Augustijns P. De Hertogh G. Van Oudenhove L. Tack J. Vanuytsel T. Proton pump inhibitors reduce duodenal eosinophilia, mast cells, and permeability in patients with functional dyspepsia. Gastroenterology 2021 160 5 1521 1531.e9 10.1053/j.gastro.2020.12.016 33346007
    [Google Scholar]
  56. Wang Z. Hao M. Wu L. He Y. Sun X. Mast cells disrupt the duodenal mucosal integrity: Implications for the mechanisms of barrier dysfunction in functional dyspepsia. Scand. J. Gastroenterol. 2023 58 5 460 470 10.1080/00365521.2022.2141075 36345966
    [Google Scholar]
  57. Keita Å.V. Söderholm J.D. Mucosal permeability and mast cells as targets for functional gastrointestinal disorders. Curr. Opin. Pharmacol. 2018 43 66 71 10.1016/j.coph.2018.08.011 30216901
    [Google Scholar]
  58. Ford A.C. Staudacher H.M. Talley N.J. Postprandial symptoms in disorders of gut-brain interaction and their potential as a treatment target. Gut 2024 73 7 1199 1211 10.1136/gutjnl‑2023‑331833 38697774
    [Google Scholar]
  59. Pryor J. Burns G.L. Duncanson K. Horvat J.C. Walker M.M. Talley N.J. Keely S. Functional dyspepsia and food: Immune overlap with food sensitivity disorders. Curr. Gastroenterol. Rep. 2020 22 10 51 10.1007/s11894‑020‑00789‑9 32797313
    [Google Scholar]
  60. Vanuytsel T. Bercik P. Boeckxstaens G. Understanding neuroimmune interactions in disorders of gut–brain interaction: From functional to immune-mediated disorders. Gut 2023 72 4 787 798 10.1136/gutjnl‑2020‑320633 36657961
    [Google Scholar]
  61. Jung H. Talley N.J. Role of the duodenum in the pathogenesis of functional dyspepsia: A paradigm shift. J. Neurogastroenterol. Motil. 2018 24 3 345 354 10.5056/jnm18060 29791992
    [Google Scholar]
  62. Liebregts T. Adam B. Bredack C. Gururatsakul M. Pilkington K.R. Brierley S.M. Blackshaw A.L. Gerken G. Talley N.J. Holtmann G. Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am. J. Gastroenterol. 2011 106 6 1089 1098 10.1038/ajg.2010.512 21245834
    [Google Scholar]
  63. Komori K. Ihara E. Minoda Y. Ogino H. Sasaki T. Fujiwara M. Oda Y. Ogawa Y. The altered mucosal barrier function in the duodenum plays a role in the pathogenesis of functional dyspepsia. Dig. Dis. Sci. 2019 64 11 3228 3239 10.1007/s10620‑019‑5470‑8 30673985
    [Google Scholar]
  64. Bilotta S. Paruchuru L.B. Feilhauer K. Köninger J. Lorentz A. Resveratrol is a natural inhibitor of human intestinal mast cell activation and phosphorylation of mitochondrial ERK1/2 and STAT3. Int. J. Mol. Sci. 2021 22 14 7640 10.3390/ijms22147640 34299258
    [Google Scholar]
  65. Pavlyuchenkova A.N. Chelombitko M.A. Fedorov A.V. Kuznetsova M.K. Zinovkin R.A. Razin E. The distinct effects of the mitochondria-targeted STAT3 inhibitors Mitocur-1 and Mitocur-3 on mast cell and mitochondrial functions. Int. J. Mol. Sci. 2023 24 2 1471 10.3390/ijms24021471 36674987
    [Google Scholar]
  66. Erlich T.H. Yagil Z. Kay G. Peretz A. Migalovich-Sheikhet H. Tshori S. Nechushtan H. Levi-Schaffer F. Saada A. Razin E. Mitochondrial STAT3 plays a major role in IgE-antigen–mediated mast cell exocytosis. J. Allergy Clin. Immunol. 2014 134 2 460 469.e10 10.1016/j.jaci.2013.12.1075 24582310
    [Google Scholar]
  67. Banerjee S. Biehl A. Gadina M. Hasni S. Schwartz D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs 2017 77 5 521 546 10.1007/s40265‑017‑0701‑9 28255960
    [Google Scholar]
  68. He Y. Yang C. Wang P. Yang L. Wu H. Liu H. Qi M. Guo Z. Li J. Shi H. Wu X. Hu Z. Child compound Endothelium corneum attenuates gastrointestinal dysmotility through regulating the homeostasis of brain-gut-microbiota axis in functional dyspepsia rats. J. Ethnopharmacol. 2019 240 111953 10.1016/j.jep.2019.111953 31082513
    [Google Scholar]
/content/journals/cad/10.2174/0115734099363762250812150637
Loading
/content/journals/cad/10.2174/0115734099363762250812150637
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test