Skip to content
2000
image of Mutations in Penicillin G Acylase: A 4D QSAR-based Approach for Enhancing Efficacy of β-lactam Antibiotics

Abstract

Introduction

Penicillin G Acylase (PGA) plays a central role in the synthesis of β- lactam antibiotics. While certain variants have been extensively studied, their catalytic efficiency remains suboptimal for industrial application, necessitating further enzyme engineering to enhance substrate binding and reaction kinetics. This study aims to rationally design and engineer PGA variants with improved catalytic efficiency and stability toward β-lactam antibiotics, using an integrated approach of 4D QSAR modeling and neural network-guided mutation prediction.

Method

A dataset of 30 enzyme-substrate complexes involving three PGA variants and diverse β-lactam substrates was compiled. Ten complexes were randomly selected for external validation. The binding conformation of Cefotaxime to a Bacillus thermotolerans PGA variant was used as a reference for molecular docking and structural alignment. Binding site analyses identified optimal substrate orientations, followed by 4D grid-based energy profiling, which revealed 15 high-energy hotspot residues per variant. These positions were systematically mutated in silico, generating 1130 variants through a neural network-based residue substitution algorithm.

Results

Subsequent docking studies with Cefotaxime showed a strong positive correlation between predicted docking energies and Ki values derived from the 4D QSAR model, validating the model's predictive capability. Molecular dynamics simulations (2 × 100 ns) for selected variants, particularly Sequence Id_0, Id_2, Id_5, and Id_7, demonstrated stable binding interactions and favourable atomic distances, indicative of improved substrate affinity.

Discussion

In Sequence Id_11, the hotspot is Phe148. Chain A showed the best results with Val and Leu as single mutants, followed by Met56 in Chain B with Leu, and Ser144 in Chain A with Glu, Ala, Ile, and Arg. In the case of Sequence Id_03, the hotspot is Phe147. Chain A showed good results with Ala, Lys, Thr, and Ser, whereas Tyr71 in Chain B showed good results with Glu, Lys, and Thr, and Arg266 in Chain B showed good results with Ala, Thr, and Val. Those that showed the highest sum of docking scores and Ki were chosen for further studies.

Conclusion

The study highlights the critical role of residue Phe148 in mediating stable interactions with Cefotaxime and other β-lactam substrates. The integrated computational strategy establishes a robust framework for engineering catalytically superior PGA variants, offering a valuable basis for further experimental validation and application in antibiotic biosynthesis.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099353965251002075056
2025-10-27
2025-12-05
Loading full text...

Full text loading...

/deliver/fulltext/cad/10.2174/0115734099353965251002075056/BMS-CCADD-2025-22.html?itemId=/content/journals/cad/10.2174/0115734099353965251002075056&mimeType=html&fmt=ahah

References

  1. Sudhakaran V.K. Deshpande B.S. Ambedkar S.S. Shewale J.G. Molecular aspects of penicillin and cephalosporin acylases. Process Biochem. 1992 27 3 131 143 10.1016/0032‑9592(92)87001‑W
    [Google Scholar]
  2. Wenda S. Illner S. Mell A. Kragl U. Industrial biotechnology-the future of green chemistry? Green Chem. 2011 13 11 3007 3047 10.1039/c1gc15579b
    [Google Scholar]
  3. Tishkov V.I. Savin S.S. Yasnaya A.S. Protein engineering of penicillin acylase. Acta. Nat. 2010 2 3 47 61 10.32607/20758251‑2010‑2‑3‑47‑61 22649651
    [Google Scholar]
  4. Kheirolomoom A. Ardjmand M. Fazelinia H. Zakeri A. Clarification of penicillin G acylase reaction mechanism. Process Biochem. 2001 36 11 1095 1101 10.1016/S0032‑9592(01)00145‑5
    [Google Scholar]
  5. Padda I.S. Nagalli S. Cefotaxime. In:StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  6. Adegoke A.A. Madu C.E. Aiyegoro O.A. Stenström T.A. Okoh A.I. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob. Resist. Infect. Control 2020 9 1 46 10.1186/s13756‑020‑0702‑4 32164766
    [Google Scholar]
  7. Kumar R.P. Kulkarni N. A receptor dependent-4D QSAR approach to predict the activity of mutated enzymes. Sci. Rep. 2017 7 1 6273 10.1038/s41598‑017‑06625‑x 28740233
    [Google Scholar]
  8. Holzgrabe U. Hopfinger A.J. Conformational analysis, molecular shape comparison, and pharmacophore identification of different allosteric modulators of muscarinic receptors. J. Chem. Inf. Comput. Sci. 1996 36 5 1018 1024 10.1021/ci9502515 8831141
    [Google Scholar]
  9. Hopfinger A.J. Inhibition of dihydrofolate reductase: structure-activity correlations of 2,4-diamino-5-benzylpyrimidines based upon molecular shape analysis. J. Med. Chem. 1981 24 7 818 822 10.1021/jm00139a010 7277386
    [Google Scholar]
  10. Polanski J. Receptor dependent multidimensional QSAR for modeling drug--receptor interactions. Curr. Med. Chem. 2009 16 25 3243 3257 10.2174/092986709788803286 19548875
    [Google Scholar]
  11. Martins J.P.A. Barbosa E.G. Pasqualoto K.F.M. Ferreira M.M.C. LQTA-QSAR: A new 4D-QSAR methodology. J. Chem. Inf. Model. 2009 49 6 1428 1436 10.1021/ci900014f 19422246
    [Google Scholar]
  12. Cramer R.D. Patterson D.E. Bunce J.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 1988 110 18 5959 5967 10.1021/ja00226a005 22148765
    [Google Scholar]
  13. Hess B. Kutzner C. van der Spoel D. Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 2008 4 3 435 447 10.1021/ct700301q 26620784
    [Google Scholar]
  14. Shatsky M. Nussinov R. Wolfson H.J. A method for simultaneous alignment of multiple protein structures. Proteins 2004 56 1 143 156 10.1002/prot.10628 15162494
    [Google Scholar]
  15. Myint K.Z. Wang L. Tong Q. Xie X.Q. Molecular fingerprint-based artificial neural networks QSAR for ligand biological activity predictions. Mol. Pharm. 2012 9 10 2912 2923 10.1021/mp300237z 22937990
    [Google Scholar]
  16. Alkema W.B.L. Hensgens C.M.H. Snijder H.J. Keizer E. Dijkstra B.W. Janssen D.B. Structural and kinetic studies on ligand binding in wild-type and active-site mutants of penicillin acylase. Protein Eng. Des. Sel. 2004 17 5 473 480 10.1093/protein/gzh057 15254299
    [Google Scholar]
  17. Stan C.D. Drăgan M. Diaconu D.E. Ştefanache A. Possibilities to acylate 7-aminocephalosporanic acid to obtain some cephalosporins. Rev. Med. Chir. Soc. Med. Nat. Iasi 2014 118 1 244 249 24741808
    [Google Scholar]
  18. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  19. Nukaga M. Kumar S. Nukaga K. Pratt R.F. Knox J.R. Hydrolysis of third-generation cephalosporins by class c β-lactamases. J. Biol. Chem. 2004 279 10 9344 9352 10.1074/jbc.M312356200 14660590
    [Google Scholar]
  20. Swanson S. Sivaraman V. Grigoryan G. Keating A.E. Tertiary motifs as building blocks for the design of protein‐binding peptides. Protein Sci. 2022 31 6 e4322 10.1002/pro.4322 35634780
    [Google Scholar]
  21. Bill R. MMPBSA.py: An efficient program for end-state free energy calculations. J. Chem. Theory Comput. 2012 8 9 10.1021/ct300418h
    [Google Scholar]
  22. Kumari R. Kumar R. Lynn A. Lynn A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  23. Chowdhury R. Bajaj C. Multi-level grid algorithms for faster molecular energetics. Proceedings of the 14th ACM Symposium on Solid and Physical Modeling 2010 147 152 10.1145/1839778.1839799
    [Google Scholar]
  24. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  25. Salomon-Ferrer R. Case D.A. Walker R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013 3 2 198 210 10.1002/wcms.1121
    [Google Scholar]
  26. Case D.A. Darden T.A. Cheatham T.E. Simmerling C.L. Wang J. Duke R.E. Merz K.M. AMBER 12 Reference Manual. San Francisco, CA University of California 2012
    [Google Scholar]
  27. McCammon J.A. Harvey S. Dynamics of proteins and nucleic acids. Cambridge Cambridge University Press 1987 44 10.1017/CBO9781139167864
    [Google Scholar]
  28. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  29. Humphrey W. Dalke A. Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996 33 38 10.1016/0263‑7855(96)00018‑5
    [Google Scholar]
/content/journals/cad/10.2174/0115734099353965251002075056
Loading
/content/journals/cad/10.2174/0115734099353965251002075056
Loading

Data & Media loading...

Supplements

supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: cefotaxime ; neural network ; β-lactam antibiotics ; LTQA grid ; Penicillin G acylase ; 4D QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test