Skip to content
2000
Volume 21, Issue 8
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing globally, impacting individuals in Western nations and rapid growing in Asian countries due to sedentary lifestyles; thus, NAFLD has emerged as a significant worldwide health concern. Presently, lifestyle changes represent the primary approach to managing NAFLD.

Methods

This research aimed to identify the potential drug targets for treating NAFLD through comprehensive computational analysis. These include the prediction of the three-dimensional structure of the protein, the prediction of inhibitors by PubChem and ZINC, molecular docking by Autodcok, pharmacophore modeling, molecular dynamics simulation by the OPLS_2005 force field, and the orthorhombic box solvent model Intermolecular Interaction Potential 3 Points Transferable to the selected compound. The toxicity of the lead compounds was analyzed through AdmetSAR software.

Results

The protein associated with the PNPLA3 gene, whose overall three-dimensional structure was 95% accurate, were retrieved following inhibitor selection PubChem and ZINC. Among the selected inhibitors and docked compounds with ID 10033935 (ellagitannin) showed a minimum E-Score of -17.266. In docking and pharmacophore modeling the compound ellagitannin shows promise as a potential drug candidate. Moreover, the molecular dynamics and structural stability of the protein-ligand complex were evaluated with several metrics such as as root mean square fluctuation and root mean square deviation and resulted in the stability not only of PNPLA3-10033935 (ellagitannin) but also of compound PNPLA3-71448940 and PNPLA3-5748394 complexed proteins at 400 ns with very slight variation.

Conclusion

Overall, ellagitannin was identified as the best druggable target with the best therapeutics profile. The findings of our study can pave the way for the development of a new drug against NALFD.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099325555240927054614
2024-10-07
2025-12-16
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/8/CCADD-21-8-06.html?itemId=/content/journals/cad/10.2174/0115734099325555240927054614&mimeType=html&fmt=ahah

References

  1. YounossiZ.M. GolabiP. PaikJ.M. HenryA. Van DongenC. HenryL. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): A systematic review.Hepatology20237741335134710.1097/HEP.0000000000000004 36626630
    [Google Scholar]
  2. SatapathyS.K. KuwajimaV. NadelsonJ. AtiqO. SanyalA.J. Drug-induced fatty liver disease: An overview of pathogenesis and management.Ann. Hepatol.201514678980610.5604/16652681.1171749 26436351
    [Google Scholar]
  3. TengM.L.P. NgC.H. HuangD.Q. ChanK.E. TanD.J.H. LimW.H. YangJ.D. TanE. MuthiahM.D. Global incidence and prevalence of nonalcoholic fatty liver disease.Clin. Mol. Hepatol.202329S32S4210.3350/cmh.2022.0365 36517002
    [Google Scholar]
  4. PouwelsS. SakranN. GrahamY. LealA. PintarT. YangW. KassirR. SinghalR. MahawarK. RamnarainD. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss.BMC Endocr. Disord.20222216310.1186/s12902‑022‑00980‑1 35287643
    [Google Scholar]
  5. ChalasaniN. YounossiZ. LavineJ.E. CharltonM. CusiK. RinellaM. HarrisonS.A. BruntE.M. SanyalA.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.Hepatology201867132835710.1002/hep.29367 28714183
    [Google Scholar]
  6. LiJ. ZouB. YeoY.H. FengY. XieX. LeeD.H. FujiiH. WuY. KamL.Y. JiF. LiX. ChienN. WeiM. OgawaE. ZhaoC. WuX. StaveC.D. HenryL. BarnettS. TakahashiH. FurusyoN. EguchiY. HsuY.C. LeeT.Y. RenW. QinC. JunD.W. ToyodaH. WongV.W.S. CheungR. ZhuQ. NguyenM.H. Prevalence, incidence, and outcome of non-alcoholic fatty liver disease in Asia, 1999–2019: A systematic review and meta-analysis.Lancet Gastroenterol. Hepatol.20194538939810.1016/S2468‑1253(19)30039‑1 30902670
    [Google Scholar]
  7. TanD.J.H. SetiawanV.W. NgC.H. LimW.H. MuthiahM.D. TanE.X. DanY.Y. RobertsL.R. LoombaR. HuangD.Q. Global burden of liver cancer in males and females: Changing etiological basis and the growing contribution of NASH.Hepatology202210.1002/hep.32758 36037274
    [Google Scholar]
  8. KumarR. PriyadarshiR.N. AnandU. Non-alcoholic fatty liver disease: Growing burden, adverse outcomes and associations.J. Clin. Transl. Hepatol.2020817686 32274348
    [Google Scholar]
  9. YounossiZ. AnsteeQ.M. MariettiM. HardyT. HenryL. EslamM. GeorgeJ. BugianesiE. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention.Nat. Rev. Gastroenterol. Hepatol.2018151112010.1038/nrgastro.2017.109 28930295
    [Google Scholar]
  10. Godoy-MatosA.F. Silva JúniorW.S. ValerioC.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes.Diabetol. Metab. Syndr.20201216010.1186/s13098‑020‑00570‑y 32684985
    [Google Scholar]
  11. TesfayM. GoldkampW.J. Neuschwander-TetriB.A. NASH: The emerging most common form of chronic liver disease.Mo. Med.20181153225229 30228727
    [Google Scholar]
  12. WajsbrotN.B. LeiteN.C. SallesG.F. Villela-NogueiraC.A. Non-alcoholic fatty liver disease and the impact of genetic, epigenetic and environmental factors in the offspring.World J. Gastroenterol.202228252890289910.3748/wjg.v28.i25.2890 35978876
    [Google Scholar]
  13. KasperP. MartinA. LangS. KüttingF. GoeserT. DemirM. SteffenH.M. NAFLD and cardiovascular diseases: A clinical review.Clin. Res. Cardiol.2021110792193710.1007/s00392‑020‑01709‑7 32696080
    [Google Scholar]
  14. SaadehS. YounossiZ.M. RemerE.M. GramlichT. OngJ.P. HurleyM. MullenK.D. CooperJ.N. SheridanM.J. The utility of radiological imaging in nonalcoholic fatty liver disease.Gastroenterology2002123374575010.1053/gast.2002.35354 12198701
    [Google Scholar]
  15. ArabJ.P. ArreseM. TraunerM. Recent insights into the pathogenesis of nonalcoholic fatty liver disease.Annu. Rev. Pathol.201813132135010.1146/annurev‑pathol‑020117‑043617 29414249
    [Google Scholar]
  16. Delli BoviA.P. MarcianoF. MandatoC. SianoM.A. SavoiaM. VajroP. Oxidative stress in non-alcoholic fatty liver disease. An updated mini review.Front. Med. (Lausanne)2021859537110.3389/fmed.2021.595371 33718398
    [Google Scholar]
  17. DingS. YuanC. SiB. WangM. DaS. BaiL. WuW. Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice.PLoS One2019143e021468010.1371/journal.pone.0214680 30921449
    [Google Scholar]
  18. RowellR.J. AnsteeQ.M. An overview of the genetics, mechanisms and management of NAFLD and ALD.Clin. Med. (Lond.)2015156s77s8210.7861/clinmedicine.15‑6‑s77 26634687
    [Google Scholar]
  19. WangL. YanY. WuL. PengJ. Natural products in non-alcoholic fatty liver disease (NAFLD): Novel lead discovery for drug development.Pharmacol. Res.202319610692510.1016/j.phrs.2023.106925 37714392
    [Google Scholar]
  20. KardashianA. SerperM. TerraultN. NephewL.D. Health disparities in chronic liver disease.Hepatology202377413821403 35993341
    [Google Scholar]
  21. DayC.P. JamesO.F.W. Steatohepatitis: A tale of two “hits”?Gastroenterology1998114484284510.1016/S0016‑5085(98)70599‑2 9547102
    [Google Scholar]
  22. YamaguchiK. YangL. McCallS. HuangJ. YuX.X. PandeyS.K. BhanotS. MoniaB.P. LiY.X. DiehlA.M. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis.Hepatology20074561366137410.1002/hep.21655 17476695
    [Google Scholar]
  23. ZhangL. SongJ. KongL. YuanT. LiW. ZhangW. HouB. LuY. DuG. The strategies and techniques of drug discovery from natural products.Pharmacol. Ther.202021610768610.1016/j.pharmthera.2020.107686 32961262
    [Google Scholar]
  24. ChenW. ChangB. LiL. ChanL. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease.Hepatology20105231134114210.1002/hep.23812 20648554
    [Google Scholar]
  25. FernándezT. ViñuelaM. VidalC. BarreraF. Lifestyle changes in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis.PLoS One2022172e026393110.1371/journal.pone.0263931 35176096
    [Google Scholar]
  26. MehtaA. BaltimoreD. MicroRNAs as regulatory elements in immune system logic.Nat. Rev. Immunol.201616527929410.1038/nri.2016.40 27121651
    [Google Scholar]
  27. PfisterD. NúñezN.G. PinyolR. GovaereO. PinterM. SzydlowskaM. GuptaR. QiuM. DeczkowskaA. WeinerA. MüllerF. SinhaA. FriebelE. EngleitnerT. LenggenhagerD. MoncsekA. HeideD. StirmK. KoslaJ. KotsilitiE. LeoneV. DudekM. YousufS. InversoD. SinghI. TeijeiroA. CastetF. MontironiC. HaberP.K. TiniakosD. BedossaP. CockellS. YounesR. VaccaM. MarraF. SchattenbergJ.M. AllisonM. BugianesiE. RatziuV. PressianiT. D’AlessioA. PersoneniN. RimassaL. DalyA.K. ScheinerB. PomejK. KirsteinM.M. VogelA. Peck-RadosavljevicM. HuckeF. FinkelmeierF. WaidmannO. TrojanJ. SchulzeK. WegeH. KochS. WeinmannA. BueterM. RösslerF. SiebenhünerA. De DossoS. MallmJ.P. UmanskyV. JugoldM. LueddeT. SchietingerA. SchirmacherP. EmuB. AugustinH.G. BilleterA. Müller-StichB. KikuchiH. DudaD.G. KüttingF. WaldschmidtD.T. EbertM.P. RahbariN. MeiH.E. SchulzA.R. RingelhanM. MalekN. SpahnS. BitzerM. Ruiz de GalarretaM. LujambioA. DufourJ.F. MarronT.U. KasebA. KudoM. HuangY.H. DjouderN. WolterK. ZenderL. MarcheP.N. DecaensT. PinatoD.J. RadR. MertensJ.C. WeberA. UngerK. MeissnerF. RothS. JilkovaZ.M. ClaassenM. AnsteeQ.M. AmitI. KnolleP. BecherB. LlovetJ.M. HeikenwalderM. NASH limits anti-tumour surveillance in immunotherapy-treated HCC.Nature2021592785445045610.1038/s41586‑021‑03362‑0 33762733
    [Google Scholar]
  28. CoudertE. GehantS. de CastroE. PozzatoM. BaratinD. NetoT. SigristC.J.A. RedaschiN. BridgeA. BridgeA.J. AimoL. Argoud-PuyG. AuchinclossA.H. AxelsenK.B. BansalP. BaratinD. NetoT.M.B. BlatterM-C. BollemanJ.T. BoutetE. BreuzaL. GilB.C. Casals-CasasC. EchioukhK.C. CoudertE. CucheB. de CastroE. EstreicherA. FamigliettiM.L. FeuermannM. GasteigerE. GaudetP. GehantS. GerritsenV. GosA. GruazN. HuloC. Hyka-NouspikelN. JungoF. KerhornouA. Le MercierP. LieberherrD. MassonP. MorgatA. MuthukrishnanV. PaesanoS. PedruzziI. PilboutS. PourcelL. PouxS. PozzatoM. PruessM. RedaschiN. RivoireC. SigristC.J.A. SonessonK. SundaramS. BatemanA. MartinM-J. OrchardS. MagraneM. AhmadS. AlpiE. Bowler-BarnettE.H. BrittoR. A-Jee, H.B.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI.Bioinformatics2023391btac79310.1093/bioinformatics/btac793 36484697
    [Google Scholar]
  29. KanzC. AldebertP. AlthorpeN. BakerW. BaldwinA. BatesK. BrowneP. van den BroekA. CastroM. CochraneG. DugganK. EberhardtR. FaruqueN. GambleJ. DiezF.G. HarteN. KulikovaT. LinQ. LombardV. LopezR. MancusoR. McHaleM. NardoneF. SilventoinenV. SobhanyS. StoehrP. TuliM.A. TzouvaraK. VaughanR. WuD. ZhuW. ApweilerR. The EMBL Nucleotide Sequence Database.Nucleic Acids Res.200433Database issueD29D3310.1093/nar/gki098 15608199
    [Google Scholar]
  30. BermanH.M. WestbrookJ. FengZ. GillilandG. BhatT.N. WeissigH. ShindyalovI.N. BourneP.E. The Protein Data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  31. BoeckmannB. BlatterM.C. FamigliettiL. HinzU. LaneL. RoechertB. BairochA. Protein variety and functional diversity: Swiss-Prot annotation in its biological context.C. R. Biol.200532810-1188289910.1016/j.crvi.2005.06.001 16286078
    [Google Scholar]
  32. AltschulS. MaddenT.L. SchäfferA.A. ZhangJ. ZhangZ. MillerW. LipmanD.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs.Nucleic Acids Res.199725173389340210.1093/nar/25.17.3389 9254694
    [Google Scholar]
  33. message: "SQLSTATE[HY000] [2002] php_network_getaddresses: getaddrinfo failed: Temporary failure in name resolution (SQL: select * from `users`...)".2020Available from: https://stackoverflow.com/questions/58646500/message-sqlstatehy000-2002-php-network-getaddresses-getaddrinfo-failed-t
  34. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  35. GeidlS. BouchalT. RačekT. Svobodová VařekováR. HejretV. KřenekA. AbagyanR. KočaJ. High-quality and universal empirical atomic charges for chemoinformatics applications.J. Cheminform.2015715910.1186/s13321‑015‑0107‑1 26633997
    [Google Scholar]
  36. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  37. LipinskiC.A. Lead- and drug-like compounds: the rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  38. Castro-AlvarezA. CostaA. VilarrasaJ. The performance of several docking programs at reproducing protein–macrolide-like crystal structures.Molecules201722113610.3390/molecules22010136 28106755
    [Google Scholar]
  39. MishraA. DeyS. Molecular docking studies of a cyclic octapeptide-cyclosaplin from Sandalwood.Biomolecules201991174010.3390/biom9110740 31731771
    [Google Scholar]
  40. de Souza NetoL.R. Moreira-FilhoJ.T. NevesB.J. MaidanaR.L.B.R. GuimarãesA.C.R. FurnhamN. AndradeC.H. SilvaF.P.Jr In silico strategies to support fragment-to-lead optimization in drug discovery.Front Chem.202089310.3389/fchem.2020.00093 32133344
    [Google Scholar]
  41. JaninJ. HenrickK. MoultJ. EyckL.T. SternbergM.J.E. VajdaS. VakserI. WodakS.J. A critical assessment of predicted interaction.Proteins20035212910.1002/prot.10381 12784359
    [Google Scholar]
  42. GiordanoD. BiancanielloC. ArgenioM.A. FacchianoA. Drug design by pharmacophore and virtual screening approach.Pharmaceuticals (Basel)202215564610.3390/ph15050646 35631472
    [Google Scholar]
  43. VoetA. BanwellE.F. SahuK.K. HeddleJ.G. ZhangK.Y.J. Protein interface pharmacophore mapping tools for small molecule protein: protein interaction inhibitor discovery.Curr. Top. Med. Chem.2013139989100110.2174/1568026611313090003 23651479
    [Google Scholar]
  44. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.127 7630882
    [Google Scholar]
  45. WolberG. LangerT. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters.J. Chem. Inf. Model.200545116016910.1021/ci049885e 15667141
    [Google Scholar]
  46. GolabiP. PaikJ.M. AlQahtaniS. YounossiY. TuncerG. YounossiZ.M. The burden of nonalcoholic fatty liver disease in Asia, Middle East and North Africa: Data from Global Burden of Disease 2009-2019.J. Hepatol.202175479580910.1016/j.jhep.2021.05.022 34081959
    [Google Scholar]
  47. MajumdarD. DubeyA. TufailA. SutradharD. RoyS. Synthesis, spectroscopic investigation, molecular docking, ADME/T toxicity predictions, and DFT study of two trendy ortho vanillin-based scaffolds.Heliyon202396e1605710.1016/j.heliyon.2023.e16057 37251479
    [Google Scholar]
  48. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab255 33893803
    [Google Scholar]
  49. YangH. LouC. SunL. LiJ. CaiY. WangZ. LiW. LiuG. TangY. admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties.Bioinformatics20193561067106910.1093/bioinformatics/bty707 30165565
    [Google Scholar]
  50. SchochC.L. CiufoS. DomrachevM. HottonC.L. KannanS. KhovanskayaR. LeipeD. McveighR. O’NeillK. RobbertseB. SharmaS. SoussovV. SullivanJ.P. SunL. TurnerS. Karsch-MizrachiI. NCBI Taxonomy: A comprehensive update on curation, resources and tools.Database (Oxford)20202020baaa06210.1093/database/baaa062 32761142
    [Google Scholar]
  51. Salo-AhenO.M.H. AlankoI. BhadaneR. BonvinA.M.J.J. HonoratoR.V. HossainS. JufferA.H. KabedevA. Lahtela-KakkonenM. LarsenA.S. LescrinierE. MarimuthuP. MirzaM.U. MustafaG. Nunes-AlvesA. PantsarT. SaadabadiA. SingaraveluK. VanmeertM. Molecular dynamics simulations in drug discovery and pharmaceutical development.Processes (Basel)2020917110.3390/pr9010071
    [Google Scholar]
  52. DurrantJ.D. McCammonJ.A. Molecular dynamics simulations and drug discovery.BMC Biol.2011917110.1186/1741‑7007‑9‑71 22035460
    [Google Scholar]
  53. BowersK.J. ChowD.E. XuH. DrorR.O. EastwoodM.P. GregersenB.A. KlepeisJ.L. KolossvaryI. MoraesM.A. SacerdotiF.D. Scalable algorithms for molecular dynamics simulations on commodity clusters.Proceedings of the 2006 ACM/IEEE Conference on SupercomputingTampa, FL, USA20064310.1109/SC.2006.54
    [Google Scholar]
  54. KibriaM.R. AkbarR.I. NidadavoluP. HavryliukO. LafondS. AzimiS. Predicting efficacy of drug-carrier nanoparticle designs for cancer treatment: A machine learning-based solution.Sci. Rep.202313154710.1038/s41598‑023‑27729‑7 36631637
    [Google Scholar]
  55. OwoloyeA.J. LigaliF.C. EnejohO.A. MusaA.Z. AinaO. IdowuE.T. OyebolaK.M. Molecular docking, simulation and binding free energy analysis of small molecules as PfHT1 inhibitors.PLoS One2022178e026826910.1371/journal.pone.0268269 36026508
    [Google Scholar]
  56. GrantB.J. SkjærvenL. YaoX.Q. The Bio3D packages for structural bioinformatics.Protein Sci.2021301203010.1002/pro.3923 32734663
    [Google Scholar]
  57. PalmaJ. Pierdominici-SottileG. On the uses of PCA to characterise molecular dynamics simulations of biological macromolecules: Basics and tips for an effective use.Chemphyschem2023242e20220049110.1002/cphc.202200491
    [Google Scholar]
  58. ShenK. SinghA.D. Modaresi EsfehJ. Wakim-FlemingJ. Therapies for non-alcoholic fatty liver disease: A 2022 update.World J. Hepatol.20221491718172910.4254/wjh.v14.i9.1718 36185717
    [Google Scholar]
  59. GholamP.M. FlancbaumL. MachanJ.T. CharneyD.A. KotlerD.P. Nonalcoholic fatty liver disease in severely obese subjects.Am. J. Gastroenterol.2007102239940810.1111/j.1572‑0241.2006.01041.x 17311652
    [Google Scholar]
  60. TorresP.H.M. SoderoA.C.R. JofilyP. Silva-JrF.P. Key topics in molecular docking for drug design.Int. J. Mol. Sci.20192018457410.3390/ijms20184574 31540192
    [Google Scholar]
  61. KirchmairJ. GöllerA.H. LangD. KunzeJ. TestaB. WilsonI.D. GlenR.C. SchneiderG. Predicting drug metabolism: Experiment and/or computation?Nat. Rev. Drug Discov.201514638740410.1038/nrd4581 25907346
    [Google Scholar]
  62. DysonJ.K. AnsteeQ.M. McPhersonS. Non-alcoholic fatty liver disease: A practical approach to diagnosis and staging.Frontline Gastroenterol.20145321121810.1136/flgastro‑2013‑100403 25018867
    [Google Scholar]
  63. RusuE. EnacheG. JingaM. DragutR. NanR. PopescuH. ParpalaC. HomentcovschiC. NitescuM. StoianM. CostacheA. PoseaM. RusuF. JingaV. MischianuD. RadulianG. Medical nutrition therapy in non-alcoholic fatty liver disease-A review of literature.J. Med. Life201583258262 26351523
    [Google Scholar]
  64. PromratK. KleinerD.E. NiemeierH.M. JackvonyE. KearnsM. WandsJ.R. FavaJ.L. WingR.R. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis.Hepatology201051112112910.1002/hep.23276 19827166
    [Google Scholar]
  65. MengX.Y. ZhangH.X. MezeiM. CuiM. Molecular docking: A powerful approach for structure-based drug discovery.Curr. Computeraided Drug Des.20117214615710.2174/157340911795677602 21534921
    [Google Scholar]
  66. O HaganS. SwainstonN. HandlJ. KellD.B.A. A ‘rule of 0.5’ for the metabolite-likeness of approved pharmaceutical drugs.Metabolomics201511232333910.1007/s11306‑014‑0733‑z 25750602
    [Google Scholar]
  67. LaskowskiR.A. SwindellsM.B. LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery.J. Chem. Inf. Model.201151102778278610.1021/ci200227u 21919503
    [Google Scholar]
  68. AguP.C. AfiukwaC.A. OrjiO.U. EzehE.M. OfokeI.H. OgbuC.O. UgwujaE.I. AjaP.M. Molecular docking as a tool for the discovery of molecular targets of nutraceuticals in diseases management.Sci. Rep.20231311339810.1038/s41598‑023‑40160‑2 37592012
    [Google Scholar]
  69. MoorthyM. WieC.C. MariñoE. PalanisamyU.D. The prebiotic potential of geraniin and geraniin-enriched extract against high-fat-diet-induced metabolic syndrome in sprague dawley rats.Antioxidants202211463210.3390/antiox11040632 35453317
    [Google Scholar]
  70. Giménez-BastidaJ.A. Ávila-GálvezM.Á. EspínJ.C. González-SarríasA. Evidence for health properties of pomegranate juices and extracts beyond nutrition: A critical systematic review of human studies.Trends Food Sci. Technol.202111441042310.1016/j.tifs.2021.06.014
    [Google Scholar]
  71. BancR. LoghinF. MiereD. RangaF. SocaciuC. Phenolic composition and antioxidant activity of red, rosé and white wines originating from Romanian grape cultivars.Not. Bot. Horti Agrobot. Cluj-Napoca202048271673410.15835/nbha48211848
    [Google Scholar]
  72. BassalT. BasheerM. BoulosM. AssyN. Nonalcoholic fatty liver disease—A concise review of noninvasive tests and biomarkers.Metabolites20221211107310.3390/metabo12111073 36355154
    [Google Scholar]
  73. HassenG. SinghA. BeleteG. JainN. De la HozI. Camacho-LeonG.P. DargieN.K. CarreraK.G. AlemuT. JhaveriS. SolomonN. Nonalcoholic fatty liver disease: An emerging modern-day risk factor for cardiovascular disease.Cureus2022145e2549510.7759/cureus.25495 35783879
    [Google Scholar]
/content/journals/cad/10.2174/0115734099325555240927054614
Loading
/content/journals/cad/10.2174/0115734099325555240927054614
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test