Skip to content
2000
Volume 21, Issue 4
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objective

This study utilized transcriptomic sequencing combined with cellular and animal models to explore the potential mechanisms of Xuebijing in treating sepsis-induced myocardial dysfunction, also known as sepsis-induced myocardial injury.

Methods

We investigated potential targets and regulatory mechanisms of XBJ injection using network pharmacology and RNA sequencing. The effects of XBJ on oxidative stress and apoptosis levels in human cardiac myocytes (AC16) and C57BL/6 mice exposed to lipopolysaccharide (LPS) were evaluated by Enzyme-Linked Immunosorbent Assay (ELISA), fluorescent probe, Fluorescent Quantitative Polymerase Chain Reaction (qPCR), Western Blot, Transmission Electron Microscopy, oxidative stress-related indicators detection kit, flow cytometry, and Immunohistochemistry (IHC).

Results

First, it was verified that XBJ can reduce the deformation of AC16 cardiomyocytes induced by LPS and the production and secretion of ROS ( <0.01). The transcriptome sequencing results showed that the TRIM16 gene was significantly increased after XBJ treatment, and the data of KEGG and GO analyses demonstrated that XBJ could inhibit the pathway expression of oxidative stress damage in AC16 cells, and PCR verified that XBJ could indeed increase the expression level of TRIM16 gene in AC16 cells ( <0.01). Basic animal and cell experiments showed that LPS could inhibit the expression of TRIM16 and NRF2 in cardiomyocytes ( <0.05) and promote the expression of Keap1 ( <0.01), while XBJ could significantly up-regulate the expression levels of TRIM16 and NRF2 ( <0.01) and inhibit the expression of Keap1 ( <0.01), thereby affecting the expression levels of downstream proinflammatory cytokines and alleviating LPS-induced oxidative stress damage. In addition, XBJ also inhibited the expression of the pro-apoptotic proteins Bax and c-caspase3 ( <0.01), promoted the expression of the anti-apoptotic protein Bcl2 ( <0.01), and reduced LPS-induced apoptosis by upregulating TRIM16.

Conclusion

Our comprehensive data demonstrated that is a key gene in the therapeutic action of Xuebijing in sepsis-induced myocardial dysfunction, protecting myocardial cells from injury through antioxidative stress and anti-apoptotic mechanisms.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099318323241122184120
2024-12-02
2025-10-02
Loading full text...

Full text loading...

References

  1. SingerM. DeutschmanC.S. SeymourC.W. Shankar-HariM. AnnaneD. BauerM. BellomoR. BernardG.R. ChicheJ.D. CoopersmithC.M. HotchkissR.S. LevyM.M. MarshallJ.C. MartinG.S. OpalS.M. RubenfeldG.D. van der PollT. VincentJ.L. AngusD.C. The third international consensus definitions for Sepsis and Septic shock (Sepsis-3).JAMA2016315880181010.1001/jama.2016.028726903338
    [Google Scholar]
  2. BeesleyS.J. WeberG. SargeT. NikravanS. GrissomC.K. LanspaM.J. ShahulS. BrownS.M. Septic Cardiomyopathy.Crit. Care Med.201846462563410.1097/CCM.000000000000285129227368
    [Google Scholar]
  3. MartinL. The septic heart: Current understanding of molecular mechanisms and clinical implicationsChest20191552427437
    [Google Scholar]
  4. EhrmanR.R. SullivanA.N. FavotM.J. SherwinR.L. ReynoldsC.A. AbidovA. LevyP.D. Pathophysiology, echocardiographic evaluation, biomarker findings, and prognostic implications of septic cardiomyopathy: A review of the literature.Crit. Care201822111210.1186/s13054‑018‑2043‑829724231
    [Google Scholar]
  5. HanumanthuB.K.J. NairA.S. KatamreddyA. GilbertJ.S. YouJ.Y. OfforO.L. KushwahaA. KrishnanA. NapolitanoM. PalaidimosL. MoranteJ. TekwaniS.S. MehtaS. GuptaA. GorayaH. SunM. FaillaceR.T. GulaniP. Sepsis-induced cardiomyopathy is associated with higher mortality rates in patients with sepsis.Acute Crit. Care202136321522210.4266/acc.2021.0023434311515
    [Google Scholar]
  6. Chinese guidelines for management of severe sepsis and septic shock 2014.Zhonghua Wei Zhong Bing Ji Jiu Yi Xue201527640142610.3760/j.issn.2095‑4352.2015.06.001
    [Google Scholar]
  7. AntonucciE. FiaccadoriE. DonadelloK. TacconeF.S. FranchiF. ScollettaS. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment.J. Crit. Care201429450051110.1016/j.jcrc.2014.03.02824794044
    [Google Scholar]
  8. FlynnA. Chokkalingam ManiB. MatherP.J. Sepsis-induced cardiomyopathy: A review of pathophysiologic mechanisms.Heart Fail. Rev.201015660561110.1007/s10741‑010‑9176‑420571889
    [Google Scholar]
  9. LvX WangH Pathophysiology of sepsis-induced myocardial dysfunctionMil. Med. Res.201633010.1186/s40779‑016‑0099‑9
    [Google Scholar]
  10. PaulusW.J. Unfolding discoveries in heart failure.N. Engl. J. Med.2020382767968210.1056/NEJMcibr191382532053308
    [Google Scholar]
  11. LimaM.R. SilvaD. Septic cardiomyopathy: A narrative review.Rev. Port. Cardiol.202342547148110.1016/j.repc.2021.05.02036893835
    [Google Scholar]
  12. MartinL. DerwallM. ThiemermannC. SchürholzT. Heart in sepsis.Anaesthesist201766747949010.1007/s00101‑017‑0329‑x28677016
    [Google Scholar]
  13. L’HeureuxM. SternbergM. BrathL. TurlingtonJ. KashiourisM.G. Sepsis-induced cardiomyopathy: A comprehensive review.Curr. Cardiol. Rep.20202253510.1007/s11886‑020‑01277‑232377972
    [Google Scholar]
  14. Fleischmann-StruzekC. MellhammarL. RoseN. CassiniA. RuddK.E. SchlattmannP. AllegranziB. ReinhartK. Incidence and mortality of hospital- and ICU-treated sepsis: Results from an updated and expanded systematic review and meta-analysis.Intensive Care Med.20204681552156210.1007/s00134‑020‑06151‑x32572531
    [Google Scholar]
  15. EvansL. RhodesA. AlhazzaniW. AntonelliM. CoopersmithC.M. FrenchC. MachadoF.R. McintyreL. OstermannM. PrescottH.C. SchorrC. SimpsonS. WiersingaW.J. AlshamsiF. AngusD.C. ArabiY. AzevedoL. BealeR. BeilmanG. Belley-CoteE. BurryL. CecconiM. CentofantiJ. Coz YatacoA. De WaeleJ. DellingerR.P. DoiK. DuB. EstenssoroE. FerrerR. GomersallC. HodgsonC. MøllerM.H. IwashynaT. JacobS. KleinpellR. KlompasM. KohY. KumarA. KwizeraA. LoboS. MasurH. McGloughlinS. MehtaS. MehtaY. MerM. NunnallyM. OczkowskiS. OsbornT. PapathanassoglouE. PernerA. PuskarichM. RobertsJ. SchweickertW. SeckelM. SevranskyJ. SprungC.L. WelteT. ZimmermanJ. LevyM. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021.Intensive Care Med.202147111181124710.1007/s00134‑021‑06506‑y34599691
    [Google Scholar]
  16. VincentJ.L. MarshallJ.C. Ñamendys-SilvaS.A. FrançoisB. Martin-LoechesI. LipmanJ. ReinhartK. AntonelliM. PickkersP. NjimiH. JimenezE. SakrY. Assessment of the worldwide burden of critical illness: The intensive care over nations (ICON) audit.Lancet Respir. Med.20142538038610.1016/S2213‑2600(14)70061‑X24740011
    [Google Scholar]
  17. BuchmanT.G. SimpsonS.Q. SciarrettaK.L. FinneK.P. SowersN. CollierM. ChavanS. OkeI. PenniniM.E. SanthoshA. WaxM. WoodburyR. ChuS. MerkeleyT.G. DisbrowG.L. BrightR.A. MaCurdyT.E. KelmanJ.A. Sepsis among Medicare beneficiaries: The methods, models, and forecasts of sepsis, 2012–2018.Crit. Care Med.202048330231810.1097/CCM.000000000000422532058368
    [Google Scholar]
  18. RuddK.E. JohnsonS.C. AgesaK.M. ShackelfordK.A. TsoiD. KievlanD.R. ColombaraD.V. IkutaK.S. KissoonN. FinferS. Fleischmann-StruzekC. MachadoF.R. ReinhartK.K. RowanK. SeymourC.W. WatsonR.S. WestT.E. MarinhoF. HayS.I. LozanoR. LopezA.D. AngusD.C. MurrayC.J.L. NaghaviM. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the global burden of disease study.Lancet20203951021920021110.1016/S0140‑6736(19)32989‑731954465
    [Google Scholar]
  19. DaiY.J. WanS.Y. GongS.S. LiuJ.C. LiF. KouJ.P. Recent advances of traditional Chinese medicine on the prevention and treatment of COVID-19.Chin. J. Nat. Med.2020181288188910.1016/S1875‑5364(20)60031‑033357718
    [Google Scholar]
  20. ZhangB. QiF. Herbal medicines exhibit a high affinity for ACE2 in treating COVID-19.Biosci. Trends2023171142010.5582/bst.2022.0153436596560
    [Google Scholar]
  21. YeL. FanS. ZhaoP. WuC. LiuM. HuS. WangP. WangH. BiH. Potential herb–drug interactions between anti-COVID-19 drugs and traditional Chinese medicine.Acta Pharm. Sin. B20231393598363710.1016/j.apsb.2023.06.00137360014
    [Google Scholar]
  22. FangB. HongS. ZhaoR. Expert consensus on the prevention and treatment of novel coronavirus infection caused by Omicron mutant.China Emergency Medicine20224204277280[J].
    [Google Scholar]
  23. HongjieT. Chinese Guidelines for Management of Severe Sepsis/Septic Shock: How to see early goal-directed therapyChin. J. Crit. Care Intensive Care Med. (Electronic Ed.)2016
    [Google Scholar]
  24. ZhaoG.Z. ChenR.B. LiB. GuoY.H. XieY.M. LiaoX. YangY.F. ChenT.F. DiH.R. ShaoF. LvX.Q. HuJ. FengS. LiuQ.Q. ZhangB.L. Clinical practice guideline on traditional Chinese medicine therapy alone or combined with antibiotics for sepsis.Ann. Transl. Med.20197612210.21037/atm.2018.12.2331032277
    [Google Scholar]
  25. WangJ. Targets and mechanisms of Xuebijing in the treatment of acute kidney injury associated with Sepsis: A network pharmacology-based studyCurr. Comput. Aided Drug Des.2024206752763
    [Google Scholar]
  26. UngerE.F. ClissoldD.B. Xuebijing injection for the treatment of Sepsis.JAMA Intern. Med.2023183765565710.1001/jamainternmed.2023.078837126325
    [Google Scholar]
  27. HuangH. JiL. SongS. WangJ. WeiN. JiangM. BaiG. LuoG. Identification of the major constituents in Xuebijing injection by HPLC‐ESI‐MS.Phytochem. Anal.201122433033810.1002/pca.128421500296
    [Google Scholar]
  28. ShangT. YuQ. RenT. WangX.T. ZhuH. GaoJ.M. PanG. GaoX. ZhuY. FengY. LiM.C. Xuebijing injection maintains GRP78 expression to prevent Candida albicans-induced epithelial death in the kidney.Front. Pharmacol.202010141610.3389/fphar.2019.0141631969817
    [Google Scholar]
  29. SunZ. ZuoL. SunT. TangJ. DingD. ZhouL. KangJ. ZhangX. Chemical profiling and quantification of XueBiJing injection, a systematic quality control strategy using UHPLC-Q Exactive hybrid quadrupole-orbitrap high-resolution mass spectrometry.Sci. Rep.2017711692110.1038/s41598‑017‑17170‑y29208914
    [Google Scholar]
  30. FengY.Y. Molecular mechanism of Xuebijing injection in treatment of sepsis according to drugtargetpathway network.Yao Xue Xue Bao201712556562
    [Google Scholar]
  31. LiC. WangP. LiM. ZhengR. ChenS. LiuS. FengZ. YaoY. ShangH. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms.J. Ethnopharmacol.202126511330110.1016/j.jep.2020.11330132860891
    [Google Scholar]
  32. DaiL ChenM ChenQ ZhuangY JiangH XuY. Efficacy of Xuebijing injection for the treatment of acute lung injury: A meta-analysis of randomized controlled trialsHeliyon20241013e3331310.1016/j.heliyon.2024.e33313
    [Google Scholar]
  33. ZouF. ZouJ. DuQ. LiuL. LiD. ZhaoL. TangM. ZuoL. SunZ. XueBiJing injection improves the symptoms of sepsis-induced acute lung injury by mitigating oxidative stress and ferroptosis.J. Ethnopharmacol.2025337Pt 111873210.1016/j.jep.2024.11873239181287
    [Google Scholar]
  34. TangA. LiY. SunL. LiuX. GaoN. YanS. ZhangG. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway.World J. Emerg. Med.202415320621310.5847/wjem.j.1920‑8642.2024.03538855370
    [Google Scholar]
  35. ZhangC. HeH. ChenX. WeiT. YangC. BiJ. TangX. LiuJ. ZhangD. ChenC. SongY. MiaoC. The prediction of lymphocyte count and neutrophil count on the efficacy of Xuebijing adjuvant treatment for severe community-acquired pneumonia: A post hoc analysis of a randomized controlled trial.Phytomedicine202311015461410.1016/j.phymed.2022.15461436587417
    [Google Scholar]
  36. LiuS. YaoC. XieJ. LiuH. WangH. LinZ. QinB. WangD. LuW. MaX. LiuY. LiuL. ZhangC. XuL. ZhengR. ZhouF. LiuZ. ZhangG. ZhouL. LiuJ. FeiA. ZhangG. ZhuY. QianK. WangR. LiangY. DuanM. WuD. SunR. WangY. ZhangX. CaoQ. YangM. JinM. SongY. HuangL. ZhouF. ChenD. LiangQ. QianC. TangZ. ZhangZ. FengQ. PengZ. SunR. SongZ. SunY. ChaiY. ZhouL. ChengC. LiL. YanX. ZhangJ. HuangY. GuoF. LiC. YangY. ShangH. QiuH. LiuW. ShangM. HanJ. LiM. MaL. LiY. LiuY. YuT. LiX. LuX. ChenQ. YangY. LiY. GuoW. DouZ. GaoC. LiD. HanX. ShaoQ. XieY. LiX. LinJ. LiZ. GaoM. SongY. SuB. LiuY. PengY. CuiQ. YuH. FuB. LinS. HuangY. CaoX. WangX. FangQ. HuangR. YangK. FengY. GongF. YinJ. CaiS. LiS. WangJ. ZhengW. Effect of an herbal-based injection on 28-day mortality in patients with sepsis.JAMA Intern. Med.2023183764765510.1001/jamainternmed.2023.078037126332
    [Google Scholar]
  37. LiC. WangP. ZhangL. Efficacy and safety of Xuebijing injection (a Chinese patent) for sepsis: A meta-analysis of randomized controlled trialsJ. Ethnopharmacol.2018224512521
    [Google Scholar]
  38. ShiH. HongY. QianJ. CaiX. ChenS. Xuebijing in the treatment of patients with sepsis.Am. J. Emerg. Med.201735228529110.1016/j.ajem.2016.11.00727852528
    [Google Scholar]
  39. LiJ. OlaleyeO.E. YuX. JiaW. YangJ. LuC. LiuS. YuJ. DuanX. WangY. DongK. HeR. ChengC. LiC. High degree of pharmacokinetic compatibility exists between the five-herb medicine XueBiJing and antibiotics comedicated in sepsis care.Acta Pharm. Sin. B2019951035104910.1016/j.apsb.2019.06.00331649852
    [Google Scholar]
  40. YinQ. LiC. Treatment effects of xuebijing injection in severe septic patients with disseminated intravascular coagulation.Evid. Based Complement. Alternat. Med.20142014194925410.1155/2014/94925424778706
    [Google Scholar]
  41. JiaK. LiY. LiuT. GuX. LiX. New insights for infection mechanism and potential targets of COVID-19: Three Chinese patent medicines and three Chinese medicine formulas as promising therapeutic approachesChin. Herb Med.202315215716810.1016/j.chmed.2022.06.014
    [Google Scholar]
  42. InnocentiF. PalmieriV. StefanoneV.T. DonniniC. D’ArgenzioF. CiganaM. TassinariI. PiniR. Epidemiology of right ventricular systolic dysfunction in patients with sepsis and septic shock in the emergency department.Intern. Emerg. Med.20201571281128910.1007/s11739‑020‑02325‑z32279167
    [Google Scholar]
  43. WangL. WangZ. LiuX. ZhangY. WangM. LiangX. LiG. Effects of extracellular histones on left ventricular diastolic function and potential mechanisms in mice with sepsis.Am. J. Transl. Res.202214115016535173835
    [Google Scholar]
  44. FavoryR. NeviereR. Significance and interpretation of elevated troponin in septic patients.Crit. Care200610422410.1186/cc499116895589
    [Google Scholar]
  45. LiY. SunG. WangL. MiR-21 participates in LPS-induced myocardial injury by targeting Bcl-2 and CDK6.Inflamm. Res.202271220521410.1007/s00011‑021‑01535‑135064305
    [Google Scholar]
  46. BiC.F. Liu HaoS.W. XuZ.X. MaX. KangX.F. YangL.S. ZhangJ.F. Xuebijing injection protects against sepsis-induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats.Aging (Albany NY)202315104374439010.18632/aging.20474037219401
    [Google Scholar]
  47. LuoS. HuangX. LiuS. ZhangL. CaiX. ChenB. Long non-coding RNA small Nucleolar RNA host Gene 1 Alleviates Sepsis-associated Myocardial injury by modulating the miR-181a-5p/XIAP axis in vitro. Ann. Clin. Lab. Sci.202151223124033941563
    [Google Scholar]
  48. XiaoY. YuY. HuL. YangY. YuanY. ZhangW. LuoJ. YuL. Matrine alleviates Sepsis-induced Myocardial injury by inhibiting Ferroptosis and Apoptosis.Inflammation20234651684169610.1007/s10753‑023‑01833‑237219694
    [Google Scholar]
  49. ChenY. TongH. PanZ. JiangD. ZhangX. QiuJ. SuL. ZhangM. Xuebijing injection attenuates pulmonary injury by reducing oxidative stress and proinflammatory damage in rats with heat stroke.Exp. Ther. Med.20171363408341610.3892/etm.2017.444428588676
    [Google Scholar]
  50. SlimM.A. TurgmanO. van VughtL.A. van der PollT. WiersingaW.J. Non-conventional immunomodulation in the management of sepsis.Eur. J. Intern. Med.202412191610.1016/j.ejim.2023.10.03237919123
    [Google Scholar]
  51. ZhaoY. LiuH. XiX. ChenS. LiuD. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT.Exp. Cell Res.2020397111233610.1016/j.yexcr.2020.11233633091421
    [Google Scholar]
  52. LiY. WuH. WuW. ZhuoW. LiuW. ZhangY. ChengM. ChenY.G. GaoN. YuH. WangL. LiW. YangM. Structural insights into the TRIM family of ubiquitin E3 ligases.Cell Res.201424676276510.1038/cr.2014.4624722452
    [Google Scholar]
  53. WatanabeM. HatakeyamaS. TRIM proteins and diseases.J. Biochem.2017161213514428069866
    [Google Scholar]
  54. NexøB.A. ChristensenT. FrederiksenJ. Møller-LarsenA. OturaiA.B. VillesenP. HansenB. NissenK.K. LaskaM.J. PetersenT.S. BonnesenS. HedemandA. WuT. WangX. ZhangX. BrudekT. MaricR. SøndergaardH.B. SellebjergF. BrusgaardK. KjeldbjergA.L. RasmussenH.B. NielsenA.L. NyegaardM. PetersenT. BørglumA.D. PedersenF.S. The etiology of multiple sclerosis: Genetic evidence for the involvement of the human endogenous retrovirus HERV-Fc1.PLoS One201162e1665210.1371/journal.pone.001665221311761
    [Google Scholar]
  55. Martins-de-SouzaD. GattazW.F. SchmittA. RewertsC. MaccarroneG. Dias-NetoE. TurckC.W. Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia.Eur. Arch. Psychiatry Clin. Neurosci.2009259315116310.1007/s00406‑008‑0847‑219165527
    [Google Scholar]
  56. ArraM. EmanueleE. MartinelliV. MinorettiP. BertonaM. GeroldiD. The M694V variant of the familial Mediterranean fever gene is associated with sporadic early-onset alzheimer’s disease in an Italian population sample.Dement. Geriatr. Cogn. Disord.2007231555910.1159/00009674317090974
    [Google Scholar]
  57. QuaderiOpitz G/BBB syndrome, a defect of midline development, is due to mutations in a new RING finger gene on Xp22Nat. Genet.1997173285291
    [Google Scholar]
  58. MasudaY. TakahashiH. SatoS. Tomomori-SatoC. SarafA. WashburnM.P. FlorensL. ConawayR.C. ConawayJ.W. HatakeyamaS. TRIM29 regulates the assembly of DNA repair proteins into damaged chromatin.Nat. Commun.201561729910.1038/ncomms829926095369
    [Google Scholar]
  59. HatakeyamaS. TRIM proteins and cancer.Nat. Rev. Cancer2011111179280410.1038/nrc313921979307
    [Google Scholar]
  60. GiraldoM.I. HageA. van TolS. RajsbaumR. TRIM proteins in host defense and viral Pathogenesis.Curr. Clin. Microbiol. Rep.20207410111410.1007/s40588‑020‑00150‑832837832
    [Google Scholar]
  61. JinZ. ZhuZ. The role of TRIM proteins in PRR signaling pathways and immune-related diseases.Int. Immunopharmacol.20219810781310.1016/j.intimp.2021.10781334126340
    [Google Scholar]
  62. YapM.W. StoyeJ.P. TRIM proteins and the innate immune response to viruses.Adv. Exp. Med. Biol.20127709310410.1007/978‑1‑4614‑5398‑7_723631002
    [Google Scholar]
  63. YangL. XiaH. TRIM proteins in inflammation: From expression to emerging regulatory mechanisms.Inflammation202144381182010.1007/s10753‑020‑01394‑833415537
    [Google Scholar]
  64. KoepkeL. GackM.U. SparrerK.M.J. The antiviral activities of TRIM proteins.Curr. Opin. Microbiol.202159505710.1016/j.mib.2020.07.00532829025
    [Google Scholar]
  65. GrimaldiM.P. CandoreG. VastoS. CarusoM. CaimiG. HoffmannE. Colonna-RomanoG. LioD. ShinarY. FranceschiC. CarusoC. Role of the pyrin M694V (A2080G) allele in acute myocardial infarction and longevity: A study in the Sicilian population.J. Leukoc. Biol.200579361161510.1189/jlb.070541616387839
    [Google Scholar]
  66. ChenS.N. CzernuszewiczG. TanY. LombardiR. JinJ. WillersonJ.T. MarianA.J. Human molecular genetic and functional studies identify TRIM63, encoding muscle RING finger Protein 1, as a novel gene for human hypertrophic cardiomyopathy.Circ. Res.2012111790791910.1161/CIRCRESAHA.112.27020722821932
    [Google Scholar]
  67. LiuJ. LiW. DengK.Q. TianS. LiuH. ShiH. FangQ. LiuZ. ChenZ. TianT. GanS. HuF. HuM. ChengX. JiY.X. ZhangP. SheZ.G. ZhangX.J. ChenS. CaiJ. LiH. The E3 ligase TRIM16 is a key suppressor of pathological cardiac hypertrophy.Circ. Res.2022130101586160010.1161/CIRCRESAHA.121.31886635437018
    [Google Scholar]
  68. GuoX. LiuM. HanB. ZhengY. ZhangK. BaoG. GaoC. ShiH. SunQ. ZhaoZ. Upregulation of TRIM16 mitigates doxorubicin-induced cardiotoxicity by modulating TAK1 and YAP/Nrf2 pathways in mice.Biochem. Pharmacol.202422011600910.1016/j.bcp.2023.11600938154547
    [Google Scholar]
  69. ShiM. SuF. DongZ. ShiY. TianX. CuiZ. LiJ. TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling.Biochem. Biophys. Res. Commun.202263212212810.1016/j.bbrc.2022.09.05736208489
    [Google Scholar]
  70. KakihanaY. ItoT. NakaharaM. YamaguchiK. YasudaT. Sepsis-induced myocardial dysfunction: Pathophysiology and management.J. Intensive Care2016412210.1186/s40560‑016‑0148‑127011791
    [Google Scholar]
  71. RHabimana Sepsis-induced cardiac dysfunction: A review of pathophysiologyAcute Crit. Care20203525766
    [Google Scholar]
  72. YangD. DaiX. XingY. TangX. YangG. HarrisonA.G. CahoonJ. LiH. LvX. YuX. WangP. WangH. Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction.Commun. Biol.2022519610.1038/s42003‑022‑03007‑635079095
    [Google Scholar]
  73. YücelG. ZhaoZ. El-BattrawyI. LanH. LangS. LiX. BuljubasicF. ZimmermannW.H. CyganekL. UtikalJ. RavensU. WielandT. BorggrefeM. ZhouX.B. AkinI. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes.Sci. Rep.201771293510.1038/s41598‑017‑03147‑428592841
    [Google Scholar]
  74. LuF. The mechanism study of Sinomenine Alleviates Sepsis-induced Myocardial dysfunction by regulating SOCS32023
  75. JinH. ChenY. DingC. LinY. ChenY. JiangD. SuL. Microcirculatory disorders and protective role of Xuebijing in severe heat stroke.Sci. Rep.201881455310.1038/s41598‑018‑22812‑w29540802
    [Google Scholar]
  76. WangL. LiuZ. DongZ. PanJ. MaX. Effects of Xuebijing injection on microcirculation in septic shock.J. Surg. Res.2016202114715410.1016/j.jss.2015.12.04127083961
    [Google Scholar]
  77. Shi, M, Su, F, Dong, Z, et al. TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 signaling.BIOCHEM BIOPH RES CO.202263212212810.1016/j.bbrc.2022.09.05736208489
    [Google Scholar]
  78. JenaK.K. KolapalliS.P. MehtoS. NathP. DasB. SahooP.K. AhadA. SyedG.H. RaghavS.K. SenapatiS. ChauhanS. ChauhanS. TRIM16 controls assembly and degradation of protein aggregates by modulating the p62‐NRF2 axis and autophagy.EMBO J.20183718e9835810.15252/embj.20179835830143514
    [Google Scholar]
  79. XingH. XuP. MaY. LiT. ZhangY. DingX. LiuL. KeermanM. NiuQ. TFEB ameliorates DEHP ‐induced neurotoxicity by activating GAL3 / TRIM16 axis dependent lysophagy and alleviating lysosomal dysfunction.Environ. Toxicol.20243973779378910.1002/tox.2422138488668
    [Google Scholar]
  80. ChoJY KimJ KimJW Characterization of TRIM16, a member of the fish-specific finTRIM family, in olive flounder Paralichthys olivaceusFish Shellfish Immunol.202212766667110.1016/j.fsi.2022.07.003
    [Google Scholar]
  81. BlasiakJ. KaarnirantaK. Secretory autophagy: A turn key for understanding AMD pathology and developing new therapeutic targets?Expert Opin. Ther. Targets2022261088389510.1080/14728222.2022.215726036529978
    [Google Scholar]
  82. HuW. ZouL. YuN. WuZ. YangW. WuT. LiuY. PuY. JiangY. ZhangJ. ZhuH. ChengF. FengS. Catalpol rescues LPS-induced cognitive impairment via inhibition of NF-Κb-regulated neuroinflammation and up-regulation of TrkB-mediated BDNF secretion in mice.J. Ethnopharmacol.2024319Pt 311734510.1016/j.jep.2023.11734537926114
    [Google Scholar]
  83. YuanS. CaoY. JiangJ. ChenJ. HuangX. LiX. ZhouJ. ZhouY. ZhouJ. Xuebijing injection and its bioactive components alleviate nephrotic syndrome by inhibiting podocyte inflammatory injury.Eur. J. Pharm. Sci.202419610675910.1016/j.ejps.2024.10675938570053
    [Google Scholar]
  84. WangL YeB LiuY Xuebijing injection attenuates heat stroke-induced brain injury through oxidative stress blockage and Parthanatos modulation via PARP-1/AIF signalingACS Omega2023837333923340210.1021/acsomega.3c03084
    [Google Scholar]
/content/journals/cad/10.2174/0115734099318323241122184120
Loading
/content/journals/cad/10.2174/0115734099318323241122184120
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test