Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Diabetic Retinopathy (DR) is one of the common chronic complications of diabetes mellitus, which has developed into the leading cause of irreversible visual impairment in adults worldwide. The Compound Qilian Tablets (CQLT) were developed in China for the treatment and prevention of DR, but their mechanism of action still needs to be clarified.

Objectives

In the present study, network pharmacology, molecular docking, and validation experiments were used to investigate the active components and molecular mechanisms of CQLT against DR.

Methods

The active components and targets of CQLT were collected through the TCSMP database, and the targets of DR were obtained from GeneCards, OMIM, and Drugbank databases. We established a protein-protein interaction network using the STRING database. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted using the Metascape database. Molecular docking using AutoDock Vina was performed to investigate the interactions between components of CQLT and core targets. Moreover, we selected ZDF rats to establish a DR model for the experimental studies.

Results

39 active components and 448 targets in CQLT were screened, among which 90 targets were shared with DR. KEGG pathway enrichment analysis identified 181 pathways. The molecular docking results demonstrated that the main active components had strong binding ability to the core targets. The results from animal experiments indicate that the mechanism of CQLT against DR is associated with inhibiting the retinal mTOR/HIF-1α/VEGF signaling pathway, alleviating the inflammatory response, suppressing retinal neovascularization, and protecting the function and morphology of the retina.

Conclusion

The present study preliminarily explored the mechanism of CQLT in treating DR and demonstrated that CQLT exerts anti-DR effects through multiple components, multiple targets, and multiple pathways. These findings suggest that CQLT shows promise as a potential therapeutic agent for DR and could contribute to developing novel treatments.

© 2025 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099298932240308104437
2024-03-15
2025-09-06
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/3/CCADD-21-3-08.html?itemId=/content/journals/cad/10.2174/0115734099298932240308104437&mimeType=html&fmt=ahah

References

  1. BrylA. MrugaczM. FalkowskiM. ZorenaK. The effect of diet and lifestyle on the course of diabetic retinopathy—A review of the literature.Nutrients2022146125210.3390/nu14061252 35334909
    [Google Scholar]
  2. XuY. WangL. HeJ. BiY. LiM. WangT. WangL. JiangY. DaiM. LuJ. XuM. LiY. HuN. LiJ. MiS. ChenC.S. LiG. MuY. ZhaoJ. KongL. ChenJ. LaiS. WangW. ZhaoW. NingG. Prevalence and control of diabetes in Chinese adults.JAMA2013310994895910.1001/jama.2013.168118 24002281
    [Google Scholar]
  3. SongP. YuJ. ChanK.Y. TheodoratouE. RudanI. Prevalence, risk factors and burden of diabetic retinopathy in China: A systematic review and meta-analysis.J. Glob. Health20188101080310.7189/jogh.08.010803 29899983
    [Google Scholar]
  4. TeoZ.L. ThamY.C. YuM. CheeM.L. RimT.H. CheungN. BikbovM.M. WangY.X. TangY. LuY. WongI.Y. TingD.S.W. TanG.S.W. JonasJ.B. SabanayagamC. WongT.Y. ChengC.Y. Global prevalence of diabetic retinopathy and projection of burden through 2045.Ophthalmology2021128111580159110.1016/j.ophtha.2021.04.027 33940045
    [Google Scholar]
  5. TanT.E. WongT.Y. Diabetic retinopathy: Looking forward to 2030.Front. Endocrinol.202313107766910.3389/fendo.2022.1077669 36699020
    [Google Scholar]
  6. FungT.H.M. PatelB. WilmotE.G. AmoakuW.M.K. Diabetic retinopathy for the non-ophthalmologist.Clin. Med.202222211211610.7861/clinmed.2021‑0792 35304370
    [Google Scholar]
  7. DumitrescuA.G. IstrateS.L. IancuR.C. GutaO.M. CiuluvicaR. VoineaL. Retinal changes in diabetic patients without diabetic retinopathy.Rom. J. Ophthalmol.201761424925510.22336/rjo.2017.45 29516043
    [Google Scholar]
  8. Niestrata-OrtizM. FichnaP. StankiewiczW. StopaM. Enlargement of the foveal avascular zone detected by optical coherence tomography angiography in diabetic children without diabetic retinopathy.Graefes Arch. Clin. Exp. Ophthalmol.2019257468969710.1007/s00417‑019‑04264‑8 30824996
    [Google Scholar]
  9. HuangX. WangH. SheC. FengJ. LiuX. HuX. ChenL. TaoY. Artificial intelligence promotes the diagnosis and screening of diabetic retinopathy.Front. Endocrinol.20221394691510.3389/fendo.2022.946915 36246896
    [Google Scholar]
  10. OhK. KangH.M. LeemD. LeeH. SeoK.Y. YoonS. Early detection of diabetic retinopathy based on deep learning and ultra-wide-field fundus images.Sci. Rep.2021111189710.1038/s41598‑021‑81539‑3 33479406
    [Google Scholar]
  11. ZhangT.T. JiangJ.G. Active ingredients of traditional Chinese medicine in the treatment of diabetes and diabetic complications.Expert Opin. Investig. Drugs201221111625164210.1517/13543784.2012.713937 22862558
    [Google Scholar]
  12. SunJ. RenJ. HuX. HouY. YangY. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes.Biomed. Pharmacother.202114211197710.1016/j.biopha.2021.111977
    [Google Scholar]
  13. KuroiwaD.A.K. MalerbiF.K. RegatieriC.V.S. New insights in resistant diabetic macular edema.Ophthalmologica2021244648549410.1159/000516614 34023834
    [Google Scholar]
  14. LiW. XingQ. LiuZ. LiuR. HuY. YanQ. LiuX. ZhangJ. The signaling pathways of traditional Chinese medicine in treating diabetic retinopathy.Front. Pharmacol.202314116564910.3389/fphar.2023.1165649 37405050
    [Google Scholar]
  15. GaoD GuoY LiX An aqueous extract of radix astragali, angelica sinensis, and panax notoginseng is effective in preventing diabetic retinopathy Evid Based Complementary Altern Med2013201357816510.1155/2013/578165
    [Google Scholar]
  16. ZhouP. XieW. MengX. ZhaiY. DongX. ZhangX. SunG. SunX. Notoginsenoside R1 ameliorates diabetic retinopathy through PINK1-dependent activation of mitophagy.Cells20198321310.3390/cells8030213 30832367
    [Google Scholar]
  17. JiangS. WangY. RenD. LiJ. YuanG. AnL. DuP. MaJ. Antidiabetic mechanism of Coptis chinensis polysaccharide through its antioxidant property involving the JNK pathway.Pharm. Biol.20155371022102910.3109/13880209.2014.952838 25858018
    [Google Scholar]
  18. KeM. HuX.Q. OuyangJ. DaiB. XuY. The effect of astragalin on the VEGF production of cultured Müller cells under high glucose conditions.Biomed. Mater. Eng.2012221-311311910.3233/BME‑2012‑0696 22766709
    [Google Scholar]
  19. DiS. HanL. AnX. KongR. GaoZ. YangY. WangX. ZhangP. DingQ. WuH. WangH. ZhaoL. TongX. In silico network pharmacology and in vivo analysis of berberine-related mechanisms against type 2 diabetes mellitus and its complications.J. Ethnopharmacol.202127611418010.1016/j.jep.2021.114180 33957209
    [Google Scholar]
  20. QinZ. WangW. LiaoD. WuX. LiX. UPLC-Q/TOF-MS-based serum metabolomics reveals hypoglycemic effects of rehmannia glutinosa, coptis chinensis and their combination on high-fat-diet-induced diabetes in KK-Ay Mice.Int. J. Mol. Sci.20181912398410.3390/ijms19123984 30544908
    [Google Scholar]
  21. ZhouJ. XuG. YanJ. LiK. BaiZ. ChengW. HuangK. Rehmannia glutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice.J. Ethnopharmacol.201516422923810.1016/j.jep.2015.02.026 25698243
    [Google Scholar]
  22. NogalesC. MamdouhZ.M. ListM. KielC. CasasA.I. SchmidtH.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms.Trends Pharmacol. Sci.202243213615010.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  23. ZhuW. LiY. ZhaoJ. WangY. LiY. WangY. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking.Ann. Med.202254154155210.1080/07853890.2022.2034931 35132912
    [Google Scholar]
  24. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  25. ErtlP. RohdeB. SelzerP. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.J. Med. Chem.200043203714371710.1021/jm000942e 11020286
    [Google Scholar]
  26. YamashitaF. HashidaM. In silico approaches for predicting ADME properties of drugs.Drug Metab. Pharmacokinet.200419532733810.2133/dmpk.19.327 15548844
    [Google Scholar]
  27. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  28. ShannonP. MarkielA. OzierO. BaligaN.S. WangJ.T. RamageD. AminN. SchwikowskiB. IdekerT. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  29. RebhanM. Chalifa-CaspiV. PriluskyJ. LancetD. GeneCards: Integrating information about genes, proteins and diseases.Trends Genet.199713416310.1016/S0168‑9525(97)01103‑7 9097728
    [Google Scholar]
  30. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku1205 25428349
    [Google Scholar]
  31. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx1037 29126136
    [Google Scholar]
  32. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  33. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  34. KimS. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB.A. ThiessenP.A. YuB. ZaslavskyL. ZhangJ. BoltonE.E. PubChem 2023 update.Nucleic Acids Res.202351D1D1373D138010.1093/nar/gkac956 36305812
    [Google Scholar]
  35. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  36. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  37. SzabóK. ÉnzsölyA. DékányB. SzabóA. HajdúR.I. RadovitsT. MátyásC. OláhA. LaurikL.K. SomfaiG.M. MerkelyB. SzélÁ. LukátsÁ. Histological evaluation of diabetic neurodegeneration in the retina of zucker diabetic fatty (ZDF) rats.Sci. Rep.201771889110.1038/s41598‑017‑09068‑6 28827737
    [Google Scholar]
  38. JohnsonL.E. LarsenM. PerezM.T. Retinal adaptation to changing glycemic levels in a rat model of type 2 diabetes.PLoS One201382e5545610.1371/journal.pone.0055456 23408985
    [Google Scholar]
  39. GaillardT. Evaluation of autodock and autodock vina on the CASF-2013 Benchmark.J. Chem. Inf. Model.20185881697170610.1021/acs.jcim.8b00312 29989806
    [Google Scholar]
  40. Shamsol AzmanA.N.S. TanJ.J. AbdullahM.N.H. BahariH. LimV. YongY.K. Network pharmacology and molecular docking analysis of active compounds in tualang honey against atherosclerosis.Foods2023129177910.3390/foods12091779 37174317
    [Google Scholar]
  41. WeismanA. FazliG.S. JohnsA. BoothG.L. Evolving trends in the epidemiology, risk factors, and prevention of type 2 diabetes: A review.Can. J. Cardiol.201834555256410.1016/j.cjca.2018.03.002 29731019
    [Google Scholar]
  42. XiY. XuP.F. Diabetes and gut microbiota.World J. Diabetes202112101693170310.4239/wjd.v12.i10.1693 34754371
    [Google Scholar]
  43. HuangC. FisherK.P. HammerS.S. NavitskayaS. BlanchardG.J. BusikJ.V. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway.Diabetes20186781639164910.2337/db17‑1587 29866771
    [Google Scholar]
  44. SunP. XuN. LiY. HanY. Destruction of the blood-retina barrier in diabetic retinopathy depends on angiotensin-converting enzyme-mediated TGF-β1/Smad signaling pathway activation.Int. Immunopharmacol.20208510668610.1016/j.intimp.2020.106686 32531714
    [Google Scholar]
  45. PeraisJ. AgarwalR. EvansJ.R. LovemanE. ColquittJ.L. OwensD. HoggR.E. LawrensonJ.G. TakwoingiY. LoisN. Prognostic factors for the development and progression of proliferative diabetic retinopathy in people with diabetic retinopathy.Cochrane Libr.202320232CD01377510.1002/14651858.CD013775.pub2 36815723
    [Google Scholar]
  46. PitaleP.M. GorbatyukM.S. Diabetic retinopathy: From animal models to cellular signaling.Int. J. Mol. Sci.2022233148710.3390/ijms23031487 35163410
    [Google Scholar]
  47. GomułkaK. RutaM. The role of inflammation and therapeutic concepts in diabetic retinopathy—a short review.Int. J. Mol. Sci.2023242102410.3390/ijms24021024 36674535
    [Google Scholar]
  48. LiH. HaoG. TangS. SunH. FangY. PangX. LiuH. JiQ. WangX. TianJ. JiangK. SongX. ZhuR. HanJ. WangW. HuoXue JieDu formula improves diabetic retinopathy in rats by regulating microRNAs.J. Ethnopharmacol.202126811361610.1016/j.jep.2020.113616 33271246
    [Google Scholar]
  49. SingerM.A. KermanyD.S. WatersJ. JansenM.E. TylerL. Diabetic macular edema: it is more than just VEGF.F1000Res20165F1000 Faculty Rev-101910.12688/f1000research.8265.1
    [Google Scholar]
  50. ValdezGuerrero, A.S.; Quintana-Pérez, J.C.; Arellano-Mendoza, M.G.; Castañeda-Ibarra, F.J.; Tamay-Cach, F.; Alemán-González-Duhart, D. Diabetic retinopathy: Important biochemical alterations and the main treatment strategies.Can. J. Diabetes202145650451110.1016/j.jcjd.2020.10.009 33341391
    [Google Scholar]
  51. ShenP. LinW. DengX. BaX. HanL. ChenZ. QinK. HuangY. TuS. Potential implications of quercetin in autoimmune diseases.Front. Immunol.20211268904410.3389/fimmu.2021.689044 34248976
    [Google Scholar]
  52. WardA.B. MirH. KapurN. GalesD.N. CarriereP.P. SinghS. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways.World J. Surg. Oncol.201816110810.1186/s12957‑018‑1400‑z 29898731
    [Google Scholar]
  53. ChenX-L. ChaiG-R. LiuS. YangH-W. Quercetin protects against diabetic retinopathy in rats by inducing heme oxygenase-1 expression.Neural Regen. Res.20211671344135010.4103/1673‑5374.301027 33318415
    [Google Scholar]
  54. ChenB. HeT. XingY. CaoT. Effects of quercetin on the expression of MCP-1, MMP-9 and VEGF in rats with diabetic retinopathy.Exp. Ther. Med.20171466022602610.3892/etm.2017.5275 29285153
    [Google Scholar]
  55. OlaM.S. AhmedM.M. ShamsS. Al-RejaieS.S. Neuroprotective effects of quercetin in diabetic rat retina.Saudi J. Biol. Sci.20172461186119410.1016/j.sjbs.2016.11.017 28855811
    [Google Scholar]
  56. QiangD. CiC. LiuW. WangJ. HeC. JiB. ShaoX. Inhibitory effect of kaempferol on mouse melanoma cell line B16 in vivo and in vitro.Postepy Dermatol. Alergol.202138349850410.5114/ada.2020.94257 34377134
    [Google Scholar]
  57. ImranM. RaufA. ShahZ.A. SaeedF. ImranA. ArshadM.U. AhmadB. BawazeerS. AtifM. PetersD.G. MubarakM.S. Chemo‐preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review.Phytother. Res.201933226327510.1002/ptr.6227 30402931
    [Google Scholar]
  58. XuX.H. ZhaoC. PengQ. XieP. LiuQ.H. Kaempferol inhibited VEGF and PGF expression and in vitro angiogenesis of HRECs under diabetic-like environment.Braz. J. Med. Biol. Res.2017503e539610.1590/1414‑431x20165396 28273207
    [Google Scholar]
  59. DuW. AnY. HeX. ZhangD. HeW. Protection of kaempferol on oxidative stress-induced retinal pigment epithelial cell damage.Oxid. Med. Cell. Longev.2018201811410.1155/2018/1610751 30584457
    [Google Scholar]
  60. WuJ. KeX. MaN. WangW. FuW. ZhangH. ZhaoM. GaoX. HaoX. ZhangZ. Formononetin, an active compound of Astragalus membranaceus (Fisch) Bunge, inhibits hypoxia-induced retinal neovascularization via the HIF-1α/VEGF signaling pathway.Drug Des. Devel. Ther.2016103071308110.2147/DDDT.S114022 27729769
    [Google Scholar]
  61. WangL. LiS. WangL. Uncovering the protective mechanism of Taohong Siwu decoction against diabetic retinopathy via HIF-1 signaling pathway based on network analysis and experimental validation.BMC Complement. Med. Ther.202020129810.1186/s12906‑020‑03086‑0
    [Google Scholar]
  62. CatrinaS.B. ZhengX. Hypoxia and hypoxia-inducible factors in diabetes and its complications.Diabetologia202164470971610.1007/s00125‑021‑05380‑z 33496820
    [Google Scholar]
  63. VadlapatlaR. VadlapudiA. MitraA. Hypoxia-inducible factor-1 (HIF-1): A potential target for intervention in ocular neovascular diseases.Curr. Drug Targets201314891993510.2174/13894501113149990015 23701276
    [Google Scholar]
  64. LingS. BirnbaumY. NanhwanM.K. ThomasB. BajajM. YeY. MicroRNA-dependent cross-talk between VEGF and HIF1α in the diabetic retina.Cell. Signal.201325122840284710.1016/j.cellsig.2013.08.039 24018047
    [Google Scholar]
  65. GaoX. LiY. WangH. LiC. DingJ. Inhibition of HIF ‐1 α decreases expression of pro‐inflammatory IL ‐6 and TNF ‐ α in diabetic retinopathy.Acta Ophthalmol.2017958e746e75010.1111/aos.13096 27288252
    [Google Scholar]
  66. CostacheM.I. IoanaM. IordacheS. EneD. CostacheC.A. SăftoiuA. VEGF expression in pancreatic cancer and other malignancies: A review of the literature.Rom. J. Intern. Med.201553319920810.1515/rjim‑2015‑0027 26710495
    [Google Scholar]
  67. KaštelanS. OreškovićI. BišćanF. KaštelanH. Gverović AntunicaA. Inflammatory and angiogenic biomarkers in diabetic retinopathy.Biochem. Med.202030338539910.11613/BM.2020.030502 32774120
    [Google Scholar]
  68. ZhouZ. JuH. SunM. ChenH. Serum vascular endothelial growth factor levels correlate with severity of retinopathy in diabetic patients: A systematic review and meta-analysis.Dis. Markers2019201911510.1155/2019/9401628 31019585
    [Google Scholar]
  69. HerderC. PeltonenM. KoenigW. KräftI. Müller-ScholzeS. MartinS. LakkaT. Ilanne-ParikkaP. ErikssonJ.G. HämäläinenH. Keinänen-KiukaanniemiS. ValleT.T. UusitupaM. LindströmJ. KolbH. TuomilehtoJ. Systemic immune mediators and lifestyle changes in the prevention of type 2 diabetes: Results from the Finnish Diabetes Prevention Study.Diabetes20065582340234610.2337/db05‑1320 16873699
    [Google Scholar]
  70. AhmadJ. ZubairM. MalikA. SiddiquiM.A. WangnooS.K. Cathepsin-D, Adiponectin, TNF-α, IL-6 and hsCRP plasma levels in subjects with diabetic foot and possible correlation with clinical variables: A multicentric study.Foot201222319419910.1016/j.foot.2012.03.015 22560191
    [Google Scholar]
  71. SemeraroF. CancariniA. dell’OmoR. RezzolaS. RomanoM.R. CostagliolaC. Diabetic retinopathy: Vascular and inflammatory disease.J. Diabetes Res.2015201511610.1155/2015/582060 26137497
    [Google Scholar]
  72. SharmaS. Interleukin-6 Trans-signaling: A pathway with therapeutic potential for diabetic retinopathy.Front. Physiol.20211268942910.3389/fphys.2021.689429 34093244
    [Google Scholar]
  73. CostagliolaC. RomanoV. De TollisM. AcetoF. dell’OmoR. RomanoM.R. PedicinoC. SemeraroF. TNF-alpha levels in tears: A novel biomarker to assess the degree of diabetic retinopathy.Mediators Inflamm.201320131610.1155/2013/629529 24259948
    [Google Scholar]
  74. FaheemS.S. SivasubrmanianS. Fathoming the role of mTOR in diabetes mellitus and its complications.Curr. Mol. Pharmacol.2023165e05102220960910.2174/1874467215666221005123919 36200157
    [Google Scholar]
  75. WeiJ. JiangH. GaoH. WangG. Blocking mammalian target of rapamycin (mTOR) attenuates HIF-1α pathways engaged-vascular endothelial growth factor (VEGF) in diabetic retinopathy.Cell. Physiol. Biochem.20164061570157710.1159/000453207
    [Google Scholar]
  76. Cabrera DeBucD. SomfaiG.M. Early detection of retinal thickness changes in diabetes using optical coherence tomography.Med. Sci. Monit.2010163MT15MT21 20190693
    [Google Scholar]
  77. YaoQ. YangY. LuX. Lycium barbarum polysaccharides improve retinopathy in diabetic sprague-dawley rats.Evid. Based Complement. Alternat. Med.20182018794321210.1155/2018/7943212
    [Google Scholar]
/content/journals/cad/10.2174/0115734099298932240308104437
Loading
/content/journals/cad/10.2174/0115734099298932240308104437
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test