Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The design of an epitope-based vaccine against diphtheria toxin (DTx) originated from the idea that many strong binder epitopes may be structurally located in the depth of DTx. Subsequently, many ineffective antibodies may be produced by the presentation of those epitopes to T and B lymphocytes. The other critical issue is the population coverage of a vaccine that has been neglected in traditional vaccines.

Objective

Given the issues above, our study aimed to design a peptide-based diphtheria vaccine, considering the issues of unwanted epitopes and population coverage.

Methods

The frequencies of pre-determined HLA alleles were listed. A country in which almost all HLA alleles had been determined in almost all geographical distribution was selected. The epitopes within the sequence of diphtheria toxin were predicted by the NetMHCIIPan server based on the selected HLA alleles. Strong binder epitopes on the surface of diphtheria toxin were selected by structural epitope mapping. The epitopes, which cover almost all the human population for each of the HLA alleles in the candidate country, were then selected as epitope-based vaccines.

Results

At first, 793 strong binder epitopes were predicted, of which 82 were surface epitopes. Nine surface epitopes whose amino acids had extruding side chains were selected. Finally, 2 epitopes had the most population coverage and were suggested as a di-epitope diphtheria vaccine. The population coverage of the di-epitope vaccine in France and the world was 100 and 99.24%, respectively. HLA-DP had the most roles in epitope presentation.

Conclusion

Our results indicated that 97.75% of unwanted antibodies (791 epitopes) have been reduced. Achieving two immunodominant surface epitopes confirmed our rational filtration strategy for sequential reduction of unwanted epitopes. Our novel insight may pave a new way to designing novel peptide-based vaccines to avoid producing non-specific antibodies.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099294259240411073449
2024-04-25
2025-12-05
Loading full text...

Full text loading...

References

  1. MurhekarM. Epidemiology of diphtheria in India, 1996–2016: Implications for prevention and control.Am. J. Trop. Med. Hyg.201797231331810.4269/ajtmh.17‑0047 28722581
    [Google Scholar]
  2. ChenR.T. BroomeC.V. WeinsteinR.A. WeaverR. TsaiT.F. Diphtheria in the United States, 1971-81.Am. J. Public Health198575121393139710.2105/AJPH.75.12.1393 4061710
    [Google Scholar]
  3. ShafieeF. AucoinM.G. NajafabadiJ.A. Targeted diphtheria toxin-based therapy: A review article.Front. Microbiol.201910234010.3389/fmicb.2019.02340 31681205
    [Google Scholar]
  4. AlkharabshehO. FrankelA.E. Clinical activity and tolerability of SL-401 (Tagraxofusp): Recombinant diphtheria toxin and interleukin-3 in hematologic malignancies.Biomedicines201971610.3390/biomedicines7010006 30621282
    [Google Scholar]
  5. Sugiman-MarangosS.N. GillS.K. MansfieldM.J. OrrellK.E. DoxeyA.C. MelnykR.A. Structures of distant diphtheria toxin homologs reveal functional determinants of an evolutionarily conserved toxin scaffold.Commun. Biol.20225137510.1038/s42003‑022‑03333‑9 35440624
    [Google Scholar]
  6. BrüssowH. CanchayaC. HardtW.D. Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion.Microbiol. Mol. Biol. Rev.200468356060210.1128/MMBR.68.3.560‑602.2004 15353570
    [Google Scholar]
  7. SevignyL.M. BoothB.J. RowleyK.J. LeavB.A. CheslockP.S. GarrityK.A. SloanS.E. ThomasW.Jr BabcockG.J. WangY. Identification of a human monoclonal antibody to replace equine diphtheria antitoxin for treatment of diphtheria intoxication.Infect. Immun.201381113992400010.1128/IAI.00462‑13 23940209
    [Google Scholar]
  8. ZakikhanyK. EfstratiouA. Diphtheria in Europe: Current problems and new challenges.Future Microbiol.20127559560710.2217/fmb.12.24 22568715
    [Google Scholar]
  9. GriffithJ. BozioC.H. PoelA.J. FitzpatrickK. DeBoltC.A. CassidayP. KenyonC. SmelserC. VagnoneP.S. CulbreathK. AcostaA.M. Imported toxin-producing cutaneous diphtheria—Minnesota, Washington, and New Mexico, 2015–2018.MMWR Morb. Mortal. Wkly. Rep.2019681228128410.15585/mmwr.mm6812a2 30921303
    [Google Scholar]
  10. CassimosD.C. EffraimidouE. MedicS. KonstantinidisT. TheodoridouM. MaltezouH.C. Vaccination programs for adults in Europe, 2019.Vaccines2020813410.3390/vaccines8010034 31968652
    [Google Scholar]
  11. Martinón-TorresF. BoisnardF. ThomasS. SadorgeC. BorrowR. Immunogenicity and safety of a new hexavalent vaccine (DTaP5-IPV-HB-Hib) administered in a mixed primary series schedule with a pentavalent vaccine (DTaP5-IPV-Hib).Vaccine201735303764377210.1016/j.vaccine.2017.05.043 28583305
    [Google Scholar]
  12. MakoffA.J. CharlesI.G. FairweatherN.F. Recombinant antigens as components of a diphtheria-tetanys-persüssis vaccine.Recombinant Microbes for Industrial and Agricultural Applications.1st edCRC Press202010.1201/9781003067191‑13
    [Google Scholar]
  13. LiW. JoshiM. SinghaniaS. RamseyK. MurthyA. Peptide vaccine: Progress and challenges.Vaccines20142351553610.3390/vaccines2030515 26344743
    [Google Scholar]
  14. YangJ. ZhangY. I-TASSER server: New development for protein structure and function predictions.Nucleic Acids Res.201543W1W174W18110.1093/nar/gkv342 25883148
    [Google Scholar]
  15. LiuZ. ZhouH. WangW. A novel method for synthetic vaccine construction based on protein assembly.Scientif. Rep2014410.1038/srep07266
    [Google Scholar]
  16. MonteroM. MenéndezA. DomínguezM.C. NaveaL. VilarubiaO.L. QuintanaD. IzquierdoM. JiménezV. ReyesO. LobainaL. NoaE. DuarteC.A. Broadly reactive antibodies against a gp120 V3 loop multi-epitope polypeptide neutralize different isolates of human immunodeficiency virus type 1 (HIV-1).Vaccine199715111200120810.1016/S0264‑410X(97)00012‑1 9286044
    [Google Scholar]
  17. SuhrbierA. Multi‐epitope DNA vaccines.Immunol. Cell Biol.199775440240810.1038/icb.1997.63 9315485
    [Google Scholar]
  18. GhasemnejadA. BazmaraS. ShadmaniM. BagheriK.P. Designing a new multi-epitope pertussis vaccine with highly population coverage based on a novel sequence and structural filtration algorithm.IEEE/ACM Trans. Comput. Biol. Bioinformatics20211851885189210.1109/TCBB.2019.2958803 31831431
    [Google Scholar]
  19. BazmaraS. ShadmaniM. GhasemnejadA. AghazadehH. BagheriP.K. In silico rational design of a novel tetra-epitope tetanus vaccine with complete population coverage using developed immunoinformatics and surface epitope mapping approaches.Med. Hypotheses201913010926710.1016/j.mehy.2019.109267 31383332
    [Google Scholar]
  20. PrasastyV.D. GrazzolieK. RosmalenaR. YazidF. IvanF.X. SinagaE. Peptide-based subunit vaccine design of T-and B-cells multi-epitopes against Zika virus using immunoinformatics approaches.Microorganisms20197822610.3390/microorganisms7080226 31370224
    [Google Scholar]
  21. AbdullaF. AdhikariU.K. UddinM.K. Exploring, T. Exploring T & B-cell epitopes and designing multi-epitope subunit vaccine targeting integration step of HIV-1 lifecycle using immunoinformatics approach.Microb. Pathog.201913710379110.1016/j.micpath.2019.103791 31606417
    [Google Scholar]
  22. MahapatraS.R. SahooS. DehuryB. RainaV. PatroS. MisraN. SuarM. Designing an efficient multi-epitope vaccine displaying interactions with diverse HLA molecules for an efficient humoral and cellular immune response to prevent COVID-19 infection.Expert Rev. Vaccines202019987188510.1080/14760584.2020.1811091 32869699
    [Google Scholar]
  23. SrivastavaS. VermaS. KamthaniaM. KaurR. BadyalR.K. SaxenaA.K. ShinH.J. KolbeM. PandeyK.C. Structural basis to design multi-epitope vaccines against Novel Coronavirus 19 (COVID19) infection, the ongoing pandemic emergency: An in silico approach.bioRxiv202010.1101/2020.04.01.019299
    [Google Scholar]
  24. SinghA. ThakurM. SharmaL.K. ChandraK. Designing a multi-epitope peptide based vaccine against SARS-CoV-2.Sci. Rep.20201011621910.1038/s41598‑020‑73371‑y 33004978
    [Google Scholar]
  25. ReynissonB. BarraC. KaabinejadianS. HildebrandW.H. PetersB. NielsenM. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data.J. Proteome Res.20201962304231510.1021/acs.jproteome.9b00874 32308001
    [Google Scholar]
  26. HuangC.C. MengE.C. MorrisJ.H. PettersenE.F. FerrinT.E. Enhancing UCSF Chimera through web services.Nucleic Acids Res.201442W478-84 24861624
    [Google Scholar]
  27. BuiH.H. SidneyJ. DinhK. SouthwoodS. NewmanM.J. SetteA. Predicting population coverage of T-cell epitope-based diagnostics and vaccines.BMC Bioinformatics20067115310.1186/1471‑2105‑7‑153 16545123
    [Google Scholar]
  28. YangJ. YanR. RoyA. XuD. PoissonJ. ZhangY. The I-TASSER suite: Protein structure and function prediction.Nat. Methods20151217810.1038/nmeth.3213 25549265
    [Google Scholar]
  29. GalarzaG.F.F. McCabeA. dos SantosM.E.J. TakeshitaL. GhattaorayaG. JonesA.R. MiddletonD. Allele frequency net database.Methods Mol. Biol.20181802496210.1007/978‑1‑4939‑8546‑3_4 29858801
    [Google Scholar]
  30. UniProt: The universal protein knowledgebase.Nucleic Acids Res.2018465269910.1093/nar/gky092 29425356
    [Google Scholar]
  31. JensenK.K. AndreattaM. MarcatiliP. BuusS. GreenbaumJ.A. YanZ. SetteA. PetersB. NielsenM. Improved methods for predicting peptide binding affinity to MHC class II molecules.Immunology2018154339440610.1111/imm.12889 29315598
    [Google Scholar]
  32. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  33. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  34. LiY. DepontieuF.R. SidneyJ. SalayT.M. EngelhardV.H. HuntD.F. SetteA. TopalianS.L. MariuzzaR.A. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells.J. Mol. Biol.2010399459660310.1016/j.jmb.2010.04.037 20417641
    [Google Scholar]
  35. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  36. Visualizer, Accelrys Discovery Studio. "Version 4.5.". Software for visualizing and analyzing protein structures.20172017Available from: https://www.researchgate.net/topic/Discovery-Studio
  37. QaziO. SesardicD. TierneyR. SöderbäckZ. CraneD. BolgianoB. FairweatherN. Reduction of the ganglioside binding activity of the tetanus toxin HC fragment destroys immunogenicity: Implications for development of novel tetanus vaccines.Infect. Immun.20067484884489110.1128/IAI.00500‑06 16861677
    [Google Scholar]
  38. NosratiM. MohabatkarH. BehbahaniM. A novel multi-epitope vaccine for cross protection against hepatitis C virus (HCV): An immunoinformatics approach.Res. Mol. Med.201751172610.29252/rmm.5.1.17
    [Google Scholar]
  39. TouraniM. KarkhahA. NajafiA. Development of an epitope-based vaccine inhibiting immune cells rolling and migration against atherosclerosis using in silico approaches.Comput. Biol. Chem.20177015616310.1016/j.compbiolchem.2017.08.016 28886485
    [Google Scholar]
  40. CastelliM. CappellettiF. DiottiR.A. SauttoG. CriscuoloE. Dal PeraroM. ClementiN. Peptide-based vaccinology: Experimental and computational approaches to target hypervariable viruses through the fine characterization of protective epitopes recognized by monoclonal antibodies and the identification of T-cell-activating peptides.Clin. Dev. Immunol.2013201311210.1155/2013/521231 23878584
    [Google Scholar]
  41. BernhardtS.L. GjertsenM.K. TrachselS. MøllerM. EriksenJ.A. MeoM. BuanesT. GaudernackG. Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: A dose escalating phase I/II study.Br. J. Cancer200695111474148210.1038/sj.bjc.6603437 17060934
    [Google Scholar]
  42. BrunsvigP.F. AamdalS. GjertsenM.K. KvalheimG. GrimsrudM.C.J. SveI. DyrhaugM. TrachselS. MøllerM. EriksenJ.A. GaudernackG. Telomerase peptide vaccination: A phase I/II study in patients with non-small cell lung cancer.Cancer Immunol. Immunother.200655121553156410.1007/s00262‑006‑0145‑7 16491401
    [Google Scholar]
  43. BrunsvigP.F. KyteJ.A. KerstenC. SundstrømS. MøllerM. NyakasM. HansenG.L. GaudernackG. AamdalS. Telomerase peptide vaccination in NSCLC: A phase II trial in stage III patients vaccinated after chemoradiotherapy and an 8-year update on a phase I/II trial.Clin. Cancer Res.201117216847685710.1158/1078‑0432.CCR‑11‑1385 21918169
    [Google Scholar]
  44. LiuZ. XiaoY. ChenY.H. Epitope-vaccine strategy against HIV-1: Today and tomorrow.Immunobiology2003208442342810.1078/0171‑2985‑00286 14748515
    [Google Scholar]
  45. WilsonC.C. NewmanM.J. LivingstonB.D. MaWhinneyS. ForsterJ.E. ScottJ. SchooleyR.T. BensonC.A. Clinical phase 1 testing of the safety and immunogenicity of an epitope-based DNA vaccine in human immunodeficiency virus type 1-infected subjects receiving highly active antiretroviral therapy.Clin. Vaccine Immunol.200815698699410.1128/CVI.00492‑07 18400976
    [Google Scholar]
  46. LiuY. McNevinJ. ZhaoH. TebitD.M. TroyerR.M. McSweynM. GhoshA.K. ShrinerD. ArtsE.J. McElrathM.J. MullinsJ.I. Evolution of human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitopes: Fitness-balanced escape.J. Virol.20078122121791218810.1128/JVI.01277‑07 17728222
    [Google Scholar]
  47. KozielM.J. DudleyD. AfdhalN. GrakouiA. RiceC.M. ChooQ.L. HoughtonM. WalkerB.D. HLA class I-restricted cytotoxic T lymphocytes specific for hepatitis C virus. Identification of multiple epitopes and characterization of patterns of cytokine release.J. Clin. Invest.19959652311232110.1172/JCI118287 7593618
    [Google Scholar]
  48. ShiraiM. OkadaH. NishiokaM. AkatsukaT. WychowskiC. HoughtenR. PendletonC.D. FeinstoneS.M. BerzofskyJ.A. An epitope in hepatitis C virus core region recognized by cytotoxic T cells in mice and humans.J. Virol.19946853334334210.1128/jvi.68.5.3334‑3342.1994 7512163
    [Google Scholar]
  49. WeiS.H. YinW. AnQ.X. LeiY.F. HuX.B. YangJ. LuX. ZhangH. XuZ.K. A novel hepatitis C virus vaccine approach using recombinant Bacillus Calmette-Guerin expressing multi-epitope antigen.Arch. Virol.200815361021102910.1007/s00705‑008‑0082‑1 18421415
    [Google Scholar]
  50. SolaresA.M. BaladronI. RamosT. ValenzuelaC. BorbonZ. FanjullS. GonzalezL. CastilloD. EsmirJ. GranadilloM. BatteA. CintadoA. AleM. de CossioF.M.E. FerrerA. TorrensI. SauraL.P. Safety and immunogenicity of a human papillomavirus peptide vaccine (CIGB-228) in women with high-grade cervical intraepithelial neoplasia: First-in-human, proof-ofconcept trial.ISRN Obstet. Gynecol.201120111910.5402/2011/292951 21748025
    [Google Scholar]
  51. ZhuD. WilliamsJ.N. RiceJ. StevensonF.K. HeckelsJ.E. ChristodoulidesM. A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis.Infect. Immun.200876133433810.1128/IAI.00943‑07 17967859
    [Google Scholar]
  52. TamJ.P. ClavijoP. LuY.A. NussenzweigV. NussenzweigR. ZavalaF. Incorporation of T and B epitopes of the circumsporozoite protein in a chemically defined synthetic vaccine against malaria.J. Exp. Med.1990171129930610.1084/jem.171.1.299 1688609
    [Google Scholar]
  53. DegrootA. McMurryJ. MarconL. FrancoJ. RiveraD. KutzlerM. WeinerD. MartinB. Developing an epitope-driven tuberculosis (TB) vaccine.Vaccine20052317-182121213110.1016/j.vaccine.2005.01.059 15755582
    [Google Scholar]
  54. TarradasJ. MonsóM. MuñozM. RosellR. FraileL. FríasM.T. DomingoM. AndreuD. SobrinoF. GangesL. Partial protection against classical swine fever virus elicited by dendrimeric vaccine-candidate peptides in domestic pigs.Vaccine201129264422442910.1016/j.vaccine.2011.03.095 21496472
    [Google Scholar]
  55. StanekováZ. KirályJ. StropkovskáA. MikuškováT. MuchaV. KostolanskýF. VarečkováE. Heterosubtypic protective immunity against influenza A virus induced by fusion peptide of the hemagglutinin in comparison to ectodomain of M2 protein.Acta Virol.2011551616710.4149/av_2011_01_61 21434706
    [Google Scholar]
  56. VolpinaO.M. GelfanovV.M. YarovA.V. SurovoyA.Y. ChepurkinA.V. Ivanov, VT New virus-specific T-helper epitopes of foot-and-mouth disease viral VP1 protein.FEBS Letters.19933331-2175178
    [Google Scholar]
  57. KhanM.K. ZamanS. ChakrabortyS. ChakravortyR. AlamM.M. BhuiyanT.R. RahmanM.J. FernándezC. QadriF. SerajZ.I. In silico predicted mycobacterial epitope elicits in vitro T-cell responses.Mol. Immunol.2014611162210.1016/j.molimm.2014.04.009 24853589
    [Google Scholar]
  58. YangZ. BogdanP. NazarianS. An in silico deep learning approach to multi-epitope vaccine design: A SARS-CoV-2 case study.Sci. Rep.2021111323810.1038/s41598‑021‑81749‑9 33547334
    [Google Scholar]
  59. QamarT.M. AhmadS. FatimaI. AhmadF. ShahidF. NazA. AbbasiS.W. KhanA. MirzaM.U. AshfaqU.A. ChenL-L. Designing multi-epitope vaccine against Staphylococcus aureus by employing subtractive proteomics, reverse vaccinology and immuno-informatics approaches.Comput. Biol. Med.202113210438910.1016/j.compbiomed.2021.104389
    [Google Scholar]
  60. LimH.X. LimJ. JazayeriS.D. PoppemaS. PohC.L. Development of multi-epitope peptide-based vaccines against SARS-CoV-2.Biomed. J.2021441183010.1016/j.bj.2020.09.005 33727051
    [Google Scholar]
  61. MahmudS. RafiM.O. PaulG.K. PromiM.M. ShimuM.S.S. BiswasS. EmranT.B. DhamaK. AlyamiS.A. MoniM.A. SalehM.A. Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach.Sci. Rep.20211111543110.1038/s41598‑021‑92176‑1 34326355
    [Google Scholar]
  62. SamadA. AhammadF. NainZ. AlamR. ImonR.R. HasanM. RahmanM.S. Designing a multi-epitope vaccine against SARS-CoV-2: an immunoinformatics approach.J. Biomol. Struct. Dyn.2022401143010.1080/07391102.2020.1792347 32677533
    [Google Scholar]
  63. BambiniS. RappuoliR. The use of genomics in microbial vaccine development.Drug Discov. Today2009145-625226010.1016/j.drudis.2008.12.007 19150507
    [Google Scholar]
  64. RueckertC. GuzmánC.A. Vaccines: From empirical development to rational design.PLoS Pathog.2012811e100300110.1371/journal.ppat.1003001 23144616
    [Google Scholar]
  65. UsmaniS.S. KumarR. BhallaS. KumarV. RaghavaG.P.S. In silico tools and databases for designing peptide-based vaccine and drugs.Adv. Protein Chem. Struct. Biol.201811222126310.1016/bs.apcsb.2018.01.006 29680238
    [Google Scholar]
  66. KardaniK. BolhassaniA. NamvarA. An overview of in silico vaccine design against different pathogens and cancer.Expert Rev. Vaccines202019869972610.1080/14760584.2020.1794832 32648830
    [Google Scholar]
  67. ArnaboldiP.M. KatseffA.S. SambirM. DattwylerR.J. Linear peptide epitopes derived from ErpP, p35, and FlaB in the serodiagnosis of lyme disease.Pathogens202211894410.3390/pathogens11080944 36015064
    [Google Scholar]
  68. KalantariH. HabibiM. FerdousiA. KaramA.M.R. MohammadianT. Development of a multi-epitope vaccine candidate against Pseudomonas aeruginosa causing urinary tract infection and evaluation of its immunoreactivity in a rabbit model.J. Biomol. Struct. Dyn.2023202311610.1080/07391102.2023.2239915 37489041
    [Google Scholar]
  69. SadeghiZ. Fasihi-RamandiM. DavoudiZ. BouzariS. Multi-epitope vaccine candidates associated with mannosylated chitosan and LPS conjugated chitosan nanoparticles against brucella infection.J. Pharm. Sci.2023112499199910.1016/j.xphs.2022.12.025 36623693
    [Google Scholar]
  70. HuY. ZhangX. DengS. YueC. JiaX. LyuY. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection: Are vaccines and adjuvants effective strategies?Front. Microbiol.202314104991710.3389/fmicb.2023.1049917 36760499
    [Google Scholar]
  71. JoshiA. AkhtarN. SharmaN.R. KaushikV. BorkotokyS. MERS virus spike protein HTL-epitopes selection and multi-epitope vaccine design using computational biology.J. Biomol. Struct. Dyn.20234122124641247910.1080/07391102.2023.2191137 36935104
    [Google Scholar]
  72. FarzanM. FarzanM. MirzaeiY. AimanS. DehkordiA.F. BagheriN. Immunoinformatics-based multi-epitope vaccine design for the re-emerging monkeypox virus.Int. Immunopharmacol.202312311072510.1016/j.intimp.2023.110725 37556996
    [Google Scholar]
/content/journals/cad/10.2174/0115734099294259240411073449
Loading
/content/journals/cad/10.2174/0115734099294259240411073449
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test