Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

Histone deacetylase 9 (HDAC9) is an important member of the class IIa family of histone deacetylases. It is well established that over-expression of HDAC9 causes various types of cancers including gastric cancer, breast cancer, ovarian cancer, liver cancer, lung cancer, lymphoblastic leukaemia, . The important role of HDAC9 is also recognized in the development of bone, cardiac muscles, and innate immunity. Thus, it will be beneficial to find out the important structural attributes of HDAC9 inhibitors for developing selective HDAC9 inhibitors with higher potency.

Methods

The classification QSAR-based methods namely Bayesian classification and recursive partitioning method were applied to a dataset consisting of HADC9 inhibitors. The structural features strongly suggested that sulphur-containing compounds can be a good choice for HDAC9 inhibition. For this reason, these models were applied further to screen some natural compounds from . The screened compounds were further accessed for the ADME properties and docked in the homology-modelled structure of HDAC9 in order to find important amino acids for the interaction. The best-docked compound was considered for molecular dynamics (MD) simulation study.

Results

The classification models have identified good and bad fingerprints for HDAC9 inhibition. The screened compounds like ajoene, 1,2 vinyl dithiine, diallyl disulphide and diallyl trisulphide had been identified as compounds having potent HDAC9 inhibitory activity. The results from ADME and molecular docking study of these compounds show the binding interaction inside the active site of the HDAC9. The best-docked compound ajoene shows satisfactory results in terms of different validation parameters of MD simulation study.

Conclusion

This modelling study has identified the natural potential lead (s) from . Specifically, the ajoene with the best features can be considered for further and investigation to establish as potential HDAC9 inhibitors.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282303240126061624
2024-02-06
2025-09-28
Loading full text...

Full text loading...

References

  1. BrancoliniC. Di GiorgioE. FormisanoL. GaglianoT. Quis custodiet ipsos custodes (Who controls the controllers)? Two decades of studies on HDAC9.Life20211129010.3390/life11020090 33513699
    [Google Scholar]
  2. HuS. ChoE.H. LeeJ.Y. Histone deacetylase 9: Its role in the pathogenesis of diabetes and other chronic diseases.Diabetes Metab. J.202044223424410.4093/dmj.2019.0243 32347025
    [Google Scholar]
  3. BhattacharyaA. AminS.A. KumarP. JhaT. GayenS. Exploring structural requirements of HDAC10 inhibitors through comparative machine learning approaches.J. Mol. Graph. Model.202312310851010.1016/j.jmgm.2023.108510 37216830
    [Google Scholar]
  4. MartinM. KettmannR. DequiedtF. Class IIa histone deacetylases: Conducting development and differentiation.Int. J. Dev. Biol.2009532-329130110.1387/ijdb.082698mm 19412888
    [Google Scholar]
  5. ChenY.H. YehF.L. YehS.P. MaH.T. HungS.C. HungM.C. LiL.Y. Myocyte enhancer factor-2 interacting transcriptional repressor (MITR) is a switch that promotes osteogenesis and inhibits adipogenesis of mesenchymal stem cells by inactivating peroxisome proliferator-activated receptor γ-2.J. Biol. Chem.201128612106711068010.1074/jbc.M110.199612 21247904
    [Google Scholar]
  6. ZhouX. MarksP.A. RifkindR.A. RichonV.M. Cloning and characterization of a histone deacetylase, HDAC9.Proc. Natl. Acad. Sci.20019819105721057710.1073/pnas.191375098 11535832
    [Google Scholar]
  7. HaberlandM. ArnoldM.A. McAnallyJ. PhanD. KimY. OlsonE.N. Regulation of HDAC9 gene expression by MEF2 establishes a negative-feedback loop in the transcriptional circuitry of muscle differentiation.Mol. Cell. Biol.200727251852510.1128/MCB.01415‑06 17101791
    [Google Scholar]
  8. YangC. CroteauS. HardyP. Histone deacetylase (HDAC) 9: Versatile biological functions and emerging roles in human cancer.Cell. Oncol.2021445997101710.1007/s13402‑021‑00626‑9 34318404
    [Google Scholar]
  9. ClocchiattiA. FloreanC. BrancoliniC. Class IIa HDACs: From important roles in differentiation to possible implications in tumourigenesis.J. Cell. Mol. Med.20111591833184610.1111/j.1582‑4934.2011.01321.x 21435179
    [Google Scholar]
  10. YanK. CaoQ. ReillyC.M. YoungN.L. GarciaB.A. MishraN. Histone deacetylase 9 deficiency protects against effector T cell-mediated systemic autoimmunity.J. Biol. Chem.201128633288332884310.1074/jbc.M111.233932 21708950
    [Google Scholar]
  11. LondheV.P. GavasaneA.T. NipateS.S. BandawaneD.D. ChaudhariP.D. Role of garlic (Allium sativum) in various diseases: An overview.Angiogenesis20111213129134
    [Google Scholar]
  12. ShangA. CaoS.Y. XuX.Y. GanR.Y. TangG.Y. CorkeH. MavumengwanaV. LiH.B. Bioactive compounds and biological functions of garlic (Allium sativum L.).Foods20198724610.3390/foods8070246 31284512
    [Google Scholar]
  13. ShrivastavaS.R. ShrivastavaP.S. RamasamyJ. Mainstreaming of ayurveda, yoga, naturopathy, unani, siddha, and homeopathy with the health care delivery system in India.J. Tradit. Complement. Med.20155211611810.1016/j.jtcme.2014.11.002 26151021
    [Google Scholar]
  14. CapassoA. Antioxidant action and therapeutic efficacy of Allium sativum L.Molecules201318169070010.3390/molecules18010690 23292331
    [Google Scholar]
  15. Mahfouz OmerS.M. MohamedD.A.A. Ali Abdel LatifR.M. Comparative evaluation of the antibacterial effect of Allium sativum, calcium hydroxide and their combination as intracanal medicaments in infected mature anterior teeth: A randomized clinical trial.Int. Endod. J.202255101010102510.1111/iej.13801 35852013
    [Google Scholar]
  16. HallA. TroupinA. Londono-RenteriaB. ColpittsT. Garlic organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection.Viruses20179715910.3390/v9070159 28644404
    [Google Scholar]
  17. SasiM. KumarS. KumarM. ThapaS. PrajapatiU. TakY. ChanganS. SaurabhV. KumariS. KumarA. HasanM. ChandranD. Radha; Bangar, S.P.; Dhumal, S.; Senapathy, M.; Thiyagarajan, A.; Alhariri, A.; Dey, A.; Singh, S.; Prakash, S.; Pandiselvam, R.; Mekhemar, M. Garlic (Allium sativum L.) bioactives and its role in alleviating oral pathologies.Antioxidants20211011184710.3390/antiox10111847 34829718
    [Google Scholar]
  18. BrogiS. RamalhoT.C. KucaK. Medina-FrancoJ.L. ValkoM. In silico methods for drug design and discovery.Front Chem.20208861210.3389/fchem.2020.00612 32850641
    [Google Scholar]
  19. SardarS. Jyotisha; Amin, S.A.; Khatun, S.; Qureshi, I.A.; Patil, U.K.; Jha, T.; Gayen, S. Identification of structural fingerprints among natural inhibitors of HDAC1 to accelerate nature-inspired drug discovery in cancer epigenetics.J. Biomol. Struct. Dyn.20231911510.1080/07391102.2023.2227710
    [Google Scholar]
  20. PanZ. LiX. WangY. JiangQ. JiangL. ZhangM. ZhangN. WuF. LiuB. HeG. Discovery of thieno [2, 3-d] pyrimidine-based hydroxamic acid derivatives as bromodomain-containing protein 4/histone deacetylase dual inhibitors induce autophagic cell death in colorectal carcinoma cells.J. Med. Chem.20206373678370010.1021/acs.jmedchem.9b02178 32153186
    [Google Scholar]
  21. YangZ. ShenM. TangM. ZhangW. CuiX. ZhangZ. PeiH. LiY. HuM. BaiP. ChenL. Discovery of 1,2,4-oxadiazole-Containing hydroxamic acid derivatives as histone deacetylase inhibitors potential application in cancer therapy.Eur. J. Med. Chem.201917811613010.1016/j.ejmech.2019.05.089 31177073
    [Google Scholar]
  22. MehndirattaS. LinM.H. WuY.W. ChenC.H. WuT.Y. ChuangK.H. ChaoM.W. ChenY.Y. PanS.L. ChenM.C. LiouJ.P. N-alkyl-hydroxybenzoyl anilide hydroxamates as dual inhibitors of HDAC and HSP90, downregulating IFN-γ induced PD-L1 expression.Eur. J. Med. Chem.202018511172510.1016/j.ejmech.2019.111725 31655430
    [Google Scholar]
  23. LeeH.Y. NepaliK. HuangF.I. ChangC.Y. LaiM.J. LiY.H. HuangH.L. YangC.R. LiouJ.P. (N-Hydroxycarbonylbenylamino) quinolines as selective histone deacetylase 6 inhibitors suppress growth of multiple myeloma in vitro and in vivo.J. Med. Chem.201861390591710.1021/acs.jmedchem.7b01404 29304284
    [Google Scholar]
  24. LuckhurstC.A. AzizO. BeaumontV. BürliR.W. BrecciaP. MaillardM.C. HaughanA.F. LamersM. LeonardP. MatthewsK.L. RaphyG. StottA.J. Munoz-SanjuanI. ThomasB. WallM. WishartG. YatesD. DominguezC. Development and characterization of a CNS-penetrant benzhydryl hydroxamic acid class IIa histone deacetylase inhibitor.Bioorg. Med. Chem. Lett.2019291838810.1016/j.bmcl.2018.11.009 30463802
    [Google Scholar]
  25. ChaoS.W. ChenL.C. YuC.C. LiuC.Y. LinT.E. GuhJ.H. WangC.Y. ChenC.Y. HsuK.C. HuangW.J. Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities.Eur. J. Med. Chem.201814379280510.1016/j.ejmech.2017.11.092 29223096
    [Google Scholar]
  26. ChenY. WangX. XiangW. HeL. TangM. WangF. WangT. YangZ. YiY. WangH. NiuT. ZhengL. LeiL. LiX. SongH. ChenL. Development of purine-based hydroxamic acid derivatives: potent histone deacetylase inhibitors with marked in vitro and in vivo antitumor activities.J. Med. Chem.201659115488550410.1021/acs.jmedchem.6b00579 27186676
    [Google Scholar]
  27. YangZ. WangT. WangF. NiuT. LiuZ. ChenX. LongC. TangM. CaoD. WangX. XiangW. YiY. MaL. YouJ. ChenL. Discovery of selective histone deacetylase 6 inhibitors using the quinazoline as the cap for the treatment of cancer.J. Med. Chem.20165941455147010.1021/acs.jmedchem.5b01342 26443078
    [Google Scholar]
  28. YaoY. TuZ. LiaoC. WangZ. LiS. YaoH. LiZ. JiangS. Discovery of novel class I histone deacetylase inhibitors with promising in vitro and in vivo antitumor activities.J. Med. Chem.201558197672768010.1021/acs.jmedchem.5b01044 26331334
    [Google Scholar]
  29. LeeH.Y. TsaiA.C. ChenM.C. ShenP.J. ChengY.C. KuoC.C. PanS.L. LiuY.M. LiuJ.F. YehT.K. WangJ.C. ChangC.Y. ChangJ.Y. LiouJ.P. Azaindolylsulfonamides, with a more selective inhibitory effect on histone deacetylase 6 activity, exhibit antitumor activity in colorectal cancer HCT116 cells.J. Med. Chem.201457104009402210.1021/jm401899x 24766560
    [Google Scholar]
  30. SekizawaH. AmaikeK. ItohY. SuzukiT. ItamiK. YamaguchiJ. Late-stage C-H coupling enables rapid identification of HDAC inhibitors: Synthesis and evaluation of NCH-31 analogues.ACS Med. Chem. Lett.20145558258610.1021/ml500024s 24900884
    [Google Scholar]
  31. TashimaT. MurataH. KodamaH. Design and synthesis of novel and highly-active pan-histone deacetylase (pan-HDAC) inhibitors.Bioorg. Med. Chem.201422143720373110.1016/j.bmc.2014.05.001 24864038
    [Google Scholar]
  32. AuzzasL. LarssonA. MateraR. BaraldiA. Deschênes-SimardB. GianniniG. CabriW. BattistuzziG. GalloG. CiacciA. VesciL. PisanoC. HanessianS. Non-natural macrocyclic inhibitors of histone deacetylases: Design, synthesis, and activity.J. Med. Chem.201053238387839910.1021/jm101092u 21073160
    [Google Scholar]
  33. AndrianovV. GailiteV. LolaD. LozaE. SemenikhinaV. KalvinshI. FinnP. PetersenK.D. RitchieJ.W.A. KhanN. TumberA. CollinsL.S. VadlamudiS.M. BjörklingF. SehestedM. Novel amide derivatives as inhibitors of histone deacetylase: Design, synthesis and SAR.Eur. J. Med. Chem.20094431067108510.1016/j.ejmech.2008.06.020 18672316
    [Google Scholar]
  34. LiX. TuZ. LiH. LiuC. LiZ. SunQ. YaoY. LiuJ. JiangS. Biological evaluation of new largazole analogues: Alteration of macrocyclic scaffold with click chemistry.ACS Med. Chem. Lett.20134113213610.1021/ml300371t 24900575
    [Google Scholar]
  35. FassD.M. ShahR. GhoshB. HennigK. NortonS. ZhaoW.N. ReisS.A. KleinP.S. MazitschekR. MaglathlinR.L. LewisT.A. HaggartyS.J. Short-chain HDAC inhibitors differentially affect vertebrate development and neuronal chromatin.ACS Med. Chem. Lett.201121394210.1021/ml1001954 21874153
    [Google Scholar]
  36. Discovery studio 3.0 (DS 3.0). 2015. Available from: www.accelrys.com
  37. Chem 3D Pro Version 8.0.3 and Chem Draw Ultra Version 8.0.3 are software programs developed by Cambridge Soft Corporation.2011Available from: http://www.chemistrysoftware. com/modelling/Chem3D%20Ultra.htm
  38. AminS.A. AdhikariN. JhaT. Development of decision trees to discriminate HDAC8 inhibitors and non-inhibitors using recursive partitioning.J. Biomol. Struct. Dyn.20213911810.1080/07391102.2019.1661876 31530244
    [Google Scholar]
  39. AminS.A. NandiS. KashawS.K. JhaT. GayenS. A critical analysis of urea transporter B inhibitors: Molecular fingerprints, pharmacophore features for the development of next-generation diuretics.Mol. Divers.20222652549255910.1007/s11030‑021‑10353‑w 34978011
    [Google Scholar]
  40. BanerjeeS. AminS.A. AdhikariN. JhaT. Essential elements regulating HDAC8 inhibition: A classification based structural analysis and enzyme-inhibitor interaction study of hydroxamate based HDAC8 inhibitors.J. Biomol. Struct. Dyn.202038185513552510.1080/07391102.2019.1704881 31830865
    [Google Scholar]
  41. MoinulM. AminS.A. KumarP. PatilU.K. GajbhiyeA. JhaT. GayenS. Exploring sodium glucose cotransporter (SGLT2) inhibitors with machine learning approach: A novel hope in anti-diabetes drug discovery.J. Mol. Graph. Model.202211110810610.1016/j.jmgm.2021.108106 34923429
    [Google Scholar]
  42. SardarS. BhattacharyaA. AminS.A. JhaT. GayenS. Exploring molecular fingerprints of different drugs having bile interaction: A stepping stone towards better drug delivery.Mol. Divers.2023271310.1007/s11030‑023‑10670‑2 37369957
    [Google Scholar]
  43. BaidyaS.K. BanerjeeS. GhoshB. JhaT. AdhikariN. A fragment-based exploration of diverse MMP-9 inhibitors through classification-dependent structural assessment.J. Mol. Graph. Model.202412610867110.1016/j.jmgm.2023.108671 37976979
    [Google Scholar]
  44. BaidyaS.K. AminS.A. BanerjeeS. AdhikariN. JhaT. Structural exploration of arylsulfonamide-based ADAM17 inhibitors through validated comparative multi-QSAR modelling studies.J. Mol. Struct.20191185512814210.1016/j.molstruc.2019.02.081
    [Google Scholar]
  45. BaidyaS.K. BanerjeeS. AdhikariN. JhaT. Selective inhibitors of medium-size S1′ pocket matrix metalloproteinases: A stepping stone of future drug discovery.J. Med. Chem.20226516107091075410.1021/acs.jmedchem.1c01855 35969157
    [Google Scholar]
  46. AdhikariN. BanerjeeS. BaidyaS.K. GhoshB. JhaT. Robust classification-based molecular modelling of diverse chemical entities as potential SARS-CoV-2 3CL pro inhibitors: Theoretical justification in light of experimental evidences.SAR QSAR Environ. Res.202132647349310.1080/1062936X.2021.1914721 34011224
    [Google Scholar]
  47. WangT. SunJ. ZhaoQ. Investigating cardiotoxicity related with hERG channel blockers using molecular fingerprints and graph attention mechanism.Comput. Biol. Med.202315310646410.1016/j.compbiomed.2022.106464 36584603
    [Google Scholar]
  48. ZhaoL. XueQ. ZhangH. HaoY. YiH. LiuX. PanW. FuJ. ZhangA. CatNet: Sequence-based deep learning with cross-attention mechanism for identifying endocrine-disrupting chemicals.J. Hazard. Mater.202446513305510.1016/j.jhazmat.2023.133055 38016311
    [Google Scholar]
  49. ZhuZ. RahmanZ. AamirM. ShahS.Z.A. HamidS. BilawalA. LiS. IshfaqM. Insight into TLR4 receptor inhibitory activity via QSAR for the treatment of Mycoplasma pneumonia disease.RSC Advances20231332057206910.1039/D2RA06178C 36712602
    [Google Scholar]
  50. RomanoM. ContuG. MolaF. ConversanoC. Threshold-based Naïve Bayes classifier.Adv. Data Anal. Classif.2023137
    [Google Scholar]
  51. PandeyS.K. RoyK. Development of a read-across-derived classification model for the predictions of mutagenicity data and its comparison with traditional QSAR models and expert systems.Toxicology202350015367610.1016/j.tox.2023.153676 37993082
    [Google Scholar]
  52. LučićB. BatistaJ. BojovićV. LovrićM. Sović KržićA. BešloD. NadramijaD. Vikić-TopićD. Estimation of random accuracy and its use in validation of predictive quality of classification models within predictive challenges.Croat. Chem. Acta201992337939110.5562/cca3551
    [Google Scholar]
  53. BatistaJ. Vikić-TopićD. LučićB. The difference between the accuracy of real and the corresponding random model is a useful parameter for validation of two-state classification model quality.Croat. Chem. Acta201689452753410.5562/cca3117
    [Google Scholar]
  54. Al-FakihA.M. QasimM.K. AlgamalZ.Y. AlharthiA.M. Zainal-AbidinM.H. QSAR classification model for diverse series of antifungal agents based on binary coyote optimization algorithm.SAR QSAR Environ. Res.202334428529810.1080/1062936X.2023.2208374 37157994
    [Google Scholar]
  55. RamaniJ. ShahH. VyasV.K. SharmaM. A review on the medicinal chemistry of sodium glucose co-transporter 2 inhibitors (SGLT2-I): Update from 2010 to present.Eur. J. Med. Chem. Rep.2022100074
    [Google Scholar]
  56. NilarS.H. Mining big data in drug discovery-Triaging and decision trees. big data; bioinformatics.Data Analyt2023265281
    [Google Scholar]
  57. YangC. RathmanJ.F. MostragA. RibeiroJ.V. HobocienskiB. MagdziarzT. KulkarniS. Barton-MaclarenT. High throughput read-across for screening a large inventory of related structures by balancing artificial intelligence/machine learning and human knowledge.Chem. Res. Toxicol.20233671081110610.1021/acs.chemrestox.3c00062 37399585
    [Google Scholar]
  58. NealW.M. PandeyP. KhanS.I. KhanI.A. ChittiboyinaA.G. Machine learning and traditional QSAR modeling methods: A case study of known PXR activators.J. Biomol. Struct. Dyn.202311510.1080/07391102.2023.2196701 37059719
    [Google Scholar]
  59. BéquignonO.J.M. Gómez-TamayoJ.C. LenselinkE.B. WinkS. HiemstraS. LamC.C. GadaletaD. RoncaglioniA. NorinderU. WaterB. PastorM. van WestenG.J.P. Collaborative SAR modeling and prospective in vitro validation of oxidative stress activation in human HepG2 cells.J. Chem. Inf. Model.202363175433544510.1021/acs.jcim.3c00220 37616385
    [Google Scholar]
  60. LvH. ZhuZ. QianC. LiT. HanZ. ZhangW. SiX. WangJ. DengX. LiL. FangT. XiaJ. WuS. ZhouY. Discovery of isatin-β-methyldithiocarbazate derivatives as New Delhi metallo- β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates.Biomed. Pharmacother.202316611543910.1016/j.biopha.2023.115439 37673020
    [Google Scholar]
  61. BanerjeeS. KejriwalS. GhoshB. LankaG. JhaT. AdhikariN. Fragment-based investigation of thiourea derivatives as VEGFR-2 inhibitors: a cross-validated approach of ligand-based and structure-based molecular modeling studies.J. Biomol. Struct. Dyn.202311710.1080/07391102.2023.2198039 37029768
    [Google Scholar]
  62. ElmezayenA.D. YelekçiK. Homology modeling and In silico design of novel and potential dual-acting inhibitors of human histone deacetylases HDAC5 and HDAC9 isozymes.J. Biomol. Struct. Dyn.202139176396641410.1080/07391102.2020.1798812 32715940
    [Google Scholar]
  63. SoltaniA. HashemyS.I. Homology modeling, virtual screening, molecular docking, and ADME approaches to identify a potent agent targeting NK2R protein. Biotechnol. Appl. Biochem.,2023bab.2533.10.1002/bab.2533 37904319
    [Google Scholar]
  64. ValanciuteA. NygaardL. ZschachH. Maglegaard JepsenM. Lindorff-LarsenK. SteinA. Accurate protein stability predictions from homology models.Comput. Struct. Biotechnol. J.202321667310.1016/j.csbj.2022.11.048 36514339
    [Google Scholar]
  65. WebbB. SaliA. Comparative protein structure modeling using modeller.Curr. Protoc. Protein Sci.2016802.9.12.9.37
    [Google Scholar]
  66. Martí-RenomM.A. StuartA.C. FiserA. SánchezR. MeloF. ŠaliA. Comparative protein structure modeling of genes and genomes.Annu. Rev. Biophys. Biomol. Struct.200029129132510.1146/annurev.biophys.29.1.291 10940251
    [Google Scholar]
  67. FiserA. DoR.K.G. ŠaliA. Modeling of loops in protein structures.Protein Sci.2000991753177310.1110/ps.9.9.1753 11045621
    [Google Scholar]
  68. EramianM.Y. PieperU. SaliA. Comparative protein structure modeling using MODELLER.Curr. Protoc. Bioinformatics200651-56
    [Google Scholar]
  69. SelvanA.S. KarthikeyanA. UdhayavelS. Structural characterization and biological function annotation of cluster of differentiation 14 gene of crossbred cattle - An In silico approach.J. Anim. Res.2023131495610.30954/2277‑940X.01.2023.6
    [Google Scholar]
  70. MasjediM.N.K. SadroddinyE. AiJ. BalalaieS. AsgariY. Targeted expression of a designed fusion protein containing BMP2 into the lumen of exosomes.Biochim. Biophys. Acta, Gen. Subj.20241868113050510.1016/j.bbagen.2023.130505 37925035
    [Google Scholar]
  71. Ram KumarA. SelvarajS. AnthoniammalP. Jothi RamalingamR. BaluR. JayaprakashP. Sheeja MolG.P. Comparison of spectroscopic, structural, and molecular docking studies of 5-nitro-2-fluoroaniline and 2-nitro-5-fluoroaniline: An attempt on fluoroaniline isomers.J. Fluor. Chem.202327011016710.1016/j.jfluchem.2023.110167
    [Google Scholar]
  72. ZhangW.X. HuangJ. TianX.Y. LiuY.H. JiaM.Q. WangW. JinC.Y. SongJ. ZhangS.Y. A review of progress in o-aminobenzamide-based HDAC inhibitors with dual targeting capabilities for cancer therapy.Eur. J. Med. Chem.202325911567310.1016/j.ejmech.2023.115673 37487305
    [Google Scholar]
  73. KumarS. AyyannanS.R. Identification of new small molecule monoamine oxidase-B inhibitors through pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation studies.J. Biomol. Struct. Dyn.202341146789681010.1080/07391102.2022.2112082 35983603
    [Google Scholar]
  74. LiuW. DaiJ. ChenX. DuN. HuJ. Integrated network pharmacology and in-silico approaches to decipher the pharmacological mechanism of dioscorea septemloba thunb in treating gout and its complications.Comb. Chem. High Throughput Screen.20232710.2174/0113862073258523231025095117 37957901
    [Google Scholar]
  75. ZhongD.Y. LiL. LiH.J. MaR.M. DengY.H. Study on the mechanism and molecular docking verification of Buyang Huanwu decoction in treating diabetic foot.World J. Tradit. Chin. Med.202392178
    [Google Scholar]
  76. HuC. LiS. YangC. ChenJ. XiongY. FanG. LiuH. HongL. ScaffoldGVAE: Scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.J. Cheminform.20231519110.1186/s13321‑023‑00766‑0 37794460
    [Google Scholar]
  77. JiangD. ZhaoH. DuH. DengY. WuZ. WangJ. ZengY. ZhangH. WangX. WuJ. HsiehC.Y. HouT. How good are current docking programs at nucleic acid-ligand docking? A comprehensive evaluation.J. Chem. Theory Comput.202319165633564710.1021/acs.jctc.3c00507 37480347
    [Google Scholar]
  78. LilkovaE. PetkovP. IlievaN. LitovL. The PyMOL molecular graphics system Version 2.0.20151091925
  79. SinghH. RajaA. PrakashA. MedhiB. Gmx_qk: An Automated protein/protein–ligand complex simulation workflow bridged to MM/PBSA, based on gromacs and zenity-dependent GUI for beginners in MD simulation study.J. Chem. Inf. Model.20236392603260810.1021/acs.jcim.3c00341 37079775
    [Google Scholar]
  80. KrishnamoorthyP.K.P. BalaramanA.D. PriyadharshiniA. ShanmugamD.A.S. MuthukumaranS. KesavamurthyA. RevanasiddappaP.D. Molecular docking and simulation binding analysis of boeravinone B with caspase-3 and EGFR of hepatocellular carcinoma.Lett. Drug Des. Discov.202320223824410.2174/1570180819666220805163725
    [Google Scholar]
  81. Mostafavi-PourZ. JamaliN. Saffari-ChaleshtoriJ. Samare-NajafM. The effect of metformin on bad, bak, and bim pro-apoptotic factors: A molecular dynamic simulation study.Curr. Cancer Ther. Rev.2023191748110.2174/1573394718666220930143651
    [Google Scholar]
  82. PulikkottilA.A. KumarA. JangidK. KumarV. JaitakV. Structure-based virtual screening and molecular dynamic simulation approach for the identification of terpenoids as potential DPP-4 inhibitors.Curr. Computeraided Drug Des.202420441642910.2174/1573409919666230515160502 37190809
    [Google Scholar]
  83. ParkS.J. KernN. BrownT. LeeJ. Im, W. CHARMM-GUI PDB manipulator: Various PDB structural modifications for biomolecular modeling and simulation.J. Mol. Biol.20234351416799510.1016/j.jmb.2023.167995 37356910
    [Google Scholar]
  84. TamangJ.S.D. BanerjeeS. BaidyaS.K. GhoshB. AdhikariN. JhaT. Employing comparative QSAR techniques for the recognition of dibenzofuran and dibenzothiophene derivatives toward MMP-12 inhibition.J. Biomol. Struct. Dyn.20232011710.1080/07391102.2023.2239923 37498149
    [Google Scholar]
  85. KimH. FábiánB. HummerG. Neighbor list artifacts in molecular dynamics simulations.J. Chem. Theory Comput.202319238919892910.1021/acs.jctc.3c00777 38035387
    [Google Scholar]
  86. CostaR.K.M. SouzaL.M.P. SilvaR.S. SouzaF.R. PimentelA.S. The reconciliation between the experimental and calculated octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using atomistic molecular dynamics: An open question.J. Biomol. Struct. Dyn.20234121115101151710.1080/07391102.2023.2173298 36715129
    [Google Scholar]
  87. AhmadA. Identification of potential edible spices as EGFR and EGFR mutant T790M/L858R inhibitors by structure-based virtual screening and molecular dynamics.J. Biomol. Struct. Dyn.20231218
    [Google Scholar]
  88. PatilS.A. AkkiA.J. RaghuA.V. KulkarniR.V. AkamanchiK.G. Sugarcane polyphenol oxidase: Structural elucidation using molecular modeling and docking analyses.Process Biochem.2023134124324910.1016/j.procbio.2023.09.013
    [Google Scholar]
  89. BaidyaA.T.K. DasB. DeviB. LångströmB. ÅgrenH. Darreh-ShoriT. KumarR. Mechanistic insight into the inhibition of choline acetyltransferase by proton pump inhibitors.ACS Chem. Neurosci.202314474976510.1021/acschemneuro.2c00738 36749117
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282303240126061624
Loading
/content/journals/cad/10.2174/0115734099282303240126061624
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test